Lesson 3. Chemical Bonding. Molecular Orbital Theory
|
|
|
- Cornelia Shelton
- 9 years ago
- Views:
Transcription
1 Lesson 3 Chemical Bonding Molecular Orbital Theory 1
2 Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system is lowered when the two atoms approach closely enough that the valence electrons experience attraction to both nuclei It is important to consider both the attractive and repulsive forces involved! Also, remember that atoms are in constant motion above 0 K. Bonds are NOT rigid! 2
3 Why do bonds form? Lennard-Jones potential energy diagram for the hydrogen molecule. E Energy of two separate H atoms r
4 The Quantum Mechanics of H 2 + To get a better understanding of bonding, it s best to start with the simplest possible molecule, H 2+. What forces do we need to consider? This is a three-body problem, so there is no exact solution. The nuclei are much more massive than the electrons (1 u for a proton; u for an electron). To simplify the problem, we use the Born-Oppenheimer approximation. We assume that the motion of the nuclei is negligible compared to the motion of the electrons and treat the nuclei as though they were immobile. 4
5 The Quantum Mechanics of H 2 + If we set the internuclear distance to R, we are then able to solve for the wavefunction of the electron in H 2 + and its energy: Electron energy = kinetic energy + electron-nuclear attraction This is possible because H 2 + has only one electron and simple (cylindrically symmetric) geometry. The resulting ground-state orbital looks like this: 5
6 The Quantum Mechanics of H 2 + The energy of this ground state orbital depends on R. If we calculate the potential energy of the system (both the electron and the internuclear repulsion) at different values of R, we arrive at an energy diagram just like the one on the first slide of this lecture. Important Points to Note: In H 2+, the electron doesn t belong to either atom. In H 2+, the electron is in an orbital which spans the molecule a molecular orbital! Just as atoms have many atomic orbitals (1s, 2s, 2p, etc.), molecules can have many molecular orbitals. In H 2+, the higher energy molecular orbitals are all empty. The energy of a molecular orbital depends in part on the relative positions of the nuclei. 6
7 The Molecular Orbitals of H 2 It was possible to solve the Schrödinger equation exactly for a hydrogen atom, but a helium atom had too many electrons. We encounter the same problem with H 2. While H 2 + can be solved, as soon as a second electron is introduced, there are too many moving bodies and the wavefunction cannot be solved exactly. This does not mean we re finished with quantum mechanics! Instead, we make more approximations So, what s a reasonable approximation? We know that, when two hydrogen atoms are far apart (i.e. R is large), they behave like two free hydrogen atoms. If we were able to bring them together such that the nuclei overlapped (i.e. R = 0 pm), we would have : 7
8 The Molecular Orbitals of H 2 If we imagine the initially separate hydrogen atoms approaching each other (as in the diagram at the right), we see the electrons begin to lean in to begin making the H-H bond. What is responsible for this behaviour? 300 pm 250 pm 220 pm 200 pm 150 pm 100 pm 73 pm 8
9 The Molecular Orbitals of H 2 The orbitals of a hydrogen molecule (R = ~74 pm) must be somewhere between those two extremes. We often approximate molecular orbitals by describing them as combinations of atomic orbitals. This is termed Linear Combination of Atomic Orbitals (LCAO) and gives an LCAO-MO such as that below: By adding the two atomic orbitals, we obtain a sigma bonding orbital (σ). Bonding: lots of electron density between the two nuclei Sigma symmetry: high electron density along the axis connecting the nuclei 9
10 The Molecular Orbitals of H 2 We can also subtract the two atomic orbitals (equivalent to adding them after inverting the phase of one just as subtracting 5 is equivalent to adding -5): This is a sigma antibonding orbital (σ * ). Antibonding: depleted electron density between the two nuclei (look for a node perpendicular to the axis connecting the nuclei) Sigma symmetry: high electron density along the axis connecting the nuclei 10
11 Molecular Orbital Diagram for H 2 We can draw an energy level diagram showing molecular orbitals and the atomic orbitals from which they were derived. This is referred to as a molecular orbital diagram (MO diagram). Note that the energy difference is larger between the atomic orbitals and the antibonding orbital than between the atomic orbitals and the bonding orbital. 11
