Heat transfer to or from a fluid flowing through a tube

Size: px
Start display at page:

Download "Heat transfer to or from a fluid flowing through a tube"

Transcription

1 Heat tranfer to or from a fluid flowing through a tube R. Shankar Subramanian A common ituation encountered by the chemical engineer i heat tranfer to fluid flowing through a tube. Thi can occur in heat exchanger, boiler, condener, evaporator, and a hot of other proce equipment. Therefore, it i ueful to know how to etimate heat tranfer coefficient in thi ituation. We can claify the flow of a fluid in a traight circular tube into either laminar or turbulent flow. It i aumed from hereon that we aume fully developed incompreible, Newtonian, teady flow condition. Fully developed flow implie that the tube i long compared with the entrance length in which the velocity ditribution at the inlet adjut itelf to the geometry and no longer change with ditance along the tube. Reynold number The value of the Reynold number permit u to determine whether the flow i laminar or turbulent. We define the Reynold number a follow. DV ρ Reynold number Re = = μ DV ν Here, D i the inide diameter of the tube (or pipe), V i the average velocity of the fluid, ρ i the denity of the fluid and μ i it dynamic vicoity. It i common to ue the kinematic vicoity ν = μ/ ρ in defining the Reynold number. Another common form involve uing the ma flow rate m intead of the average velocity. The ma flow rate i related to the volumetric π 2 flow rate Q via m= ρq, and we can write Q= D V. Therefore, the Reynold number alo 4 can be defined a 4m Re = πμd The flow in a commercial circular tube or pipe i uually laminar when the Reynold number i below 2,300. In the range 2,300 < Re < 4, 000, the tatu of the flow i in tranition and for Re > 4, 000, flow can be regarded a turbulent. Reult for heat tranfer in the tranition regime are difficult to predict, and it i bet to avoid thi regime in deigning heat exchange equipment. By the way, turbulent flow i inherently unteady, being characterized by time-dependent fluctuation in the velocity and preure, but we uually average over thee fluctuation and define time-moothed or time-average velocity and preure; thee time-moothed entitie can be teady or time-dependent (on a time cale much larger than that of the fluctuation), and here we only focu on teady condition when we dicu either laminar or turbulent flow. 1

2 Principal difference between heat tranfer in laminar flow and that in turbulent flow In dicuing heat tranfer to or from a fluid flowing through a traight circular tube, it i ueful to ditinguih between the axial or main flow direction, and the direction that lie in a plane perpendicular to the tube axi. In that plane, tranvere heat flow can be broken into radial and azimuthal component. The principal difference between laminar and turbulent flow, a far a heat tranfer i concerned, i that an additional mechanim of heat tranfer in the radial and azimuthal direction become available in turbulent flow. Thi i commonly termed eddy tranport and i intene, providing much better tranfer of energy acro the flow at a given axial poition than in laminar flow, wherein conduction i typically the only mechanim that operate in the tranvere direction (an exception occur when there are econdary flow in the tranvere direction, uch a in coiled tube). Another difference worthwhile noting i the extent of the thermal entrance region in which the tranvere temperature ditribution become fully developed. Thi region i relatively hort in turbulent flow (preciely becaue of the intene turbulent tranvere tranport of energy), wherea it tend to be long in laminar flow. Heat tranfer correlation, baed on experimental reult, are typically divided into thoe applicable in the thermal entrance region, and thoe that apply in the fully developed region. In the cae of laminar flow, it i important to be aware of thi ditinction, and normally a laminar flow heat exchanger i deigned to be hort, to take advantage of relatively high heat tranfer rate that are achievable in the thermal entrance region. In the cae of turbulent flow, the thermal entrance region i hort, a noted earlier, and typically heat tranfer occur motly in the fully developed region. Therefore, turbulent heat tranfer correlation are commonly provided for the latter region. Laminar heat tranfer correlation A variety of correlation are in ue for predicting heat tranfer rate in laminar flow. From dimenional analyi, the correlation are uually written in the form ( Re,Pr, ) Nu = f hd μc where Nu = i the Nuelt number, f i ome function, and Pr p ν = = i the Prandtl k k α number. Here, h i the heat tranfer coefficient, k i the thermal conductivity of the fluid, and C p i the pecific heat of the fluid at contant preure. A you can ee, the Prandtl number can be written a the ratio of the kinematic vicoity ν to the thermal diffuivity of the fluid α. The ellipe in the right ide of the above reult tand for additional dimenionle group uch a L/ D, which i the ratio of the tube length to it diameter, and other group that we ll dicu a they occur. A we noted before, efficient heat tranfer in laminar flow occur in the thermal entrance region. A reaonable correlation for the Nuelt number wa provided by Sieder and Tate. 2

