The DC Motor. Physics 1051 Laboratory #5 The DC Motor
|
|
|
- Austin Kelley Stevens
- 9 years ago
- Views:
Transcription
1 The DC Motor Physics 1051 Laboratory #5 The DC Motor
2 Contents Part I: Objective Part II: Introduction Magnetic Force Right Hand Rule Force on a Loop Magnetic Dipole Moment Torque Part II: Predictions Force on Current Carrying Wire A Force on Current Carrying Loop B Force on Current Carrying Wire C Force on Current Carrying Loop D Part IV: Apparatus and Setup Apparatus Setup Details The Wire The Coil The Stick The Support Arms The Circuit Part V: The Experiment Get Your Motor Running Which End is Up? Current and Rotation Relative Vector Directions Part VI: Summary
3 Part I: Objective In this experiment you will: Determine the direction of the magnetic moment vector for a current carrying loop. Determine the direction of torque on a current carrying loop in a magnetic field. Build a DC motor and determine the orientation of an unknown magnet.
4 Part II: Introduction Magnetic Force A current carrying wire in a magnetic field will experience a force perpendicular to both the field and the current. For example, a wire carrying current I out of the page placed in a magnetic field B to the right will experience a force F directed up as shown. The force is given by! F B! F B = I! L! B.! B
5 Part II: Introduction Right Hand Rule You may find the direction of the force by applying the right hand rule:! Point your fingers in the direction of the current! Bend your fingers (90º) towards the magnetic field (you may have to twist and turn your hand!).! Your thumb indicates the direction of force. If the current and magnetic field are parallel, the force is zero!! I This method applies to all cross products Brooks/Cole - Thomson. Fig. 22-4, p. 731, from Serway and Jewett, Principles of Physics. This material may not be copied or distributed to any third party.
6 Part II: Introduction Force on a Loop The right hand rule may be applied to each segment of a loop to determine the force on each segment. The image at right is a simple DC motor.! F B! B The two magnetic forces F B and F B produce a torque on the loop, tending to rotate it about its central axis. The other two sides of the loop do not experience a force since the current and magnetic field are parallel. N _! F B S The force vectors may be added to determine the net force.
7 Part II: Introduction Magnetic Dipole Moment A current carrying coil has a magnetic dipole moment µ. This vector points in the direction normal to the plane of the coil and has magnitude µ= NIA where N is number of turns, I is current, and A is the coil area. The figure at right shows a right-hand rule for finding the direction of µ : Point or curl the fingers of your right hand in the direction of current at any point on the loop. Your extended thumb then points in the direction of the magnetic dipole moment Brooks/Cole - Thomson. Fig , p. 742, from Serway and Jewett, Principles of Physics. This material may not be copied or distributed to any third party.
8 Part II: Introduction Torque A current carrying coil experiences a torque that is related to both the magnitude and direction of the µ and B vectors. This vector relation is written as Torque direction may be found in one of two ways: 1. If you know the directions of µ and B, you may use the right hand rule. Point your fingers in the direction of µ. Bend your fingers towards B. Your thumb indicates the direction of torque. If µ and B are parallel, the torque is zero! τ = µ B 2. If you know the direction of rotation, curl your fingers in the directions of rotation. Your thumb points towards torque. This torque is the basis for the operation of a DC motor.
9 Lab Report Lab Report 1: Lab Report 2: Write the objective of your experiment. Write the relevant theory of this experiment.
10 Part III: Predictions A: Force on Current Carrying Wire All throughout the boxed region below, there is a uniform magnetic field pointing into the page (as indicated by the cross). A wire segment carrying a current in the direction shown is placed inside the region. B I Lab Report 3: Indicate the direction of the force on the wire segment, using either arrows or the dot or cross symbols. If the force is zero, write zero.