12 Molecular Orbital Diagram for H 2 MO diagrams relate the energies of molecular orbitals to the atomic orbitals from which they were derived. If the total energy of the electrons is lower using molecular orbitals (the middle column), the molecule forms. If the total energy of the electrons is lower using atomic orbitals (the two outside columns), no molecule is formed. To fill a molecular orbital diagram with electrons, use the same rules as you would to fill in an atomic orbital diagram: Fill σ first. Pauli s exclusion principle still applies Hund s rule still applies 12
13 Molecular Orbital Diagram for H 2 Thus, the orbital occupancy for H 2 in the ground state is and the orbital occupancy for He 2 in the ground state is We can calculate bond orders for these two molecules from their MO diagrams: 13
14 Molecular Orbital Diagram for H 2 If a molecule of H 2 was irradiated with light, exciting an electron from 1σ to 2σ *, what would happen? Should it be possible for H 2 - to exist? What about He 2+? 14
15 15
16 Molecular Orbitals of Homonuclear Diatomics As the two hydrogen atoms approach, we can see that the orbitals change from looking like two separate 1s orbitals (one per H) to looking like a σ molecular orbital: The picture for the development of the antibonding σ * molecular orbital is similar except that, instead of the two 1s orbitals appearing to reach in toward each other, they appear to push away from each other. 300 pm 250 pm 220 pm 200 pm 150 pm 100 pm 73 pm 16
17 Molecular Orbitals of Homonuclear Diatomics We can combine higher energy atomic orbitals in the same way. Compare the σ and σ * orbitals made from the 2s orbitals in F 2 to the σ and σ * orbitals made from the 1s orbitals in H 2 : σ * 1s (H) 1s (H) σ σ * 2s (F) 2s (F) σ 17
18 Molecular Orbitals of Homonuclear Diatomics Note that as the distance between nuclei increases, the overlap between the 1s orbitals decreases. That s why we can t just compare 1s and 2s for F 2! σ * 1s (F) 1s (F) σ σ * 2s (F) 2s (F) σ This is also why, for the most part, we focus on valence molecular orbitals. The core MOs look just like core AOs. 18
19 Molecular Orbitals of Homonuclear Diatomics p orbitals can also be combined to make molecular orbitals. The type of molecular orbital formed will depend on the orientation of the p orbitals. p orbitals that overlap head-on (usually defined as the p z orbitals) give σ molecular orbitals: 19
20 Molecular Orbitals of Homonuclear Diatomics p orbitals that overlap side-on (usually defined as the p x or p y orbitals) give π molecular orbitals and here are the pretty computer-generated pictures of those orbitals: 20
21 General Rules for LCAO-MOs Linear Combination of Atomic Orbitals (LCAO) can only be used to generate molecular orbitals when the atomic orbitals have compatible symmetry. e.g. Combination of an s orbital and a p orbital allowed disallowed When atomic orbitals are added in phase (constructive interference), a bonding orbital is made. When added out of phase (destructive interference), an antibonding orbital is made. THE NUMBER bonding OF MOLECULAR ORBITALS IS antibonding ALWAYS EQUAL TO THE NUMBER OF ATOMIC ORBITALS INCLUDED IN THE CALCULATION!!! 21
22 22
23 The MO Diagram for Li 2 -N 2 4σ 2p 2π 2p 2π 2p 2p 3σ 2pz 2p 1π 2p 1π 2p 2σ 2s 2s 2s 1σ 2s
24 Li 2 and Be 2 Li 2 BO: Bond energy: 106 kj/mol Be2 BO: 2σ 2s 2σ 2s 2s 2s 2s 2s 1σ 2s 1σ 2s
25 Correlation diagram for homonuclear diatomics, Z up to 7 (Li 2 -N 2 ) B 2 Bond order = BDE = 290 kj 4σ 2p 2π 2p 2π 2p 2p 2p 1π 2p 1π 2p 2σ 2s 2s 2s 1σ 2s
26 Paramagnetic unpaired electrons Diamagnetic all electrons paired 2p 2p 26
27 C 2 Bond order BDE 620 kj 2π 2p 4σ 2p 2π 2p 2p 2p 1π 2p 1π 2p 2σ 2s MOEC: 2s 2s 1σ 2s
28 N 2 Bond order BDE 945 kj 4σ 2p 2π 2p 2π 2p 2p 2p 1π 2p 1π 2p 2σ 2s MOEC: 2s 2s 1σ 2s
29 Molecular Orbitals of Homonuclear Diatomics O 2 29
30 30
31 31
32 32
33 33
34 Molecular oxygen is paramagnetic
35 Singlet oxygen ( 1 O 2 ) BO = (6-2)/2 = 2 Singlet Oxygen is an excited state of the ground state triplet 3 O 2 molecule. It is much more reactive, and will readily attack organic molecules. O O 2 O The O 2 molecule in its excited singlet state which is 25 kcal/mol in energy above the ground triplet state. Irradiation with IR light causes excitation to the singlet state, which can persist for hours because the spin-selection rule (see later) inhibits transitions that involve a change of spin state.
