Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms
|
|
|
- Ralf Brooks
- 9 years ago
- Views:
Transcription
1 The five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms UC Berkeley Trinity University March 31, 2008
2 This talk is about counting, and it s about solving equations. Counting is a very familiar activity in mathematics. Many universities teach sophomore-level courses on discrete mathematics that turn out to be mostly about counting. For example, we ask our students to find the number of different ways of constituting a bag of a dozen lollipops if there are 5 different flavors. (The answer is 1820, I think.)
3 Solving equations is even more of a flagship activity for mathematicians. At a mathematics conference at Sundance, Robert Redford told a group of my colleagues I hope you solve all your equations! The kind of equations that I like to solve are Diophantine equations. Diophantus of Alexandria (third century AD) was Robert Redford s kind of mathematician. This father of algebra focused on the solution to algebraic equations, especially in contexts where the solutions are constrained to be whole numbers or fractions.
4 Here s a typical example. Consider the equation y 2 = x In an algebra or high school class, we might graph this equation in the plane; there s little challenge. But what if we ask for solutions in integers (i.e., whole numbers)? It is relatively easy to discover the solutions (0, ±1), ( 1, 0) and (2, ±3), and Diophantus might have asked if there are any more. There aren t, but this is far from obvious.
5 Which positive integers can be written as sums of squares? If m is a positive integer, we consider the Diophantine equation m = x 2 + y 2. We can ask: Does the equation have any solutions at all? How many solutions does the equation have? Can we find all solutions? Let s look at three examples where we can answer the first question. We ll take three consecutive 6-figure prime numbers as values of m: If m is the prime number , there s a positive answer because m = If m is the prime , we have similarly m = If m = , the equation has no solutions.
6 Fermat ( ) solved the first problem definitively: The prime 2 is the sum of two squares. All primes that are 1 mod 4 are sums of two squares All other primes are not sums of two squares If m is a given positive integer, factor m as a product of primes. For example, = , = The rule is that m is the sum of two squares if and only if every prime that s 3 mod 4 appears in its factorization with an even exponent. Neither of , is a sum of two squares.
7 Fermat also solved the second problem by giving a formula in terms of m for the number of solutions to m = x 2 + y 2. Call this number N(m). Thus N(123456) = N( ) = 0, and N(144169) is non-zero. In fact, it s pretty clear that N(144169) is at least 8 because in the equation = we can change the signs of both 212 and 315 and we an flip the order of the two terms. For example, = ( 212) Fermat showed that N(144169) = 8, which we can paraphrase as the statement that is the sum of two squares in essentially one way.
8 For a slightly more complicated example, consider 65, which is both and By the same reasoning as for , N(65) is at least 16. Fermat showed that it s exactly 16.
9 Fermat s general formula for N(m) is that it s 4 times the difference between the number of positive divisors of m that are 1 mod 4 and the number of divisors of m that are 3 mod 4. For example, if p is a prime that s 3 mod 4, p has two divisors, namely 1 and p. One of them is 1 mod 4 and the other is 3 mod 4, so the difference between the counts is 0, and N(m) = 0. If instead p is a prime that s 1 mod 4, the difference is 2, so N(m) = 8. The number 65 has 4 divisors (1, 5, 13, 65), all congruent to 1 mod 4. Since the difference is 4, N(65) = 16.
10 Fermat s Last Theorem It s time now to talk about the most notorious of Diophantine problems. Until its resolution in 1994, it was perhaps the single famous problem in mathematics. To explain Fermat s Last Theorem, we can begin with the perfect squares: the numbers 0, 1, 4, 9, 16, and so on. Add two of them and you re unlikely to end up with a third; for example, = 13, a non-square. Unlikely does not mean impossible, since some sums of two perfect squares are perfect squares: = 5 2, = 13 2, so on. If a 2 + b 2 = c 2, (a, b, c) is called a Pythagorean triple.
11 The ancient Greeks gave a general recipe for finding all Pythagorean triples. If n and m are positive integers with n > m, then (n 2 m 2 ) 2 + (2nm) 2 = (n 2 + m 2 ) 2. For example, if n = 3, n = 2, we get the familiar triple (5, 12, 13). This recipe really does give all Pythagorean triples, up to the operations of scaling a triple and exchanging the first two entries.