3 1/ /3 1/3 D μ b 1.86 Re Pr L μw Nu = You can ee that a the length of the tube increae, the Nuelt number decreae a. Thi doe not, however, imply that the Nuelt number approache zero a the length become large. Thi i becaue the Sieder-Tate correlation only applie in the thermal entrance region. In long tube, wherein mot of the heat tranfer occur in the thermally fully-developed region, the Nuelt number i nearly a contant independent of any of the above parameter. When the boundary condition at the wall i that of uniform wall temperature, Nu If intead the flux of heat at the wall i uniform, Nu 4.36, but in thi cae we already know the heat flux and a heat tranfer coefficient i not needed. Remember that the purpoe of uing a heat tranfer coefficient i to calculate the heat flux between the wall and the fluid. In the cae of uniform wall flux, we can ue an energy balance directly to infer the way in which the bulk average temperature of the fluid change with ditance along the axial direction. μ Notice that a ratio b appear in the above laminar flow heat tranfer correlation. We have μw defined μ a the vicoity of the fluid. The ubcript b and w tand for bulk and wall, repectively. We know that the bulk temperature of the fluid will change along the tube. The wall temperature may be contant, or it may vary along the length of the tube. In all cae, we can ue an arithmetic value of the average between the extreme value that occur in the ytem. Becaue the exponent (0.14) i mall, the effect of thi term on the Nuelt number i not large it i only a mall correction, and thi averaging i quite jutified. In fact, for all the other phyical propertie uch a denity, thermal conductivity, and pecific heat, we hould etimate value at the average temperature of the fluid between the inlet and outlet. The Reynold and Prandtl number are raied to the ame power in the laminar flow correlation. Therefore, we can write the correlation a 1/ / /3 D μ 1/3 D μ b b ( ) ( ) Nu = 1.86 Re Pr = 1.86 Pe L μw L μw where we have introduced a new group Pe called the Peclet number. L 1/3 Pe DV ν DV = Re Pr = = ν α α The Peclet number Pe play a role in heat tranfer that i imilar to that of the Reynold number in fluid mechanic. Recall that the phyical ignificance of the Reynold number i that it repreent the ratio of inertial force to vicou force in the flow, or equivalently, the relative importance of convective tranport of momentum compared with molecular tranport of momentum. Thu, the Peclet number tell u the relative importance of convective tranport of thermal energy when compared with molecular tranport of thermal energy (conduction). 3

4 The author of the textbook recommend the following laminar flow heat tranfer correlation from a book by D.K. Edward, V.E. Denny, and A.F. Mill for the average Nuelt number for a tube of length L. Nu average D h 0.065Re Pr averaged = = L k D RePr L 2/3 Unlike the correlation of Sieder and Tate, thi reult can be ued for hort or long tube. Note that a the length become very large, Nu 3.66, which i the reult for a uniform wall average temperature when the temperature field i fully developed. The textbook alo provide ueful information about entrance length. For example, the hydrodynamic entrance length L ef for the friction factor to decreae to within 5% of it value for fully developed laminar flow condition i given a L ef D 0.05 Re Likewie, if the velocity profile in laminar flow i fully developed and we then apply a uniform wall temperature boundary condition, the thermal entrance length can be etimated from L eh D Re Pr When both the velocity and temperature field develop with ditance imultaneouly, the problem i more involved. Turbulent flow The entrance length are much horter for turbulent flow, becaue of the additional tranport mechanim acro the cro ection. Thu, typical hydrodynamic entrance length in turbulent flow are tube diameter, and the thermal entrance length are even maller. Therefore, for L mot engineering ituation wherein 50 D, we ue correlation for fully developed condition. Correlation for turbulent flow are claified baed on whether the interior wall of the tube i mooth or whether it i rough. Smooth tube The earliet correlation for turbulent heat tranfer in a mooth tube are due to Dittu and Boelter, McAdam, and Colburn. A common form to be ued for fluid with Pr > 0.5 i 4

5 Nu = Re Pr The uual recommendation i to ue thi correlation for Re > 10,000, but in practice it i ued even when the flow i in tranition between laminar and turbulent flow for lack of better correlation. A modern correlation that i lightly more accurate i recommended in the textbook for your ue. ( f )( ) /8 Re 1,000 Pr Nu = / 8 Pr 1 1/2 2/3 ( f ) ( ) 6 Mill ugget uing thi correlation for Reynold number between 3,000 and 10. Of coure, it hould not be ued if Pr =1, but there are no fluid with that precie value of the Prandtl number. For low Prandtl number liquid metal, the textbook provide pecial correlation to be ued for uniform wall temperature and uniform wall flux boundary condition. Phyical propertie to be ued in thee correlation are evaluated at the average of the inlet and exit temperature of the fluid. The friction factor f i the Darcy friction factor, and you can ue Petukhov formula for evaluating it. f = 1 ( ) 0.790ln Re Thi reult i good for turbulent flow in mooth pipe for Re Rough tube and pipe In the cae of commercial pipe, roughne of the interior urface i inevitable, wherea drawn tube tend to be le rough. The extent of roughne depend on the nature of the urface. Mill provide a dicuion of heat tranfer in turbulent flow in rough pipe in Section The heat tranfer rate i predicted in thi cae by uing a group called the Stanton number Nu Nu St = =. Re Pr Pe f St = 8 1/2 f g( h +, Pr) where the friction factor f i calculated uing 5

6 f k / R 5.02 k / R 13 = 2.0 log10 log Re 7.4 Re 2 In the above correlation, k i known a the equivalent and grain roughne Value of k for a variety of pipe, tube, and other type of urface can be found in Table 4.8 in the ( ) textbook. The ymbol R repreent the inide radiu of the pipe. The function g h +,Pr i tabulated in Table 4.9, but you will firt need to convert h to h + which i dimenionle. The ymbol h tand for the average height of protruion from the urface. For equivalent and grain roughne, we can ue h= k. For a pipe, the relationhip between the dimenionle quantitie (+ variable) and the phyical variable i given in Equation (4.140a). For example, + Vk f k = ν 8 o that 1/2 + Vh f h = ν 8 1/ 2 Recall that V i the average velocity of flow, and Mill ue the ymbol quantity in Equation (4.140a). u b to denote thi Non-circular cro-ection To handle non-circular cro-ection uch a annular, triangular, rectangular, and the like, we ue the concept of hydraulic diameter D. Thi i defined a h D h = 4A P where A i the cro-ectional area and P i the wetted perimeter. For a circular tube of 2 diameter D, A = π D, and P= π D, o that the above definition yield Dh = D. For turbulent 4 flow in non-circular cro-ection, we can ue the correlation for circular tube. The hydraulic diameter i ued in place of the diameter in thee correlation. Reult for fully developed heat tranfer in laminar flow are given in Table 4.5 for a variety of cro-ection, and a correlation for flow between parallel plate i given in Equation (4.51) of the text. 6

7 Phyical property variation The Sieder-Tate correlation for laminar flow contain a correction for the variation of vicoity with temperature. The other correlation given here do not contain an explicit correction. Mill dicue how to accommodate property variation at the end of Section 4.2, on page 300. The approach i different for liquid and gae. For liquid, a correction i made to the value of the friction factor and that of the Nuelt number by multiplying the value calculated from the correlation uing the bulk fluid propertie (evaluated at an arithmetic average temperature between the inlet and outlet temperature for the tream) by a uitable factor. Thi factor, for the Nuelt number correction, i a vicoity ratio n μ, wherein the ubcript and b refer to the urface and bulk, repectively. In the cae of μb the bulk, an arithmetic average between the inlet and the outlet i to be ued, and if the urface temperature varie from the inlet to the outlet, an arithmetic average i to be ued a well. Likewie, the friction factor correction i made by multiplying the value obtained uing bulk m μ average temperature by. Suitable value for ue in thee correction are given in Table μb 4.6. In the cae of gae, the correction factor for the Nuelt number i T friction factor i Tb m. T Tb n and that for the 7

Heat transfer in Flow Through Conduits

Heat transfer in Flow Through Conduits Heat transfer in Flow Through Conduits R. Shankar Suramanian Department of Chemical and Biomolecular Engineering Clarkson University A common situation encountered y the chemical engineer is heat transfer

More information

Pipe Flow Calculations

Pipe Flow Calculations Pipe Flow Calculation R. Shankar Subramanian epartment o Chemical and Biomolecular Engineering Clarkon Univerity We begin with ome reult that we hall ue when making riction lo calculation or teady, ully

More information

Turbulent Mixing and Chemical Reaction in Stirred Tanks

Turbulent Mixing and Chemical Reaction in Stirred Tanks Turbulent Mixing and Chemical Reaction in Stirred Tank André Bakker Julian B. Faano Blend time and chemical product ditribution in turbulent agitated veel can be predicted with the aid of Computational

More information

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

More information

FLUID MECHANICS. TUTORIAL No.4 FLOW THROUGH POROUS PASSAGES

FLUID MECHANICS. TUTORIAL No.4 FLOW THROUGH POROUS PASSAGES FLUID MECHANICS TUTORIAL No.4 FLOW THROUGH POROUS PASSAGES In thi tutorial you will continue the work on laminar flow and develop Poieuille' equation to the form known a the Carman - Kozeny equation. Thi

More information

6. Friction, Experiment and Theory

6. Friction, Experiment and Theory 6. Friction, Experiment and Theory The lab thi wee invetigate the rictional orce and the phyical interpretation o the coeicient o riction. We will mae ue o the concept o the orce o gravity, the normal

More information

Unit 11 Using Linear Regression to Describe Relationships

Unit 11 Using Linear Regression to Describe Relationships Unit 11 Uing Linear Regreion to Decribe Relationhip Objective: To obtain and interpret the lope and intercept of the leat quare line for predicting a quantitative repone variable from a quantitative explanatory

More information

Engineering Bernoulli Equation

Engineering Bernoulli Equation Engineering Bernoulli Equation R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkon Univerity The Engineering Bernoulli equation can be derived from the principle of conervation

More information

International Journal of Heat and Mass Transfer

International Journal of Heat and Mass Transfer International Journal of Heat and Ma Tranfer 5 (9) 14 144 Content lit available at ScienceDirect International Journal of Heat and Ma Tranfer journal homepage: www.elevier.com/locate/ijhmt Technical Note

More information

Ohm s Law. Ohmic relationship V=IR. Electric Power. Non Ohmic devises. Schematic representation. Electric Power

Ohm s Law. Ohmic relationship V=IR. Electric Power. Non Ohmic devises. Schematic representation. Electric Power Ohm Law Ohmic relationhip V=IR Ohm law tate that current through the conductor i directly proportional to the voltage acro it if temperature and other phyical condition do not change. In many material,