36 Recap
37 Molecular Orbitals of Heteronuclear Diatomics The molecular orbitals of heteronuclear diatomics (HF, CO, CN -, etc.) can be predicted using the same principles that we used to construct the molecular orbitals of homonuclear diatomics: Ignore the core electrons Total number of MOs = Total number of AOs Only AOs of similar energy combine to make LCAO-MOs Only AOs of compatible symmetry combine to make LCAO-MOs: σ-type AOs (s and p z orbitals) make σ MOs π-type AOs (p x and p y orbitals) make π MOs 37
38 Molecular Orbitals for HF Consider the valence atomic orbitals of hydrogen and fluorine: Which AOs will combine to make MOs? Which AOs will not mix (and therefore still look like an AO)? 38
39 Molecular Orbitals for HF Using symmetry and energy as our guide, we predict that we will make LCAO-MOs that look something like: There can be no π bonding in HF. Why not? There will still be orbitals with π symmetry in HF. 39
40 Molecular Orbitals for HF 40
41 41
42 The MOs of CO 4σ 2p 2π 2px 2π 2py 2p C 3σ nb 2s-2pz 1π 2px 1π 2py 2p O 2s C 2σ 2s-2pz 1σ 2sO 2s O
43 43
LCAO-MO Correlation Diagrams
LCAO-MO Correlation Diagrams (Linear Combination of Atomic Orbitals to yield Molecular Orbitals) For (Second Row) Homonuclear Diatomic Molecules (X 2 ) - the following LCAO-MO s are generated: LCAO MO
Molecular-Orbital Theory
Molecular-Orbital Theory 1 Introduction Orbitals in molecules are not necessarily localized on atoms or between atoms as suggested in the valence bond theory. Molecular orbitals can also be formed the
CHEM 101/105 BONDING (continued) Lect-16
CHEM 0/05 BONDING (continued) Lect6 A Second covalent bonding theory, MOLECULAR ORBITAL THEORY accounts for covalent bonding by... before looking at MO, return for a moment to the individual unbonded atom
Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure
Chapter 9 Molecular Geometry & Bonding Theories I) Molecular Geometry (Shapes) Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Molecular
Chapter 9 - Covalent Bonding: Orbitals
Chapter 9 - Covalent Bonding: Orbitals 9.1 Hybridization and the Localized Electron Model A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new
SHAPES OF MOLECULES (VSEPR MODEL)
1 SAPES MLEULES (VSEPR MDEL) Valence Shell Electron-Pair Repulsion model - Electron pairs surrounding atom spread out as to minimize repulsion. - Electron pairs can be bonding pairs (including multiple
Hybrid Molecular Orbitals
Hybrid Molecular Orbitals Last time you learned how to construct molecule orbital diagrams for simple molecules based on the symmetry of the atomic orbitals. Molecular orbitals extend over the entire molecule
Chemistry Workbook 2: Problems For Exam 2
Chem 1A Dr. White Updated /5/1 1 Chemistry Workbook 2: Problems For Exam 2 Section 2-1: Covalent Bonding 1. On a potential energy diagram, the most stable state has the highest/lowest potential energy.