11 Part III: Predictions B: Force on Current Carrying Loop A square wire loop carrying a steady clockwise current is placed in the region. (Current in each of the four sides is equal.) B I Lab Report 4: On each of the four sides of the loop, indicate the direction of the magnetic force (if there is one) or write zero. Lab Report 5: Is there a net force acting on the loop as a whole? If so, state its direction. If not, explain. Lab Report 6: Indicate the direction of the magnetic moment vector of the loop. Lab Report 7: Indicate the direction of the torque vector of the loop or write zero if the net torque is zero. Lab Report 8: Assuming the loop is free to move, will it rotate? Explain.
12 Part III: Predictions C: Force on Current Carrying Wire In this region, a uniform magnetic field is present that points toward the bottom of the page. A wire segment carrying a current in the direction shown is placed in the region. B I Lab Report 9: Indicate the direction of the force on the wire segment, using either arrows or the dot or cross symbols. If the force is zero, write zero.
13 Part III: Predictions D: Force on Current Carrying Loop A square wire loop carrying a clockwise current is placed in the region. B I Lab Report 10: On each of the four sides of the loop, indicate the direction of the magnetic force (if there is one) or write zero. Lab Report 11: Is there a net force acting on the loop as a whole? If so, state its direction. If not, explain. Lab Report 12: Indicate the direction of the magnetic moment vector of the loop. Lab Report 13: Indicate the direction of the torque vector of the loop or write zero if the net torque is zero. Lab Report 14: Assuming the loop is free to move, will it rotate? Explain.
14 Part IV: Apparatus and Setup Apparatus You have been provided with: Wooden base DC power supply Wires and connectors 2 Magnets Wooden stick 2-3 m of thin copper wire (insulated) Paper clips Some masking tape Sandpaper 200 g mass
15 Part IV: Apparatus and Setup Setup Details The DC motor consists of loops of wire. Current must be running through the wire. The loops must be set in a magnetic field. Remember: For motion to occur, there must be a net torque on the motor. For there to be a net torque, the magnetic moment vector and the magnetic field must be perpendicular.
16 Part IV: Apparatus and Setup The Wire You have been given insulated copper wire, leads with alligator clips, and paper clips. The wire is insulated with a thin plastic coating. Current will not flow from the paper clips to the wire if it has this coating. Current will flow from the paper clips to the wire if this coating has been removed at the point of contact. You have been given a piece of sandpaper. Once the plastic insulation is removed from the appropriate part of the copper wire it is bright and shiny in colour.
17 Part IV: Apparatus and Setup The Coil You may use the 200g mass as a base to keep your coil round. To obtain a sufficient magnetic moment vector, it is recommended that you have a minimum of 15 turns in your coil.
18 Part IV: Apparatus and Setup The Stick You have been given a small wooden stick which may be used to hold the loops. Be sure the loop is symmetric on the stick. When securing the loose ends of the wire to the stick, think carefully about the current flow: Where must the wires be secured to ensure current will flow?
19 Part IV: Apparatus and Setup The Support Arms The motor may be supported using the paper clips and the wooden base.
20 Part IV: Apparatus and Setup The Circuit Use the power supply, leads, and alligator clips to connect a circuit with your DC motor. Make sure the current and voltage knobs are turned all the way to the left. Switch on the power supply. First slightly increase the voltage knob, then adjust the current until you observe a voltage and current output. Adjust both the voltage and current knobs until you observe a current (maximum of 2.0 A). If there is no current, carefully check that you have a closed circuit.
21 Lab Report Lab Report 15: List your apparatus and sketch your setup.
22 Part V: Experiment Get Your Motor Running You may need to give the loop a slight flick with your finger to get it spinning. You should adjust your apparatus until the spinning is smooth and even. If there are sparks, you may decrease the voltage a little. These sparks will not hurt you. Note the rotational direction of your motor! You will use this information to determine the orientation of your magnet. Don t run your motor for more than a minute straight. The coil can get very HOT! Before proceeding, have an instructor see your running motor and sign your lab report. This Checkpoint is worth 15% of your lab!