12 What happens if we replace squares by cubes, fourth powers, and so on? Fermat proved that the sum of two non-zero perfect fourth powers is never a perfect fourth power. After his death, Fermat s son discovered a marginal note by his father in which Fermat claimed to have proved that the sum of two non-zero perfect nth powers is never a perfect n power, when n is an exponent bigger than 2. Most mathematicians believe that Fermat realized later in his life that his proof was mistaken. We don t know this for sure, and we have little idea of what his proof might have been.
13 Euler ( ) proved that the sum of two non-zero perfect cubes is never a perfect cube. After Euler and Fermat, countless professional and amateur mathematicians attempted to discover a simple proof of the statement in Fermat s marginal note. This statement Fermat s Last Theorem was proved in 1994 by an argument engineered by Andrew Wiles and carried out partially by Wiles and partially in joint work by Wiles and Richard Taylor.
14 Andrew Wiles announced a proof of Fermat s Last Theorem in late June, A gap was found in the proof by Nicholas Katz soon after. The proof was revived in Fall, 1994 by a new argument that was crafted by Richard Taylor and Andrew Wiles.
15 The argument by Wiles and Taylor Wiles made crucial use of modular forms, a magic power of number theory that was described by Martin Eichler ( ) as the fifth fundamental operation of number theory.
16 A gathering at the University of Bonn around Standing: Koji Doi, Ken Ribet, Martin Eichler, Don Zagier, Tsuneo Arakawa, Carlos Moreno, Masami Ohta, Yevsey Nisnevich. Kneeling: Hiroyuki Yoshida.
17 Modular Forms Modular forms seem to come up everywhere in mathematics where one does systematic counts. For example, consider the infinite series whose coefficients are the numbers N(m) that we discussed before: 1 + 4q + 4q 2 + 4q 4 + 8q 5 + 4q 8 + 4q 9 + 8q q This infinite series, viewed in the right way, is a modular form. In fact, this modular form can be used to give a short proof of Fermat s formula for N(m).
18 Modular forms are special functions that are analogous to the trigonometric functions like sin, cos, tan,... in that they are periodic in the same way that sin is periodic. (Recall the formula sin(x + 2π) = sin(x).) Modular forms have the periodicity of the trigonometric functions plus enough extra symmetries that they are essentially unchanged under a large group of substitutions. Because of the symmetries, it is possible to write modular forms as Fourier series a m q m, where the q here is a shorthand for e 2πiz. m=0 When we say that the formal series 1 + 4q + 4q 2 + is a modular form, we mean that it becomes a modular form when we substitute q = e 2πiz.
19 To prove that 1 + 4q + 4q 2 + is a modular form is not too difficult. It s the square of a modular form that was studied by Carl Gustav Jacob Jacobi ( ). It belongs to a space of modular forms that is so constrained that all non-zero modular forms in the space are multiples of each other. Also in this same space is the modular form corresponding to the series 1 + N (1)q + N (2)q 2 +, where the coefficients N (m) are as described before: N (m) is the number of divisors of m that are 1 mod 4 less the number that are 3 mod 4. Because of the constraint, the two modular forms are automatically multiples of each other. It follows they are equal because they begin with the same constant term, namely 1. This gives the modular proof of Fermat s formula for the number of solutions to x 2 + y 2 = m.
20 Now we can begin to talk about the way in which the proof of Fermat s Last Theorem uses modular forms. Here s a skeletal outline: You want to prove that there is no solution to a p + b p = c p when p is a prime number bigger than 2. Assume there is such a solution, (a, b, c), and try to get a contradiction. Using (a, b, c), set up an auxiliary Diophantine counting problem. Show that this problem yields a modular form. Pinpoint the modular form as a member of a highly constrained space of modular forms. Show in fact, that this space has no non-zero elements! That s a contradiction, so the proof is complete.