Chapter 1 Structure and Bonding. Modified by Dr. Daniela Radu
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 1 Structure and Bonding Modified by Dr. Daniela Radu What is Organic Chemistry? Living things are made of organic chemicals Proteins that make
CHEM 340 CHEMICAL BONDING - in General Lect-07 IONIC COVALENT METAL COVALENT NETWORK
CHEM 340 CHEMICAL BONDING in General Lect07 BONDING between atoms classified as belonging to one of the following types: IONIC COVALENT METAL COVALENT NETWORK or each bond type, the valence shell electrons
Molecular Orbital Theory
Molecular Orbital Theory To date, we have looked at three different theories of molecular boning. They are the VSEPR Theory (with Lewis Dot Structures), the Valence Bond Theory (with hybridization) and
Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively.
Name: Class: Date: Unit 9 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The basis of the VSEPR model of molecular bonding is. A) regions of
Visualizing Molecular Orbitals: A MacSpartan Pro Experience
Introduction Name(s) Visualizing Molecular Orbitals: A MacSpartan Pro Experience In class we have discussed Lewis structures, resonance, VSEPR, hybridization and molecular orbitals. These concepts are
1.15 Bonding in Methane and Orbital Hybridization
1.15 Bonding in Methane and Orbital Hybridization Structure of Methane tetrahedral bond angles = 109.5 bond distances = 110 pm but structure seems inconsistent with electron configuration of carbon Electron
CHAPTER 5: MOLECULAR ORBITALS
Chapter 5 Molecular Orbitals 5 CHAPTER 5: MOLECULAR ORBITALS 5. There are three possible bonding interactions: p z d z p y d yz p x d xz 5. a. Li has a bond order of. (two electrons in a bonding orbital;
5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM
5.6 Physical Chemistry 5 Helium Atom page HELIUM ATOM Now that we have treated the Hydrogen like atoms in some detail, we now proceed to discuss the next simplest system: the Helium atom. In this situation,
9.7 MOLECULAR ORBITALS
368 CHAPTER 9 Molecular Geometry and Bonding Theories John Barbaro, Orbital Bartending, J. Chem. Educ., Vol. 71, 1994, 1012. An analogy for orbital hybridization is suggested in this short article. Robert
Bonding Models. Bonding Models (Lewis) Bonding Models (Lewis) Resonance Structures. Section 2 (Chapter 3, M&T) Chemical Bonding
Bonding Models Section (Chapter, M&T) Chemical Bonding We will look at three models of bonding: Lewis model Valence Bond model M theory Bonding Models (Lewis) Bonding Models (Lewis) Lewis model of bonding
Electron Arrangements
Section 3.4 Electron Arrangements Objectives Express the arrangement of electrons in atoms using electron configurations and Lewis valence electron dot structures New Vocabulary Heisenberg uncertainty
It takes four quantum numbers to describe an electron. Additionally, every electron has a unique set of quantum numbers.
So, quantum mechanics does not define the path that the electron follows; rather, quantum mechanics works by determining the energy of the electron. Once the energy of an electron is known, the probability
Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num
. ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential
Proton Nuclear Magnetic Resonance Spectroscopy
Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.
Atomic Structure Ron Robertson
Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is
Chapter 10 Molecular Geometry and Chemical Bonding Theory
Chem 1: Chapter 10 Page 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory I) VSEPR Model Valence-Shell Electron-Pair Repulsion Model A) Model predicts Predicts electron arrangement and molecular
Valence Bond Theory: Hybridization
Exercise 13 Page 1 Illinois Central College CEMISTRY 130 Laboratory Section: Valence Bond Theory: ybridization Name: Objectives To illustrate the distribution of electrons and rearrangement of orbitals
PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR)
PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) WHAT IS H-NMR SPECTROSCOPY? References: Bruice 14.1, 14.2 Introduction NMR or nuclear magnetic resonance spectroscopy is a technique used to determine
CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules
CHEM6085: Density Functional Theory Lecture 2 Hamiltonian operators for molecules C.-K. Skylaris 1 The (time-independent) Schrödinger equation is an eigenvalue equation operator for property A eigenfunction
Chapter 1 Benzene Blues 27
hapter 1 Benzene Blues 27 The ybridization Model of Atoms in Molecules An important question facing chemists about 80 years ago, was, ow does one go from recently invented atomic orbitals to rationalizing
Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.
Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions
Molecular Symmetry 1
Molecular Symmetry 1 I. WHAT IS SYMMETRY AND WHY IT IS IMPORTANT? Some object are more symmetrical than others. A sphere is more symmetrical than a cube because it looks the same after rotation through
Atoms and Elements. Outline Atoms Orbitals and Energy Levels Periodic Properties Homework
Atoms and the Periodic Table The very hot early universe was a plasma with cationic nuclei separated from negatively charged electrons. Plasmas exist today where the energy of the particles is very high,
Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy
Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy Theory behind NMR: In the late 1940 s, physical chemists originally developed NMR spectroscopy to study different properties of atomic nuclei,
Chapter 8 Concepts of Chemical Bonding
Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding
Section 3: Crystal Binding
Physics 97 Interatomic forces Section 3: rystal Binding Solids are stable structures, and therefore there exist interactions holding atoms in a crystal together. For example a crystal of sodium chloride
Section 5 Molecular Electronic Spectroscopy (lecture 9 ish)
Section 5 Molecular Electronic Spectroscopy (lecture 9 ish) Previously: Quantum theory of atoms / molecules Quantum Mechanics Vl Valence Molecular Electronic Spectroscopy Classification of electronic states
IONISATION ENERGY CONTENTS
IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation
Laboratory 11: Molecular Compounds and Lewis Structures
Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular
Chemistry 111 Laboratory Experiment 4: Visualizing Molecular Orbitals with MacSpartan Pro (This experiment will be conducted in OR341)
Chemistry 111 Laboratory Experiment 4: Visualizing Molecular Orbitals with MacSpartan Pro (This experiment will be conducted in OR341) Introduction In class we have discussed Lewis structures, resonance,
An Introduction to Hartree-Fock Molecular Orbital Theory
An Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2000 1 Introduction Hartree-Fock theory is fundamental
Name Partners Date. Energy Diagrams I
Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy
6.5 Periodic Variations in Element Properties
324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends
AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts
AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy
Ionic and Covalent Bonds
Ionic and Covalent Bonds Ionic Bonds Transfer of Electrons When metals bond with nonmetals, electrons are from the metal to the nonmetal The becomes a cation and the becomes an anion. The between the cation
CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW
CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW Quantum mechanics can account for the periodic structure of the elements, by any measure a major conceptual accomplishment for any theory. Although accurate
CHEM 1211K Test IV. MULTIPLE CHOICE (3 points each)
CEM 1211K Test IV MULTIPLE COICE (3 points each) 1) ow many single covalent bonds must a silicon atom form to have a complete octet in its valence shell? A) 4 B) 3 C) 1 D) 2 E) 0 2) What is the maximum
CHEM 101 Exam 4. Page 1
CEM 101 Exam 4 Form 1 (White) November 30, 2001 Page 1 Section This exam consists of 8 pages. When the exam begins make sure you have one of each. Print your name at the top of each page now. Show your
Molecular Geometry and Chemical Bonding Theory
Chapter 10 Molecular Geometry and Chemical Bonding Theory Concept Check 10.1 An atom in a molecule is surrounded by four pairs of electrons, one lone pair and three bonding pairs. Describe how the four
Application Note AN4
TAKING INVENTIVE STEPS IN INFRARED. MINIATURE INFRARED GAS SENSORS GOLD SERIES UK Patent App. No. 2372099A USA Patent App. No. 09/783,711 World Patents Pending INFRARED SPECTROSCOPY Application Note AN4
Molecular Orbitals. Chapter 5
Chapter 5 Molecular rbitals Molecular orbital theory uses group theory to describe the bonding in molecules ; it complements and extends the introductory bonding models in Chapter 3. In molecular orbital
Atomic Structure: Chapter Problems
Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand
Mulliken suggested to split the shared density 50:50. Then the electrons associated with the atom k are given by:
1 17. Population Analysis Population analysis is the study of charge distribution within molecules. The intention is to accurately model partial charge magnitude and location within a molecule. This can
electron configuration
electron configuration Electron Configuration Knowing the arrangement of electrons in atoms will better help you understand chemical reactivity and predict an atom s reaction behavior. We know when n=1
C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16.
129 Lewis Structures G. N. Lewis hypothesized that electron pair bonds between unlike elements in the second (and sometimes the third) row occurred in a way that electrons were shared such that each element
3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A
1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.
Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework
Molecules of the Atmosphere The present atmosphere consists mainly of molecular nitrogen (N2) and molecular oxygen (O2) but it has dramatically changed in composition from the beginning of the solar system.
Part I: Principal Energy Levels and Sublevels
Part I: Principal Energy Levels and Sublevels As you already know, all atoms are made of subatomic particles, including protons, neutrons, and electrons. Positive protons and neutral neutrons are found
Bonding & Molecular Shape Ron Robertson
Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving
Section 11.3 Atomic Orbitals Objectives
Objectives 1. To learn about the shapes of the s, p and d orbitals 2. To review the energy levels and orbitals of the wave mechanical model of the atom 3. To learn about electron spin A. Electron Location
Nuclear Magnetic Resonance notes
Reminder: These notes are meant to supplement, not replace, the laboratory manual. Nuclear Magnetic Resonance notes Nuclear Magnetic Resonance (NMR) is a spectrometric technique which provides information
3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?
PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06
Student Exploration: Electron Configuration
Name: Date: Student Exploration: Electron Configuration Vocabulary: atomic number, atomic radius, Aufbau principle, chemical family, diagonal rule, electron configuration, Hund s rule, orbital, Pauli exclusion
Question: Do all electrons in the same level have the same energy?
Question: Do all electrons in the same level have the same energy? From the Shells Activity, one important conclusion we reached based on the first ionization energy experimental data is that electrons
Covalent Bonding & Molecular Orbital Theory
Covalent Bonding & Molecular Orbital Theory Chemistry 754 Solid State Chemistry Dr. Patrick Woodward Lecture #16 References - MO Theory Molecular orbital theory is covered in many places including most
Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy
Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy Objectives After studying this lecture, you will be able to Calculate the bond lengths of diatomics from the value
Aspects of an introduction to photochemistry
Aspects of an introduction to photochemistry Ground state reactants Excited state reactants Reaction Intermediates Ground state products Orbital occupancy Carbonyl photochemistry Vibrational structure
EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory
EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory Materials: Molecular Model Kit INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope,
IONISATION ENERGY CONTENTS
IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation
4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a
BASIC PRINCIPLES INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE (NMR) 1. The nuclei of certain atoms with odd atomic number, and/or odd mass behave as spinning charges. The nucleus is the center of positive
The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of
The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of the periodic table. Describe the modern periodic table.
PROTONS AND ELECTRONS
reflect Imagine that you have a bowl of oranges, bananas, pineapples, berries, pears, and watermelon. How do you identify each piece of fruit? Most likely, you are familiar with the characteristics of
A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES
A REVIEW OF GENERAL CEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A STUDENT SOULD BE ABLE TO: 1. Draw Lewis (electron dot and line) structural formulas for simple compounds and ions from molecular
(a) What is the hybridization at each carbon atom in the molecule? (b) How many σ and how many π bonds are there in the molecule?
Read Chapter 9 and complete the following problems: 1. Figure 9.15 is listed on page 361 of the textbook and shows the potential energy of two hydrogen atoms as a function of the distance between them.