23 Part V: Experiment Which End is Up? Lab Report 16: Based on the direction of current and rotation of your motor, determine which pole of your magnet is facing up. Explain your answer. Before proceeding, have an instructor check your answer with a labelled bar magnet to see if you are right.
24 Part V: Experiment Current and Rotation Lab Report 17: What would happen to your motor if you switch the direction of the current by switching the alligator clips? Why? Test your prediction. Lab Report 18: Did you observe your prediction to be true? If not, explain why. Lab Report 19: Test your prediction. What would happen to your motor if you increase the current? Why? Lab Report 20: Did you observe your prediction to be true? If not, explain why.
25 Part V: Experiment Relative Vector Directions Think about the orientation of your coil relative to the magnet. In particular, consider the time when the current is flowing through the coil. Lab Report 21: What were the relative directions of the magnetic moment vector and the magnetic field? Provide a sketch of your apparatus with these directions clearly indicted. Why did they have to be arranged this way?
26 Part VI: Summary Lab Report 22: Lab Report 23: Outline briefly the steps of your experiment. List your experimental results and comment on how they agreed with the expected results. Lab Report 24: Are there any experimental uncertainties associated with this experiment? Explain.
27 Wrap it up! Check that you have completed your Lab Report. Make sure an instructor has checked your motor and signed your report.
Build A Simple Electric Motor (example #1)
PHY115 Experiment 11 Build A Simple Electric Motor (example #1) MATERIAL This is the necessary equipment. Present any list of material in your written lab report. 1.5 V battery in series 1 ceramic magnet
The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
Chapter 22: Electric motors and electromagnetic induction
Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on
Force on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
Experiment 7: Forces and Torques on Magnetic Dipoles
MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics 8. Spring 5 OBJECTIVES Experiment 7: Forces and Torques on Magnetic Dipoles 1. To measure the magnetic fields due to a pair of current-carrying
Physics 221 Experiment 5: Magnetic Fields
Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found
E/M Experiment: Electrons in a Magnetic Field.
E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.
Mapping the Magnetic Field
I Mapping the Magnetic Field Mapping the Magnetic Field Vector Fields The electric field, E, and the magnetic field, B, are two examples of what are termed vector fields, quantities which have both magnitude
Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments
MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments OBJECTIVES 1. To start with the magnetic force on a moving charge q and derive
Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name
Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region
Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets
Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets 1) The following simple magnet configurations were shown to you in class - draw the magnetic field lines
Last Name: First Name: Physics 102 Spring 2006: Exam #2 Multiple-Choice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged
1. The diagram below represents magnetic lines of force within a region of space.
1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest
Force on a square loop of current in a uniform B-field.
Force on a square loop of current in a uniform B-field. F top = 0 θ = 0; sinθ = 0; so F B = 0 F bottom = 0 F left = I a B (out of page) F right = I a B (into page) Assume loop is on a frictionless axis
E X P E R I M E N T 8
E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:
Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2006 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines
Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets
Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear
Chapter 19: Magnetic Forces and Fields
Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle in a Magnetic Field Crossed E and B fields Magnetic Forces on Current Carrying Wires
LABORATORY V MAGNETIC FIELDS AND FORCES
LABORATORY V MAGNETIC FIELDS AND FORCES Magnetism plays a large part in our modern world's technology. Magnets are used today to image parts of the body, to explore the mysteries of the human brain, and
F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.
PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet
Build Your Own Solar Car Teach build learn renewable Energy! Page 1 of 1
Solar Car Teach build learn renewable Energy! Page 1 of 1 Background Not only is the sun a source of heat and light, it s a source of electricity too! Solar cells, also called photovoltaic cells, are used
DIRECT CURRENT GENERATORS
DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle
Torque and Rotational Equilibrium
Torque and Rotational Equilibrium Name Section Torque is the rotational analog of force. If you want something to move (translation), you apply a force; if you want something to rotate, you apply a torque.
Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2009 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines
Magnetic Fields and Their Effects
Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases
Eðlisfræði 2, vor 2007
[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline
Chapter 22 Magnetism
22.6 Electric Current, Magnetic Fields, and Ampere s Law Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field
Magnetic Field and Magnetic Forces
Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets
Experiment #8: Magnetic Forces
Experiment #8: Magnetic Forces Purpose: To study the nature of magnetic forces exerted on currents. Equipment: Magnet Assembly and Stand Set of Current Loop PC oards Triple-Arm Pan alance 0 15 V dc Variable
FORCE ON A CURRENT IN A MAGNETIC FIELD
7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.
1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D
Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be
Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth OBJECTIVES 1. To examine the magnetic field associated with a
Magnetic Field of a Circular Coil Lab 12
HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,
The electrical field produces a force that acts
Physics Equipotential Lines and Electric Fields Plotting the Electric Field MATERIALS AND RESOURCES ABOUT THIS LESSON EACH GROUP 5 alligator clip leads 2 batteries, 9 V 2 binder clips, large computer LabQuest
Chapter 33. The Magnetic Field
Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These
Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory
Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared
Chapter 5A. Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 5A. Torque A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Torque is a twist or turn that tends to produce rotation. * * * Applications
Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0
1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral
Chapter 27 Magnetic Field and Magnetic Forces
Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged
DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.
DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into
Motor Fundamentals. DC Motor
Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical
Physics 3330 Experiment #2 Fall 1999. DC techniques, dividers, and bridges R 2 =(1-S)R P R 1 =SR P. R P =10kΩ 10-turn pot.
Physics 3330 Experiment #2 Fall 1999 DC techniques, dividers, and bridges Purpose You will gain a familiarity with the circuit board and work with a variety of DC techniques, including voltage dividers,
BUILDING AN INEXPENSIVE MOTOR IN THE CLASSROOM
BUILDING AN INEXPENSIVE MOTOR IN THE CLASSROOM Aaron Osowiecki Boston Latin School Research Experience for Teachers Center for Materials Science and Engineering Massachusetts Institute of Technology August
ELECTRODYNAMICS 05 AUGUST 2014
ELECTRODYNAMICS 05 AUGUST 2014 In this lesson we: Lesson Description Discuss the motor effect Discuss how generators and motors work. Summary The Motor Effect In order to realise the motor effect, the
The Simple DC Motor: A Teacher s Guide
The Simple DC Motor: A Teacher s Guide Kristy Beauvais Research Experience for Teachers Center for Materails Science and Engineering Massachusetts Institute of Technology August 2003 Motor Design: Steven
Electric Motor. Your Activity Build a simple electric motor. Material. Create. Science Topics. What s going on? 2 Jumbo Safety Pins (or Paper Clips)
Electric Motor Your Activity Build a simple electric motor Material D-Cell Battery Coil made out of magnet wire 2 Jumbo Safety Pins (or Paper Clips) Scissors (or sand paper) 1 Rubber Band Ceramic Magnet
Reading assignment: All students should read the Appendix about using oscilloscopes.
10. A ircuits* Objective: To learn how to analyze current and voltage relationships in alternating current (a.c.) circuits. You will use the method of phasors, or the vector addition of rotating vectors
Chapter 21. Magnetic Forces and Magnetic Fields
Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.
Induced voltages and Inductance Faraday s Law
Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic
Electromagnetic Induction: Faraday's Law
1 Electromagnetic Induction: Faraday's Law OBJECTIVE: To understand how changing magnetic fields can produce electric currents. To examine Lenz's Law and the derivative form of Faraday's Law. EQUIPMENT:
Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.
Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.