More information

σ m using Equation 8.1 given that σ

σ m using Equation 8.1 given that σ 8. Etimate the theoretical fracture trength of a brittle material if it i known that fracture occur by the propagation of an elliptically haped urface crack of length 0.8 mm and having a tip radiu of curvature

More information

EXPERIMENT 11 CONSOLIDATION TEST

EXPERIMENT 11 CONSOLIDATION TEST 119 EXPERIMENT 11 CONSOLIDATION TEST Purpoe: Thi tet i performed to determine the magnitude and rate of volume decreae that a laterally confined oil pecimen undergoe when ubjected to different vertical

More information

Solution of the Heat Equation for transient conduction by LaPlace Transform

Solution of the Heat Equation for transient conduction by LaPlace Transform Solution of the Heat Equation for tranient conduction by LaPlace Tranform Thi notebook ha been written in Mathematica by Mark J. McCready Profeor and Chair of Chemical Engineering Univerity of Notre Dame

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

More information

Mathematical Modeling of Molten Slag Granulation Using a Spinning Disk Atomizer (SDA)

Mathematical Modeling of Molten Slag Granulation Using a Spinning Disk Atomizer (SDA) Mathematical Modeling of Molten Slag Granulation Uing a Spinning Dik Atomizer (SDA) Hadi Purwanto and Tomohiro Akiyama Center for Advanced Reearch of Energy Converion Material, Hokkaido Univerity Kita

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

Numerical Simulation and Experimental Verification of Air Flow through a Heated Pipe

Numerical Simulation and Experimental Verification of Air Flow through a Heated Pipe International Journal of Mechanical & Mechatronic Engineering IJMME-IJENS Vol:0 No:02 7 Numerical Simulation and Exerimental Verification of Air Flow through a Heated Pie Qaier Abba, M. Mahabat Khan, Rizwan

More information

Transient turbulent flow in a pipe

Transient turbulent flow in a pipe Tranient turbulent flow in a pipe M. S. Ghidaoui A. A. Kolyhkin Rémi Vaillancourt CRM-3176 January 25 Thi work wa upported in part by the Latvian Council of Science, project 4.1239, the Natural Science

More information

A technical guide to 2014 key stage 2 to key stage 4 value added measures

A technical guide to 2014 key stage 2 to key stage 4 value added measures A technical guide to 2014 key tage 2 to key tage 4 value added meaure CONTENTS Introduction: PAGE NO. What i value added? 2 Change to value added methodology in 2014 4 Interpretation: Interpreting chool

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL

Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL Excerpt from the Proceeding of the COMSO Conference 0 India Two Dimenional FEM Simulation of Ultraonic Wave Propagation in Iotropic Solid Media uing COMSO Bikah Ghoe *, Krihnan Balaubramaniam *, C V Krihnamurthy

More information

Hydraulic losses in pipes

Hydraulic losses in pipes Hydraulic losses in pipes Henryk Kudela Contents 1 Viscous flows in pipes 1 1.1 Moody Chart.................................... 2 1.2 Types of Fluid Flow Problems........................... 5 1.3 Minor

More information

STRUCTURAL DESIGN NOTES TOPIC C PRESSURE VESSEL STRESS ANALYSIS J. E. Meyer revision of August 1996

STRUCTURAL DESIGN NOTES TOPIC C PRESSURE VESSEL STRESS ANALYSIS J. E. Meyer revision of August 1996 STRUCTURAL DESIGN NOTES TOPIC C PRESSURE VESSEL STRESS ANALYSIS J. E. Meyer reviion of Augut 1996 1. INTRODUCTION Thee note upplement cla lecture on "thin hell" preure veel tre analyi. The ue of the implified

More information

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t Chapter 2 Motion in One Dimenion 2.1 The Important Stuff 2.1.1 Poition, Time and Diplacement We begin our tudy of motion by conidering object which are very mall in comparion to the ize of their movement

More information

Correlations for Convective Heat Transfer

Correlations for Convective Heat Transfer In many cases it's convenient to have simple equations for estimation of heat transfer coefficients. Below is a collection of recommended correlations for single-phase convective flow in different geometries

More information

Physics 111. Exam #1. January 24, 2014

Physics 111. Exam #1. January 24, 2014 Phyic 111 Exam #1 January 24, 2014 Name Pleae read and follow thee intruction carefully: Read all problem carefully before attempting to olve them. Your work mut be legible, and the organization clear.

More information

MECH 2110 - Statics & Dynamics

MECH 2110 - Statics & Dynamics Chapter D Problem 3 Solution 1/7/8 1:8 PM MECH 11 - Static & Dynamic Chapter D Problem 3 Solution Page 7, Engineering Mechanic - Dynamic, 4th Edition, Meriam and Kraige Given: Particle moving along a traight

More information

T-test for dependent Samples. Difference Scores. The t Test for Dependent Samples. The t Test for Dependent Samples. s D

T-test for dependent Samples. Difference Scores. The t Test for Dependent Samples. The t Test for Dependent Samples. s D The t Tet for ependent Sample T-tet for dependent Sample (ak.a., Paired ample t-tet, Correlated Group eign, Within- Subject eign, Repeated Meaure,.. Repeated-Meaure eign When you have two et of core from

More information

Chapter 10 Stocks and Their Valuation ANSWERS TO END-OF-CHAPTER QUESTIONS

Chapter 10 Stocks and Their Valuation ANSWERS TO END-OF-CHAPTER QUESTIONS Chapter Stoc and Their Valuation ANSWERS TO EN-OF-CHAPTER QUESTIONS - a. A proxy i a document giving one peron the authority to act for another, typically the power to vote hare of common toc. If earning

More information

ESCI 340 Physical Meteorology Cloud Physics Lesson 2 Formation of Cloud Droplets

ESCI 340 Physical Meteorology Cloud Physics Lesson 2 Formation of Cloud Droplets ESCI 40 Phyical Meteorology Cloud Phyic Leon 2 Formation of Cloud Droplet Reference: A Short Coure in Cloud Phyic, Roger and Yau Reading: Roger and Yau, Chapter 6 The objective of thi leon are: 1) Undertand

More information

Lecture 14: Transformers. Ideal Transformers

Lecture 14: Transformers. Ideal Transformers White, EE 3 Lecture 14 Page 1 of 9 Lecture 14: Tranforer. deal Tranforer n general, a tranforer i a ultiort ac device that convert voltage, current and iedance fro one value to another. Thi device only

More information

Design Capacities for Structural Plywood

Design Capacities for Structural Plywood Deign Capacitie for Structural Plyood Alloale Stre Deign (ASD) The deign value in thi document correpond ith thoe pulihed in the 005 edition of the AF&PA American Wood Council Alloale Stre Deign (ASD)/RFD

More information

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

More information

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 11, Nov 2015, pp. 16-22, Article ID: IJMET_06_11_002 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=11

More information

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

More information

Experiment 3 Pipe Friction

Experiment 3 Pipe Friction EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

MBA 570x Homework 1 Due 9/24/2014 Solution

MBA 570x Homework 1 Due 9/24/2014 Solution MA 570x Homework 1 Due 9/24/2014 olution Individual work: 1. Quetion related to Chapter 11, T Why do you think i a fund of fund market for hedge fund, but not for mutual fund? Anwer: Invetor can inexpenively

More information

Name: SID: Instructions

Name: SID: Instructions CS168 Fall 2014 Homework 1 Aigned: Wedneday, 10 September 2014 Due: Monday, 22 September 2014 Name: SID: Dicuion Section (Day/Time): Intruction - Submit thi homework uing Pandagrader/GradeScope(http://www.gradecope.com/

More information

A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ

A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ Phyic 100 Homewor 5 Chapter 6 Contact Force Introduced ) When two object lide againt one another, the magnitude of the frictional force i alway equal to μ B) When two object are in contact with no relative

More information

BUILT-IN DUAL FREQUENCY ANTENNA WITH AN EMBEDDED CAMERA AND A VERTICAL GROUND PLANE

BUILT-IN DUAL FREQUENCY ANTENNA WITH AN EMBEDDED CAMERA AND A VERTICAL GROUND PLANE Progre In Electromagnetic Reearch Letter, Vol. 3, 51, 08 BUILT-IN DUAL FREQUENCY ANTENNA WITH AN EMBEDDED CAMERA AND A VERTICAL GROUND PLANE S. H. Zainud-Deen Faculty of Electronic Engineering Menoufia

More information

Mixed Method of Model Reduction for Uncertain Systems

Mixed Method of Model Reduction for Uncertain Systems SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol 4 No June Mixed Method of Model Reduction for Uncertain Sytem N Selvaganean Abtract: A mixed method for reducing a higher order uncertain ytem to a table reduced

More information

Queueing systems with scheduled arrivals, i.e., appointment systems, are typical for frontal service systems,

Queueing systems with scheduled arrivals, i.e., appointment systems, are typical for frontal service systems, MANAGEMENT SCIENCE Vol. 54, No. 3, March 28, pp. 565 572 in 25-199 ein 1526-551 8 543 565 inform doi 1.1287/mnc.17.82 28 INFORMS Scheduling Arrival to Queue: A Single-Server Model with No-Show INFORMS

More information

Battery Thermal Management System Design Modeling

Battery Thermal Management System Design Modeling Battery Thermal Management System Design Modeling Gi-Heon Kim, Ph.D Ahmad Pesaran, Ph.D (ahmad_pesaran@nrel.gov) National Renewable Energy Laboratory, Golden, Colorado, U.S.A. EVS October -8, 8, 006 Yokohama,

More information

Design Capacities for Oriented Strand Board

Design Capacities for Oriented Strand Board Deign Capacitie for Oriented Strand Board Alloale Stre Deign (ASD) The deign value in thi document correpond ith thoe pulihed in the 005 edition of the AF&PA American Wood Council Alloale Stre Deign (ASD)/RFD

More information

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

More information

Heat Transfer Enhancement in a Heat Exchanger using Punched and V-cut Twisted Tape Inserts

Heat Transfer Enhancement in a Heat Exchanger using Punched and V-cut Twisted Tape Inserts Heat Transfer Enhancement in a Heat Exchanger using Punched and V-cut Twisted Tape Inserts Imran Quazi#1, Prof. V.R.Mohite#2 #1DPCOE-Mechanical Department, SPP University Pune, India imranqu azi198 7@gmail.com

More information

Heat and Mass Correlations

Heat and Mass Correlations Heat and Mass Correlations Alexander Rattner, Jonathan Bohren November 13, 008 Contents 1 Dimensionless Parameters Boundary ayer Analogies - Require Geometric Similarity 3 External Flow 3 3.1 External

More information

Report 4668-1b 30.10.2010. Measurement report. Sylomer - field test

Report 4668-1b 30.10.2010. Measurement report. Sylomer - field test Report 4668-1b Meaurement report Sylomer - field tet Report 4668-1b 2(16) Contet 1 Introduction... 3 1.1 Cutomer... 3 1.2 The ite and purpoe of the meaurement... 3 2 Meaurement... 6 2.1 Attenuation of

More information

1D STEADY STATE HEAT

1D STEADY STATE HEAT D SEADY SAE HEA CONDUCION () Prabal alukdar Aociate Profeor Department of Mechanical Engineering II Delhi E-mail: prabal@mech.iitd.ac.in Convection Boundary Condition Heat conduction at the urface in a

More information

Linear Momentum and Collisions

Linear Momentum and Collisions Chapter 7 Linear Momentum and Colliion 7.1 The Important Stuff 7.1.1 Linear Momentum The linear momentum of a particle with ma m moving with velocity v i defined a p = mv (7.1) Linear momentum i a vector.

More information

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS Chritopher V. Kopek Department of Computer Science Wake Foret Univerity Winton-Salem, NC, 2709 Email: kopekcv@gmail.com

More information

FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES

FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the

More information

cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS

cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS A double pipe heat exchanger, in essence, consists of two concentric pipes, one fluid flowing through the inner pipe and the outer fluid flowing countercurrently

More information

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity 1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

More information

Review of Multiple Regression Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015

Review of Multiple Regression Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015 Review of Multiple Regreion Richard William, Univerity of Notre Dame, http://www3.nd.edu/~rwilliam/ Lat revied January 13, 015 Aumption about prior nowledge. Thi handout attempt to ummarize and yntheize

More information

A Life Contingency Approach for Physical Assets: Create Volatility to Create Value

A Life Contingency Approach for Physical Assets: Create Volatility to Create Value A Life Contingency Approach for Phyical Aet: Create Volatility to Create Value homa Emil Wendling 2011 Enterprie Rik Management Sympoium Society of Actuarie March 14-16, 2011 Copyright 2011 by the Society

More information

Heat Exchangers - Introduction

Heat Exchangers - Introduction Heat Exchangers - Introduction Concentric Pipe Heat Exchange T h1 T c1 T c2 T h1 Energy Balance on Cold Stream (differential) dq C = wc p C dt C = C C dt C Energy Balance on Hot Stream (differential) dq

More information

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS. G. Chapman J. Cleese E. Idle

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS. G. Chapman J. Cleese E. Idle DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS G. Chapman J. Cleee E. Idle ABSTRACT Content matching i a neceary component of any ignature-baed network Intruion Detection

More information

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 1 (2013), pp. 33-40 International Research Publication House http://www.irphouse.com Comparison of Heat Transfer

More information

How To Design A Wind Turbine

How To Design A Wind Turbine Critical iue in wind turbine deign (Uncertaintie) IEA-meeting Trondheim, Norway June 4-5 005 Proect idea: To ignificantly improve deign bai for offhore wind turbine by: Analying all deign proce component

More information

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

More information

Chapter 10 Velocity, Acceleration, and Calculus

Chapter 10 Velocity, Acceleration, and Calculus Chapter 10 Velocity, Acceleration, and Calculu The firt derivative of poition i velocity, and the econd derivative i acceleration. Thee derivative can be viewed in four way: phyically, numerically, ymbolically,

More information

Open channel flow Basic principle

Open channel flow Basic principle Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Pipe Flow-Friction Factor Calculations with Excel

Pipe Flow-Friction Factor Calculations with Excel Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

More information

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India Experimental Thermal and Fluid Science 32 (2007) 92 97 www.elsevier.com/locate/etfs Studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with right

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015 Performance Analysis of Heat Transfer and Effectiveness on Laminar Flow with Effect of

More information

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure

More information

FEDERATION OF ARAB SCIENTIFIC RESEARCH COUNCILS

FEDERATION OF ARAB SCIENTIFIC RESEARCH COUNCILS Aignment Report RP/98-983/5/0./03 Etablihment of cientific and technological information ervice for economic and ocial development FOR INTERNAL UE NOT FOR GENERAL DITRIBUTION FEDERATION OF ARAB CIENTIFIC

More information

POSSIBILITIES OF INDIVIDUAL CLAIM RESERVE RISK MODELING

POSSIBILITIES OF INDIVIDUAL CLAIM RESERVE RISK MODELING POSSIBILITIES OF INDIVIDUAL CLAIM RESERVE RISK MODELING Pavel Zimmermann * 1. Introduction A ignificant increae in demand for inurance and financial rik quantification ha occurred recently due to the fact

More information

Redesigning Ratings: Assessing the Discriminatory Power of Credit Scores under Censoring

Redesigning Ratings: Assessing the Discriminatory Power of Credit Scores under Censoring Redeigning Rating: Aeing the Dicriminatory Power of Credit Score under Cenoring Holger Kraft, Gerald Kroiandt, Marlene Müller Fraunhofer Intitut für Techno- und Wirtchaftmathematik (ITWM) Thi verion: June

More information

ME 24-221 THERMODYNAMICS I

ME 24-221 THERMODYNAMICS I Solution to extra problem in chapter 8 Noember 9, 000 Fall 000 J. Murthy ME 4- HERMODYNAMICS I 8.5 Water i ued a the working fluid in a Carnot cycle heat engine, where it change from aturated liquid to

More information

Control of Wireless Networks with Flow Level Dynamics under Constant Time Scheduling

Control of Wireless Networks with Flow Level Dynamics under Constant Time Scheduling Control of Wirele Network with Flow Level Dynamic under Contant Time Scheduling Long Le and Ravi R. Mazumdar Department of Electrical and Computer Engineering Univerity of Waterloo,Waterloo, ON, Canada

More information

Performance of Multiple TFRC in Heterogeneous Wireless Networks

Performance of Multiple TFRC in Heterogeneous Wireless Networks Performance of Multiple TFRC in Heterogeneou Wirele Network 1 Hyeon-Jin Jeong, 2 Seong-Sik Choi 1, Firt Author Computer Engineering Department, Incheon National Univerity, oaihjj@incheon.ac.kr *2,Correponding

More information

12.4 Problems. Excerpt from "Introduction to Geometry" 2014 AoPS Inc. Copyrighted Material CHAPTER 12. CIRCLES AND ANGLES

12.4 Problems. Excerpt from Introduction to Geometry 2014 AoPS Inc.  Copyrighted Material CHAPTER 12. CIRCLES AND ANGLES HTER 1. IRLES N NGLES Excerpt from "Introduction to Geometry" 014 os Inc. onider the circle with diameter O. all thi circle. Why mut hit O in at leat two di erent point? (b) Why i it impoible for to hit

More information

Module 8. Three-phase Induction Motor. Version 2 EE IIT, Kharagpur

Module 8. Three-phase Induction Motor. Version 2 EE IIT, Kharagpur Module 8 Three-phae Induction Motor Verion EE IIT, Kharagpur Leon 33 Different Type of Starter for Induction Motor (IM Verion EE IIT, Kharagpur Inructional Objective Need of uing arter for Induction motor

More information

Progress 8 measure in 2016, 2017, and 2018. Guide for maintained secondary schools, academies and free schools

Progress 8 measure in 2016, 2017, and 2018. Guide for maintained secondary schools, academies and free schools Progre 8 meaure in 2016, 2017, and 2018 Guide for maintained econdary chool, academie and free chool July 2016 Content Table of figure 4 Summary 5 A ummary of Attainment 8 and Progre 8 5 Expiry or review

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

CASE STUDY ALLOCATE SOFTWARE

CASE STUDY ALLOCATE SOFTWARE CASE STUDY ALLOCATE SOFTWARE allocate caetud y TABLE OF CONTENTS #1 ABOUT THE CLIENT #2 OUR ROLE #3 EFFECTS OF OUR COOPERATION #4 BUSINESS PROBLEM THAT WE SOLVED #5 CHALLENGES #6 WORKING IN SCRUM #7 WHAT

More information

GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD

GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Earth Material Lecture 13 Earth Material Hooke law of elaticity Force = E Area Hooke law n = E n Extenion Length Robert Hooke (1635-1703) wa a virtuoo cientit contributing to geology, palaeontology, biology

More information

Forest Lake Local Plan

Forest Lake Local Plan 1 Introduction Thi Local Plan contain pecific additional local planning requirement. Where it conflict with the requirement of the City Plan, thi Local Plan prevail. In uing thi Local Plan, reference hould

More information

Stochasticity in Transcriptional Regulation: Origins, Consequences, and Mathematical Representations

Stochasticity in Transcriptional Regulation: Origins, Consequences, and Mathematical Representations 36 Biophyical Journal Volume 8 December 200 36 336 Stochaticity in Trancriptional Regulation: Origin, Conequence, and Mathematical Repreentation Thoma B. Kepler* and Timothy C. Elton *Santa Fe Intitute,

More information

Assessing the Discriminatory Power of Credit Scores

Assessing the Discriminatory Power of Credit Scores Aeing the Dicriminatory Power of Credit Score Holger Kraft 1, Gerald Kroiandt 1, Marlene Müller 1,2 1 Fraunhofer Intitut für Techno- und Wirtchaftmathematik (ITWM) Gottlieb-Daimler-Str. 49, 67663 Kaierlautern,

More information

MSc Financial Economics: International Finance. Bubbles in the Foreign Exchange Market. Anne Sibert. Revised Spring 2013. Contents

MSc Financial Economics: International Finance. Bubbles in the Foreign Exchange Market. Anne Sibert. Revised Spring 2013. Contents MSc Financial Economic: International Finance Bubble in the Foreign Exchange Market Anne Sibert Revied Spring 203 Content Introduction................................................. 2 The Mone Market.............................................

More information

Experiment (13): Flow channel

Experiment (13): Flow channel Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

More information

HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS

HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS P.R.Hatwar 1, Bhojraj N. Kale 2 1, 2 Department of Mechanical Engineering Dr. Babasaheb Ambedkar College of Engineering & Research,

More information

Analysis of Mesostructure Unit Cells Comprised of Octet-truss Structures

Analysis of Mesostructure Unit Cells Comprised of Octet-truss Structures Analyi of Meotructure Unit Cell Compried of Octet-tru Structure Scott R. Johnton *, Marque Reed *, Hongqing V. Wang, and David W. Roen * * The George W. Woodruff School of Mechanical Engineering, Georgia

More information

Mobile Network Configuration for Large-scale Multimedia Delivery on a Single WLAN

Mobile Network Configuration for Large-scale Multimedia Delivery on a Single WLAN Mobile Network Configuration for Large-cale Multimedia Delivery on a Single WLAN Huigwang Je, Dongwoo Kwon, Hyeonwoo Kim, and Hongtaek Ju Dept. of Computer Engineering Keimyung Univerity Daegu, Republic

More information

CHARACTERISTICS OF WAITING LINE MODELS THE INDICATORS OF THE CUSTOMER FLOW MANAGEMENT SYSTEMS EFFICIENCY

CHARACTERISTICS OF WAITING LINE MODELS THE INDICATORS OF THE CUSTOMER FLOW MANAGEMENT SYSTEMS EFFICIENCY Annale Univeritati Apuleni Serie Oeconomica, 2(2), 200 CHARACTERISTICS OF WAITING LINE MODELS THE INDICATORS OF THE CUSTOMER FLOW MANAGEMENT SYSTEMS EFFICIENCY Sidonia Otilia Cernea Mihaela Jaradat 2 Mohammad

More information

FLUID FLOW Introduction General Description

FLUID FLOW Introduction General Description FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

More information

2. METHOD DATA COLLECTION

2. METHOD DATA COLLECTION Key to learning in pecific ubject area of engineering education an example from electrical engineering Anna-Karin Cartenen,, and Jonte Bernhard, School of Engineering, Jönköping Univerity, S- Jönköping,

More information

Optical Illusion. Sara Bolouki, Roger Grosse, Honglak Lee, Andrew Ng

Optical Illusion. Sara Bolouki, Roger Grosse, Honglak Lee, Andrew Ng Optical Illuion Sara Bolouki, Roger Groe, Honglak Lee, Andrew Ng. Introduction The goal of thi proect i to explain ome of the illuory phenomena uing pare coding and whitening model. Intead of the pare

More information

GUIDELINE FOR FIELD TESTING OF GAS TURBINE AND CENTRIFUGAL COMPRESSOR PERFORMANCE

GUIDELINE FOR FIELD TESTING OF GAS TURBINE AND CENTRIFUGAL COMPRESSOR PERFORMANCE GUIDELINE FOR FIELD TESTING OF GAS TURBINE AND CENTRIFUGAL COMPRESSOR PERFORMANCE RELEASE.0 Augut 006 Ga Machinery Reearch Council Southwet Reearch Intitute Thi page i intentionally left blank. GUIDELINE

More information

3.5 Practical measurement of ph in nonaqueous and mixed solvents

3.5 Practical measurement of ph in nonaqueous and mixed solvents 3.5 Practical meaurement of ph in nonaqueou and mixed olvent 3.5.1 Introduction Procedure analogou to thoe on which a practical ph cale for aqueou olution have been baed can be ued to etablih operational

More information

Free Convection Film Flows and Heat Transfer

Free Convection Film Flows and Heat Transfer Deyi Shang Free Convection Film Flows and Heat Transfer With 109 Figures and 69 Tables < J Springer Contents 1 Introduction 1 1.1 Scope 1 1.2 Application Backgrounds 1 1.3 Previous Developments 2 1.3.1

More information

HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT

HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT Rahul M. Gupta 1, Bhushan C. Bissa 2 1 Research Scholar, Department of Mechanical Engineering, Shri Ramdeobaba

More information

Morningstar Fixed Income Style Box TM Methodology

Morningstar Fixed Income Style Box TM Methodology Morningtar Fixed Income Style Box TM Methodology Morningtar Methodology Paper Augut 3, 00 00 Morningtar, Inc. All right reerved. The information in thi document i the property of Morningtar, Inc. Reproduction

More information

A note on profit maximization and monotonicity for inbound call centers

A note on profit maximization and monotonicity for inbound call centers A note on profit maximization and monotonicity for inbound call center Ger Koole & Aue Pot Department of Mathematic, Vrije Univeriteit Amterdam, The Netherland 23rd December 2005 Abtract We conider an

More information

Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis

Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis Tamkang Journal of Science and Engineering, Vol. 12, No. 1, pp. 99 107 (2009) 99 Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis M. E. Sayed-Ahmed

More information