21 The auxiliary counting problem is associated to the simple-looking equation y 2 = x(x a p )(x + b p ), where (a, b, c) is a Fermat counterexample. Of course, it s impossible to give an actual example because there are no solutions to a p + b p = c p! As a proxy, we can consider the even more simple equation y 2 = x(x 1)(x + 1) = x 3 x. It may recall the equation y 2 = x that we encountered before. Both are examples of elliptic curves. Elliptic curves are basically just fancy names for cubic equations in two variables.
22 Elliptic curves give rise to counting problems (as I ll explain) and hence to infinite series q + a(2)q + a(3)q 2 +. For y 2 = x 3 x, the series begins q 2q 5 3q 9 + 6q q 17 q 25 10q 29 2q 37. A famous conjecture (known as the modularity conjecture, the Taniyama Shimura conjecture, the Shimura Taniyama conjecture, Weil s conjecture, the Shimura Taniyama Weil conjecture,... ) predicted that these infinite series are all modular forms.
23 Goro Shimura and Ken Ribet, summer 1973
24 Wiles s essential contribution was to break open this conjecture by finding a revolutionary method to prove modularity. He, along with Taylor, proved the modularity of lots of elliptic curves in A series of authors completed the proof of the modularity conjecture in The method launched by Taylor and Wiles has found numerous applications to other Diophantine problems.
25 My contribution was to show that if the counting problem is modular, then the associated modular form can be shoe-horned down into a space with no non-zero elements. My work on this problem was done around 20 years ago. It provided the motivation for Wiles to work on the modularity of elliptic curves.
26 To conclude, I need to explain the counting problem for y 2 = x 3 x. It will produce a number a(l) for every prime number l; this number becomes the coefficient of q l in the series for the curve. For example, a(5) = 2. The remaining coefficients a(m) are calculated from the prime-indexed coefficients a(ell) by a relatively uninteresting combinatorial formula. Only the prime-indexed coefficients hold interest.
27 To calculate a(l), we have to view y 2 = x 3 x as a congruence modulo l. This just means systematically throwing out all integers that are multiples of l. (Divide by l and consider only the remainders.) The only relevant xs and ys are the 0, 1, 2,..., l 1. Out of the l 2 possibilities for (x, y), count the number of them that are solutions to y 2 = x 3 x as a congruence modulo l. Call this number C(l). Then a(l) = l C(l). For l = 5 and y 2 = x 3 x, the values 0, 1 and 4 for x give 0 mod 5 on the right-hand side, so there is only one y that satisfies the congruence, namely 0. The values 2 and 3 for x give 1 mod 4 and 4 mod 4 on the right-hand side; each of these correspond to two possible values of y. Altogether there are 7 possible (x, y), so C(5) = 7 and a(5) = 2, as announced.
Applications of Fermat s Little Theorem and Congruences
Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4
Congruent Number Problem
University of Waterloo October 28th, 2015 Number Theory Number theory, can be described as the mathematics of discovering and explaining patterns in numbers. There is nothing in the world which pleases
8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
Homework until Test #2
MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such
Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
Math 319 Problem Set #3 Solution 21 February 2002
Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod
Every Positive Integer is the Sum of Four Squares! (and other exciting problems)
Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer
Chapter 11 Number Theory
Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications
4.2 Euclid s Classification of Pythagorean Triples
178 4. Number Theory: Fermat s Last Theorem Exercise 4.7: A primitive Pythagorean triple is one in which any two of the three numbers are relatively prime. Show that every multiple of a Pythagorean triple
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
Copyrighted Material. Chapter 1 DEGREE OF A CURVE
Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two
5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
Just the Factors, Ma am
1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive
Some practice problems for midterm 2
Some practice problems for midterm 2 Kiumars Kaveh November 15, 2011 Problem: What is the remainder of 6 2000 when divided by 11? Solution: This is a long-winded way of asking for the value of 6 2000 mod
k, then n = p2α 1 1 pα k
Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square
SECTION 10-2 Mathematical Induction
73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
Continued Fractions. Darren C. Collins
Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a
Computing exponents modulo a number: Repeated squaring
Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method
Settling a Question about Pythagorean Triples
Settling a Question about Pythagorean Triples TOM VERHOEFF Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands E-Mail address:
1.2. Successive Differences
1. An Application of Inductive Reasoning: Number Patterns In the previous section we introduced inductive reasoning, and we showed how it can be applied in predicting what comes next in a list of numbers
MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS
MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS Class Meetings: MW 2:00-3:15 pm in Physics 144, September 7 to December 14 [Thanksgiving break November 23 27; final exam December 21] Instructor:
Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions
Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in
SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me
SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines
Theorem3.1.1 Thedivisionalgorithm;theorem2.2.1insection2.2 If m, n Z and n is a positive
Chapter 3 Number Theory 159 3.1 Prime Numbers Prime numbers serve as the basic building blocs in the multiplicative structure of the integers. As you may recall, an integer n greater than one is prime
Integer roots of quadratic and cubic polynomials with integer coefficients
Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street
Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may
Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition
Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d.
[Chap. ] Pythagorean Triples 6 (b) The table suggests that in every primitive Pythagorean triple, exactly one of a, b,orc is a multiple of 5. To verify this, we use the Pythagorean Triples Theorem to write
5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1
MATH 13150: Freshman Seminar Unit 8 1. Prime numbers 1.1. Primes. A number bigger than 1 is called prime if its only divisors are 1 and itself. For example, 3 is prime because the only numbers dividing
Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov
Lee 1 Primes in Sequences By: Jae Young Lee Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov Lee 2 Jae Young Lee MA341 Number Theory PRIMES IN SEQUENCES
DigitalCommons@University of Nebraska - Lincoln
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-1-007 Pythagorean Triples Diane Swartzlander University
Introduction. Appendix D Mathematical Induction D1
Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to
CHAPTER 5. Number Theory. 1. Integers and Division. Discussion
CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a
0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to
1 Introduction to Ramanujan theta functions
A Multisection of q-series Michael Somos 06 Sep 2010 [email protected] (draft version 32) 1 Introduction to Ramanujan theta functions Ramanujan used an approach to q-series which is general and is
Trigonometric Functions and Equations
Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending
SUM OF TWO SQUARES JAHNAVI BHASKAR
SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted
MATH 10034 Fundamental Mathematics IV
MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.
WRITING PROOFS. Christopher Heil Georgia Institute of Technology
WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this
Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter 4 described a mathematical system
CHAPTER Number Theory FIGURE FIGURE FIGURE Plus hours Plus hours Plus hours + = + = + = FIGURE. Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter described a mathematical
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9.
SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) (1) (Exercise 11, Page 107) Which of the following is the correct UPC for Progresso minestrone soup? Show why the other numbers are not valid
MATH10040 Chapter 2: Prime and relatively prime numbers
MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive
CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12
CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.
The last three chapters introduced three major proof techniques: direct,
CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements
Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
A SIMPLE PROOF OF FERMAT'S LAST THEOREM BY
Page 5984. A SIMPLE PROOF OF FERMAT'S LAST THEOREM BY J. C. EDWARDS Abstract. The proof of Fermat's Last Theorem offered here is relatively simple and well within Fermat's own expertise. Therefore, it
PROOFS BY DESCENT KEITH CONRAD
PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the
Alex, I will take congruent numbers for one million dollars please
Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 [email protected] One of the most alluring aspectives of number theory
V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography
V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 3 Congruence Congruences are an important and useful tool for the study of divisibility. As we shall see, they are also critical
A Study on the Necessary Conditions for Odd Perfect Numbers
A Study on the Necessary Conditions for Odd Perfect Numbers Ben Stevens U63750064 Abstract A collection of all of the known necessary conditions for an odd perfect number to exist, along with brief descriptions
Session 6 Number Theory
Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple
2 When is a 2-Digit Number the Sum of the Squares of its Digits?
When Does a Number Equal the Sum of the Squares or Cubes of its Digits? An Exposition and a Call for a More elegant Proof 1 Introduction We will look at theorems of the following form: by William Gasarch
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
Equations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.
The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,
Lies My Calculator and Computer Told Me
Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing
Quotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
Stupid Divisibility Tricks
Stupid Divisibility Tricks 101 Ways to Stupefy Your Friends Appeared in Math Horizons November, 2006 Marc Renault Shippensburg University Mathematics Department 1871 Old Main Road Shippensburg, PA 17013
Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
GRE Prep: Precalculus
GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach
9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.
9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role
SOLVING TRIGONOMETRIC EQUATIONS
Mathematics Revision Guides Solving Trigonometric Equations Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 SOLVING TRIGONOMETRIC
Pythagorean vectors and their companions. Lattice Cubes
Lattice Cubes Richard Parris Richard Parris ([email protected]) received his mathematics degrees from Tufts University (B.A.) and Princeton University (Ph.D.). For more than three decades, he has lived
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
On the largest prime factor of x 2 1
On the largest prime factor of x 2 1 Florian Luca and Filip Najman Abstract In this paper, we find all integers x such that x 2 1 has only prime factors smaller than 100. This gives some interesting numerical
= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
Math Workshop October 2010 Fractions and Repeating Decimals
Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,
Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and
Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study
COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i
COMPLEX NUMBERS _4+i _-i FIGURE Complex numbers as points in the Arg plane i _i +i -i A complex number can be represented by an expression of the form a bi, where a b are real numbers i is a symbol with
Exponents and Radicals
Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of
Chapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
2.1. Inductive Reasoning EXAMPLE A
CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
Session 7 Fractions and Decimals
Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,
arxiv:0909.4913v2 [math.ho] 4 Nov 2009
IRRATIONALITY FROM THE BOOK STEVEN J. MILLER AND DAVID MONTAGUE arxiv:0909.4913v2 [math.ho] 4 Nov 2009 A right of passage to theoretical mathematics is often a proof of the irrationality of 2, or at least
THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0
THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0 RICHARD J. MATHAR Abstract. We count solutions to the Ramanujan-Nagell equation 2 y +n = x 2 for fixed positive n. The computational
Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem)
Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem) In order to understand the details of the Fingerprinting Theorem on fingerprints of different texts from Chapter 19 of the
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
CS 3719 (Theory of Computation and Algorithms) Lecture 4
CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a
Week 13 Trigonometric Form of Complex Numbers
Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working
Factoring Polynomials
Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations
Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}
Mathematics Pre-Test Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {-1, 1} III. {-1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following
Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
THE COMPLEX EXPONENTIAL FUNCTION
Math 307 THE COMPLEX EXPONENTIAL FUNCTION (These notes assume you are already familiar with the basic properties of complex numbers.) We make the following definition e iθ = cos θ + i sin θ. (1) This formula
3.3 Real Zeros of Polynomials
3.3 Real Zeros of Polynomials 69 3.3 Real Zeros of Polynomials In Section 3., we found that we can use synthetic division to determine if a given real number is a zero of a polynomial function. This section
The Chinese Remainder Theorem
The Chinese Remainder Theorem Evan Chen [email protected] February 3, 2015 The Chinese Remainder Theorem is a theorem only in that it is useful and requires proof. When you ask a capable 15-year-old why
Examples of Functions
Examples of Functions In this document is provided examples of a variety of functions. The purpose is to convince the beginning student that functions are something quite different than polynomial equations.
Our Primitive Roots. Chris Lyons
Our Primitive Roots Chris Lyons Abstract When n is not divisible by 2 or 5, the decimal expansion of the number /n is an infinite repetition of some finite sequence of r digits. For instance, when n =
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
Basic Proof Techniques
Basic Proof Techniques David Ferry [email protected] September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document
CHAPTER 5 Round-off errors
CHAPTER 5 Round-off errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers in computers. Since any
3 Some Integer Functions
3 Some Integer Functions A Pair of Fundamental Integer Functions The integer function that is the heart of this section is the modulo function. However, before getting to it, let us look at some very simple
Notes on Factoring. MA 206 Kurt Bryan
The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor
As we have seen, there is a close connection between Legendre symbols of the form
Gauss Sums As we have seen, there is a close connection between Legendre symbols of the form 3 and cube roots of unity. Secifically, if is a rimitive cube root of unity, then 2 ± i 3 and hence 2 2 3 In
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25
8 Divisibility and prime numbers
8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express