Preview of Period 16: Motors and Generators
Preview of Period 16: Motors and Generators 16.1 DC Electric Motors What causes the rotor of a motor to spin? 16.2 Simple DC Motors What causes a changing magnetic field in the simple coil motor? 16.3
104 Practice Exam 2-3/21/02
104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero
AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.
A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.
Principles and Working of DC and AC machines
BITS Pilani Dubai Campus Principles and Working of DC and AC machines Dr Jagadish Nayak Constructional features BITS Pilani Dubai Campus DC Generator A generator consists of a stationary portion called
A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS
A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS Joseph J. Stupak Jr, Oersted Technology Tualatin, Oregon (reprinted from IMCSD 24th Annual Proceedings 1995) ABSTRACT The
ElectroMagnetic Induction. AP Physics B
ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday
Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends
Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends A. on the direction of the magnetic field at that point only. B. on the magnetic field
Torque and Rotary Motion
Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,
Objectives. Capacitors 262 CHAPTER 5 ENERGY
Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.
Odyssey of the Mind Technology Fair. Simple Electronics
Simple Electronics 1. Terms volts, amps, ohms, watts, positive, negative, AC, DC 2. Matching voltages a. Series vs. parallel 3. Battery capacity 4. Simple electronic circuit light bulb 5. Chose the right
E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE
E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE References for Nuclear Magnetic Resonance 1. Slichter, Principles of Magnetic Resonance, Harper and Row, 1963. chapter
Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5
Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat
Measurement of Charge-to-Mass (e/m) Ratio for the Electron
Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic
THE LUCAS C40 DYNAMO & ITS ARMATURE.
THE LUCAS C40 DYNAMO & ITS ARMATURE. H. Holden, March 2011. The Dynamo as a DC generating machine was used extensively in the pre- Alternator era, from the early 1900 s up to the late 1960 s and early
Electric Field Mapping Lab 3. Precautions
HB 09-25-07 Electric Field Mapping Lab 3 1 Electric Field Mapping Lab 3 Equipment mapping board, U-probe, resistive boards, templates, dc voltmeter (431B), 4 long leads, 16 V dc for wall strip Reading
Magnetic Fields. I. Magnetic Field and Magnetic Field Lines
Magnetic Fields I. Magnetic Field and Magnetic Field Lines A. The concept of the magnetic field can be developed in a manner similar to the way we developed the electric field. The magnitude of the magnetic
Lab 3 - DC Circuits and Ohm s Law
Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in
Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions
Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge
Chapter 30 - Magnetic Fields and Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 30 - Magnetic Fields and Torque A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should
Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:
Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.
Experiment 6: Magnetic Force on a Current Carrying Wire
Chapter 8 Experiment 6: Magnetic Force on a Current Carrying Wire 8.1 Introduction Maricourt (1269) is credited with some of the original work in magnetism. He identified the magnetic force centers of
Physics 25 Exam 3 November 3, 2009
1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,
Lab for Deflection and Moment of Inertia
Deflection and Moment of Inertia Subject Area(s) Associated Unit Lesson Title Physics Wind Effects on Model Building Lab for Deflection and Moment of Inertia Grade Level (11-12) Part # 2 of 3 Lesson #
Exploring Magnetism. DataQuest
Exploring Magnetism Magnetism is the force of attraction or repulsion between a magnet and something else. Magnets attract materials made of iron, nickel, or cobalt. Can you think of five things to which
Magnetic fields of charged particles in motion
C H A P T E R 8 Magnetic fields of charged particles in motion CONCEPTS 8.1 Source of the magnetic field 8. Current loops and spin magnetism 8.3 Magnetic moment and torque 8.4 Ampèrian paths QUANTTATVE
The Electrical Properties of Materials: Resistivity
The Electrical Properties of Materials: Resistivity 1 Objectives 1. To understand the properties of resistance and resistivity in conductors, 2. To measure the resistivity and temperature coefficient of