7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions
7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams
Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5
Chapter10 Tro 1. All of the geometries listed below are examples of the five basic geometries for molecules with more than 3 atoms except A) planar triangular B) octahedral C) tetrahedral D) trihedral
AP CHEMISTRY 2009 SCORING GUIDELINES
AP CHEMISTRY 2009 SCORING GUIDELINES Question 6 (8 points) Answer the following questions related to sulfur and one of its compounds. (a) Consider the two chemical species S and S 2. (i) Write the electron
A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.
CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the
Multi-electron atoms
Multi-electron atoms Today: Using hydrogen as a model. The Periodic Table HWK 13 available online. Please fill out the online participation survey. Worth 10points on HWK 13. Final Exam is Monday, Dec.
LEWIS DIAGRAMS. by DR. STEPHEN THOMPSON MR. JOE STALEY
by DR. STEPHEN THOMPSON MR. JOE STALEY The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improvement of Postsecondary Education (FIPSE), United States Department
Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds
Comparing Ionic and Covalent Bonds Chapter 7 Covalent Bonds and Molecular Structure Intermolecular forces (much weaker than bonds) must be broken Ionic bonds must be broken 1 Ionic Bonds Covalent Bonds
3. Electronic Spectroscopy of Molecules I - Absorption Spectroscopy
3. Electronic Spectroscopy of Molecules I - Absorption Spectroscopy 3.1. Vibrational coarse structure of electronic spectra. The Born Oppenheimer Approximation introduced in the last chapter can be extended
Solving Spectroscopy Problems
Solving Spectroscopy Problems The following is a detailed summary on how to solve spectroscopy problems, key terms are highlighted in bold and the definitions are from the illustrated glossary on Dr. Hardinger
1. Degenerate Pressure
. Degenerate Pressure We next consider a Fermion gas in quite a different context: the interior of a white dwarf star. Like other stars, white dwarfs have fully ionized plasma interiors. The positively
Theme 3: Bonding and Molecular Structure. (Chapter 8)
Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,
Chapter 8 Basic Concepts of the Chemical Bonding
Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question
CHAPTER 13 MOLECULAR SPECTROSCOPY
CHAPTER 13 MOLECULAR SPECTROSCOPY Our most detailed knowledge of atomic and molecular structure has been obtained from spectroscopy study of the emission, absorption and scattering of electromagnetic radiation
List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.
Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals
Brønsted-Lowry Acids and Bases
Brønsted-Lowry Acids and Bases 1 According to Brønsted and Lowry, an acid-base reaction is defined in terms of a proton transfer. By this definition, the reaction of Cl in water is: Cl(aq) + Cl (aq) +
Name period AP chemistry Unit 2 worksheet Practice problems
Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct
Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.
Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories
NMR - Basic principles
NMR - Basic principles Subatomic particles like electrons, protons and neutrons are associated with spin - a fundamental property like charge or mass. In the case of nuclei with even number of protons
The Atom and the Periodic Table. Electron Cloud Structure Energy Levels Rows on the Periodic Table Bohr Models Electron Dot Diagrams
The Atom and the Periodic Table Electron Cloud Structure Energy Levels Rows on the Periodic Table Bohr Models Electron Dot Diagrams Review The vertical columns in the periodic table are called groups.
Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass
Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up
AP* Atomic Structure & Periodicity Free Response Questions KEY page 1
AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three
Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.
Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van
Exercises Topic 2: Molecules
hemistry for Biomedical Engineering. Exercises Topic 2 Authors: ors: Juan Baselga & María González Exercises Topic 2: Molecules 1. Using hybridization concepts and VSEPR model describe the molecular geometry
NMR and IR spectra & vibrational analysis
Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent
18 electron rule : How to count electrons
18 electron rule : How to count electrons The rule states that thermodynamically stable transition metal organometallic compounds are formed when the sum of the metal d electrons and the electrons conventionally
Covalent Bonding and Molecular Geometry
Name Section # Date of Experiment Covalent Bonding and Molecular Geometry When atoms combine to form molecules (this also includes complex ions) by forming covalent bonds, the relative positions of the
Free Electron Fermi Gas (Kittel Ch. 6)
Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)