TORQUE AND FIRST-CLASS LEVERS
TORQUE AND FIRST-CLASS LEVERS LAB MECH 28.COMP From Physics, Eugene Hecht and Physical Science with Computers, Vernier Software & Technology INTRODUCTION In Figure 1, note force F acting on a wrench along
Lab 7: Rotational Motion
Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125
Electromagnetic Induction Experiment
In this experiment, the activity will be based on a Phet simulation called Faraday s Electromagnetic Lab, created by a group at the University of Colorado at Boulder. This group has a number of good simulations
Hand Crank Generator (9 May 05) Converting a Portable Cordless Drill to a Hand Crank DC Generator
Converting a Portable Cordless Drill to a Hand Crank DC Generator The unit is light weight (2.5 lb), portable, low cost ($10-$20) and can be used to recharge single cell batteries at from 1-3.5 amps. It
How To Understand Electron Spin Resonance
HB 10-24-08 Electron Spin Resonance Lab 1 Electron Spin Resonance Equipment Electron Spin Resonance apparatus, leads, BK oscilloscope, 15 cm ruler for setting coil separation Reading Review the Oscilloscope
General Physics (PHY 2140)
General Physics (PHY 2140) Lecture 12 Electricity and Magnetism Magnetism Magnetic fields and force Application of magnetic forces http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 19 1 Department
5. Measurement of a magnetic field
H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of
ELECTRON SPIN RESONANCE Last Revised: July 2007
QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron
Lab 4: Magnetic Force on Electrons
Lab 4: Magnetic Force on Electrons Introduction: Forces on particles are not limited to gravity and electricity. Magnetic forces also exist. This magnetic force is known as the Lorentz force and it is
6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields.
6/016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. APPARATUS: Electron beam tube, stand with coils, power supply,
EXPERIMENT: MOMENT OF INERTIA
OBJECTIVES EXPERIMENT: MOMENT OF INERTIA to familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body as mass plays in
Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero!
Magnetism Basics Source: electric currents Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment Net Effect = Zero! Net Effect = Additive! Bipolar: all magnets
Inductance. Motors. Generators
Inductance Motors Generators Self-inductance Self-inductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.
Inductors. AC Theory. Module 3
Module 3 AC Theory What you ll learn in Module 3. Section 3.1 Electromagnetic Induction. Magnetic Fields around Conductors. The Solenoid. Section 3.2 Inductance & Back e.m.f. The Unit of Inductance. Factors
Magnetic Dipoles. Recall that an electric dipole consists of two equal but opposite charges separated by some distance, such as in
MAGNETISM History of Magnetism Bar Magnets Magnetic Dipoles Magnetic Fields Magnetic Forces on Moving Charges and Wires Electric Motors Current Loops and Electromagnets Solenoids Sources of Magnetism Spin
Equipment: Power Supply, DAI, Universal motor (8254), Electrodynamometer (8960), timing belt.
Lab 12: The universal motor. Objective: to examine the construction of the universal motor; to determine its no-load and full-load characteristics while operating on AC; to determine its no-load and full-load
Magnets. Electromagnets. and. Thomas Jefferson National Accelerator Facility - Office of Science Education http://education.jlab.
Magnets and Electromagnets Magnets and Electromagnets Can you make a magnet from a nail, some batteries and some wire? Problems Can the strength of an electromagnet be changed by changing the voltage of
Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament
Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Name Partner Date Introduction Carbon resistors are the kind typically used in wiring circuits. They are made from a small cylinder of
Kirchhoff s Laws Physics Lab IX
Kirchhoff s Laws Physics Lab IX Objective In the set of experiments, the theoretical relationships between the voltages and the currents in circuits containing several batteries and resistors in a network,
Equipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331)
Lab 5: Single-phase transformer operations. Objective: to examine the design of single-phase transformers; to study the voltage and current ratios of transformers; to study the voltage regulation of the
2. Spin Chemistry and the Vector Model
2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing
