Soft-Switching in DC-DC Converters: Principles, Practical Topologies, Design Techniques, Latest Developments
|
|
|
- Reginald Dwight Stafford
- 9 years ago
- Views:
Transcription
1 Soft-Switching in D-D onverters: Principles, Practical Topologies, Design Techniques, Latest Developments Raja Ayyanar Arizona State University Ned Mohan University of Minnesota Eric Persson International Rectifier Some of the slides in this presentation are used for the course EE5741 Advanced Power Electronics given by Prof Robbins and Prof Mohan at the University of Minnesota 22, N. Mohan, R. Ayyanar, E. Persson APE 22 1
2 Objectives What is soft-switching? Basic principles oncentration on a few popular topologies Design techniques omputer simulations New developments 2
3 What is Soft-Switching Switching transitions occur under favorable conditions device voltage or current is zero Reduced switching losses, switch stress, possibly low EMI, easier thermal management A must for very high frequency operation, (also medium frequency at high power levels) Usually involves compromises in conduction loss, switch rating, passive components etc. 4
4 Relationship Between Efficiency and Power Density 5 45 Power Rating Ploss = 2W Ploss = 1W Efficiency η = P out Pout P loss η Pout = P 1 η loss 5
5 Hard-Switching i i T L i L v T - V d - v diode i I L o v gate v T i diode i T v diode P loss P f t t sw s c( on) c( off ) 6
6 MOSFET haracteristics Output characteristics ross-sectional view of an n-channel MOSFET source gate n gs p p n gd Transfer characteristics ds n drain-body depletion layer n drain 7
7 MOSFET haracteristics D f I o V in gd i D = ( gs) f V R G V GG gs MOSFET model valid in active and cutoff regions Variation of capacitances with Vds 8
8 Simulation of Hard Switching onverters L2 4nH D2 1A I3 8 R3 1m 5V V1 R2 25. M1 IRF15 Ideal diode IRF15 2 v DS 1 v GS i D gate input -1 s.5us 1.us 1.5us 2.us 2.5us 3.us 3.5us 4.us V(M1:d)/4 ID(M1)*2 V(R2:2) V(V3:) Time 9
9 Simulation of Hard Switching onverters Diode reverse recovery 55 4 v ds PARAMETERS: R_LOAD = 1 fs = 1k MUR22R 5A D5 I1 2 v gs 1 V1 MUR22R I o i ds -1 3.us 3.4us 3.8us 31.2us 31.6us 32.us 32.4us 32.8us 33.2us 33.6us 34.us -I(R3) V(M1:1)/2 V(M1:2) I(I1) Time V1 = V2 = 15 TD = 1u TR = 1n TF = 1n PW = 2u PER = {1/fs} R2 1 V4 M1 MTB2N2E v ds v ds MTB2N2E 2. I o i ds v gs 2. v gs ids Io us 3.95us 31.us 31.5us 31.1us us -I(R3) V(M1:1)/3 V(M1:2) I(I1) Time 32.95us 33.us 33.5us 33.1us 33.15us 33.2us 33.25us 33.3us 33.34us -I(R3) V(M1:1)/3 V(M1:2) I(I1) Time 1
10 Problems of Hard-Switching Switching losses Device stress, thermal management EMI due to high di/dt and dv/dt Energy loss in stray L and Possible Solutions (combination) Snubbers to reduce di/dt and dv/dt usually no change in losses (unless loss recovery) ircuit layout to reduce stray inductances Gate drive circuit layout turn on / off speeds Soft switching to achieve ZVS and/or ZS 11
11 Snubbers Passive components (R, L, ) and a diode to shape switching trajectories Turn-on snubber (seldom used) V d L s i T v - T R s I o At turn-on Vd it ()= t L t s low di/dt lower turn-on losses in the device low reverse recovery current v T i T t t Price to be paid at turn-off 1/2 LI 2 energy dissipated during off interval off interval > 2 to 3 times L S /R S time constant switch voltage rating increases by R S I O 12
12 Turn-off Snubbers R S V d i T v T - D S i S S I o At turn-off while builds up i = I i T o S ( i flows through D ) S v T S switch turn-off loss decreases lower dv/dt i T I o S3 S = S1 S2 > > V d S S S v T Issues at turn-on 1/2 V 2 energy dissipated in R S and switch switch current rating increases by V d / R S ON interval > 2 to 3 times R S S time constant 13
13 Soft-Switching ZVS (Zero Voltage Switching) ZS (Zero urrent Switching) Advantages - Lower losses (may be!) - Low EMI (may be!) - Allows high frequency operation 14
14 ZVS (Zero Voltage Switching) Turn ON Turn OFF Switch voltage brought to zero before gate voltage is applied Ideal, zero-loss transition Low-loss transition Parallel capacitor as a loss-less snubber Preferred scheme for very high frequency applications using MOSFETs 15
15 ZS (Zero urrent Switching) Turn OFF Switch current brought to zero before gate voltage is removed Ideal, zero-loss transition Turn ON Low-loss transition Series inductor as a loss-less snubber Energy in junction capacitance is lost Best suited for converters with IGBTs due to tail current at turn-off 16
16 ZVS and Hard-Switched Waveforms Zero-voltage switched Hard-switched vdrainsource vgatesource 12V vdrainsource vgatesource V V 12V 12V 17
17 An Example: Zero Voltage Transition (ZVT) Synchronous Buck onverter v ( ) At t =,T v - is turned off ( ) = = V d T i i L v v = V - d V d T A D D - i - i L L V o 18
18 Zero Voltage Transition (ZVT) V d Since v v = V - d s dv dv - = s dt dt i i = T T A s D D - s - i i - i L L V o Also, i - i = i - L i = -i = v = v - = V - d il 2 V d At the end of this charge/discharge interval, positive i L is carried by D Subsequently, T is turned on; i L must reverse direction 19
19 Zero Voltage Transition ( t) va ( ) a T s i V d V o V d T A D D i - - s i L L V o t " t t t 1 t t i L t t t onducting Devices T None D T None D T None 2
20 Simulation of a ZVT Buck onverter PARAMETERS: R7 V7 25 M1 IRF15 L1 PulseWidth = 4.5us TDLY1 = 5.5us TDLY2 =.5us Period = 1us 21V V1 TD = {TDLY1} 2uH I = 2A R8 V8 25 M2 IRF15 1uF I = 1V 2 R6 1. TD = {TDLY2} ZVT_buck.opj 2 1 v DS gate input v GS i L i D us 1us 11us 12us 13us 14us 15us 16us 17us V(M2:d)/2 ID(M2)*2 V(M2:g) I(L1)*2 V(V8:) Time 21
21 lassification of Soft-Switching Schemes Load Resonant onverters onverters with Resonant Switches (Quasiresonant, Multi-resonant) Resonant Transition onverters ZVT and ZT 22
22 Phase Shift ontrolled Full-Bridge onverter (ZVT) Makes use of switch capacitances and transformer leakage inductance and magnetizing current T A T B Vd T A A T B B D a D a a D b b D b Io Poles A & B switched at nearly 5% duty-cycle Output voltage regulation is achieved by phase modulating the two pole outputs 47
23 Switching waveforms v A V d 2 ficticiousvin V d 2 T A T A A D A D A D B T B i AB v B T B AB D B L lt i L v B D a v AB D a i AB a D b b D b I o t In pole A T T A tot A A tot A v AB = v AB = V d -V d In pole B T tot v = V B B B B AB T tot v -V = AB d d 48
24 Transitions - Pole B T B to T B v AB T to T - B B V d T B T A i L T B D a A B a b I o D b i AB t v AB = V d AB v = -V d T to T - B B i L stays at I o L i stays at -I o 49
25 Transitions - Pole A V d T A T A A B T B i L D a a b D b I o v AB i AB T to T - A A t T tot v = A A AB -V d All four diodes conduct Leakage inductance resonates with switch capacitance Determination of T del critical for ZVS design Load dependent ZVS 5
26 Methods to increase ZVS range Use of external series inductor L o V in A i AB L B series v rect V o v AB i AB Disadvantages Loss of volt-sec higher turns-ratio v rect left-leg higher conduction loss increased VA ratings Load dependent ZVS 51
27 Use of magnetizing current V in A i load i mag i mag B Disadvantages higher conduction loss due to v AB i mag peak circulating current current through right-leg MOSFETs peak magnetizing current independent of V in 2 left leg 52
28 Factors Affecting ZVS ZVS Load Range apacitance across MOSFETs internal and external Leakage inductance Delay time Magnetizing current Design of other parameters like L o, o, transformer etc identical to hard switched PWM 53
29 Designing for ZVS MOSFET voltage during critical turn-on transition L vds = Vin Imag _ pk Irefl sin t 2 ( ) eq ( ω ) ds v ds ω = 1 2π Leq ds onditions for ZVS π 2 L Lk 2 ds t Leq 1. ( I I ) V 2 mag _ pk refl in,max ds π 2. T = L. 2 2 delay eq ds 54
30 A Possible Design Approach Using MathAD Sweep for all practical values of ds - based on limiting voltage rise during turn-off T - as a percentage of switching period delay Designing for ZVS alculate required I and L for each set mag,pk alculate switch peak current and RMS current lk Turn-off loss onduction loss alculate total losses. Iterate for different ZVS ranges 55
31 Designing for ZVS Total Losses (W) j i j ds i T del Total_loss 56
Chapter 4. LLC Resonant Converter
Chapter 4 LLC Resonant Converter 4.1 Introduction In previous chapters, the trends and technical challenges for front end DC/DC converter were discussed. High power density, high efficiency and high power
4. ACTIVE-CLAMP BOOST AS AN ISOLATED PFC FRONT-END CONVERTER
4. ACTIVE-CLAMP BOOST AS AN ISOLATED PFC FRONT-END CONVERTER 4.1 Introduction This chapter continues the theme set by Chapter 3 - simplifying the standard two-stage front-end implementation to one that
Chapter 20 Quasi-Resonant Converters
Chapter 0 Quasi-Resonant Converters Introduction 0.1 The zero-current-switching quasi-resonant switch cell 0.1.1 Waveforms of the half-wave ZCS quasi-resonant switch cell 0.1. The average terminal waveforms
Chapter 19 Resonant Conversion
Chapter 9 Resonant Conversion Introduction 9. Sinusoidal analysis of resonant converters 9. Examples Series resonant converter Parallel resonant converter 9.3 Exact characteristics of the series and parallel
Application Note AN-1070
Application Note AN-1070 Class D Audio Amplifier Performance Relationship to MOSFET Parameters By Jorge Cerezo, International Rectifier Table of Contents Page Abstract... 2 Introduction... 2 Key MOSFET
IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings
PD - 90337G REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS THRU-HOLE (TO-204AA/AE) Product Summary Part Number BVDSS RDS(on) ID IRF150 100V 0.055Ω 38A IRF150 JANTX2N6764 JANTXV2N6764 [REF:MIL-PRF-19500/543]
Design Considerations for an LLC Resonant Converter
Design Considerations for an LLC Resonant Converter Hangseok Choi Power Conversion Team www.fairchildsemi.com 1. Introduction Growing demand for higher power density and low profile in power converter
I. INTRODUCTION II. MOSFET FAILURE MODES IN ZVS OPERATION
MOSFET Failure Modes in the Zero-Voltage-Switched Full-Bridge Switching Mode Power Supply Applications Alexander Fiel and Thomas Wu International Rectifier Applications Department El Segundo, CA 9045,
Novel Loaded-Resonant Converter & Application of DC-to-DC Energy Conversions systems
International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 11 (November 2013), PP.50-57 Novel Loaded-Resonant Converter & Application of
High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications
White paper High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications Written by: C. R. Swartz Principal Engineer, Picor Semiconductor
Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder
Robert W. Erickson University of Colorado, Boulder 1 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction
V DS 100 V R DS(ON) typ. @ 10V 72.5 m: Q g typ. 15 nc Q sw typ. 8.3 nc R G(int) typ. 2.2 Ω T J max 175 C
PD 9698A DIGITAL AUDIO MOSFET IRFB422PbF Features Key parameters optimized for ClassD audio amplifier applications Low R DSON for improved efficiency Low Q G and Q SW for better THD and improved efficiency
STW20NM50 N-CHANNEL 550V @ Tjmax - 0.20Ω - 20ATO-247 MDmesh MOSFET
N-CHANNEL 550V @ Tjmax - 0.20Ω - 20ATO-247 MDmesh MOSFET TYPE V DSS (@Tjmax) R DS(on) I D STW20NM50 550V < 0.25Ω 20 A TYPICAL R DS (on) = 0.20Ω HIGH dv/dt AND AVALANCHE CAPABILITIES 100% AVALANCHE TESTED
Two-Switch Forward Converter: Operation, FOM, and MOSFET Selection Guide
VISHAY SILICONIX www.vishay.com MOSFETs by Philip Zuk and Sanjay Havanur The two-switch forward converter is a widely used topology and considered to be one of the most reliable converters ever. Its benefits
V DSS I D. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175
PD 973B IRFB432PbF Applications l Motion Control Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l Hard Switched and High Frequency Circuits Benefits l Low
AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case )
PD 9399A AUTOMOTIVE MOSFET Typical Applications Electric Power Steering (EPS) Antilock Braking System (ABS) Wiper Control Climate Control Power Door Benefits Advanced Process Technology Ultra Low OnResistance
C Soldering Temperature, for 10 seconds 300 (1.6mm from case )
l Advanced Process Technology l Ultra Low On-Resistance l Dynamic dv/dt Rating l 75 C Operating Temperature l Fast Switching l Fully Avalanche Rated l Optimized for SMPS Applications Description Advanced
200V, N-CHANNEL. Absolute Maximum Ratings. Features: www.irf.com 1 PD - 90370
PD - 90370 REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS THRU-HOLE (TO-204AA/AE) IRF240 200V, N-CHANNEL Product Summary Part Number BVDSS RDS(on) ID IRF240 200V 0.18Ω 18A The HEXFET technology
C Soldering Temperature, for 10 seconds 300 (1.6mm from case )
dvanced Process Technology Dynamic dv/dt Rating 75 C Operating Temperature Fast Switching Fully valanche Rated Lead-Free Description Fifth Generation HEXFETs from International Rectifier utilize advanced
IRF740 N-CHANNEL 400V - 0.46Ω - 10A TO-220 PowerMESH II MOSFET
N-CHANNEL 400V - 0.46Ω - 10A TO-220 PowerMESH II MOSFET TYPE V DSS R DS(on) I D IRF740 400 V < 0.55 Ω 10 A TYPICAL R DS (on) = 0.46Ω EXCEPTIONAL dv/dt CAPABILITY 100% AVALANCHE TESTED LOW GATE CHARGE VERY
Power MOSFET. IRF510PbF SiHF510-E3 IRF510 SiHF510. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20
Power MOSFET PRODUCT SUMMARY (V) 100 R DS(on) () = 0.54 Q g max. (nc) 8.3 Q gs (nc) 2.3 Q gd (nc) 3.8 Configuration Single D TO220AB G FEATURES Dynamic dv/dt rating Available Repetitive avalanche rated
Design and Simulation of Soft Switched Converter Fed DC Servo Drive
International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-237, Volume-1, Issue-5, November 211 Design and Simulation of Soft Switched Converter Fed DC Servo Drive Bal Mukund Sharma, A.
Features. Description. Table 1. Device summary. Order code Marking Package Packing. STP110N8F6 110N8F6 TO-220 Tube
N-channel 80 V, 0.0056 Ω typ.,110 A, STripFET F6 Power MOSFET in a TO-220 package Features Datasheet - production data Order code V DS R DS(on)max I D P TOT TAB STP110N8F6 80 V 0.0065 Ω 110 A 200 W TO-220
Power MOSFET FEATURES. IRF610PbF SiHF610-E3 IRF610 SiHF610. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 200 V Gate-Source Voltage V GS ± 20
Power MOSFET PRODUCT SUMMARY (V) 00 R DS(on) ( ) = 1.5 Q g (Max.) (nc) 8. Q gs (nc) 1.8 Q gd (nc) 4.5 Configuration Single FEATURES Dynamic dv/dt Rating Repetitive Avalanche Rated Fast Switching Ease of
UNISONIC TECHNOLOGIES CO., LTD 50N06 Power MOSFET
UNISONIC TECHNOLOGIES CO., LTD 50N06 50 Amps, 60 Volts N-CHANNEL POWER MOSFET DESCRIPTION TO-263 TO-25 The UTC 50N06 is three-terminal silicon device with current conduction capability of about 50A, fast
Power MOSFET FEATURES. IRF740PbF SiHF740-E3 IRF740 SiHF740. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 400 V Gate-Source Voltage V GS ± 20
Power MOSFET PRODUCT SUMMARY (V) 400 R DS(on) (Ω) = 0.55 Q g (Max.) (nc) 63 Q gs (nc) 9.0 Q gd (nc) 3 Configuration Single FEATURES Dynamic dv/dt Rating Repetitive Avalanche Rated Fast Switching Ease of
IRF5305PbF. HEXFET Power MOSFET V DSS = -55V. R DS(on) = 0.06Ω I D = -31A
dvanced Process Technology Dynamic dv/dt Rating 75 C Operating Temperature Fast Switching PChannel Fully valanche Rated LeadFree Description Fifth Generation HEXFETs from International Rectifier utilize
V DSS R DS(on) max Qg. 30V 3.2mΩ 36nC
PD - 96232 Applications l Optimized for UPS/Inverter Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification
Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E
Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer
The Flyback Converter
The Flyback Converter Lecture notes ECEN4517! Derivation of the flyback converter: a transformer-isolated version of the buck-boost converter! Typical waveforms, and derivation of M(D) = V/! Flyback transformer
Power MOSFET FEATURES. IRFZ44PbF SiHFZ44-E3 IRFZ44 SiHFZ44 T C = 25 C
Power MOSFET PRODUCT SUMMARY (V) 60 R DS(on) (Ω) V GS = 10 V 0.028 Q g (Max.) (nc) 67 Q gs (nc) 18 Q gd (nc) 25 Configuration Single FEATURES Dynamic dv/dt Rating 175 C Operating Temperature Fast Switching
Power MOSFET FEATURES. IRL540PbF SiHL540-E3 IRL540 SiHL540
Power MOSFET PRODUCT SUMMARY (V) 100 R DS(on) (Ω) = 5.0 V 0.077 Q g (Max.) (nc) 64 Q gs (nc) 9.4 Q gd (nc) 27 Configuration Single TO220AB G DS ORDERING INFORMATION Package Lead (Pb)free SnPb G D S NChannel
W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 38. V/ns T J. mj I AR
PD 967 IRFB465PbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G D S V DSS HEXFET
Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit
Maxim > Design Support > Technical Documents > Tutorials > Power-Supply Circuits > APP 986 Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit TUTORIAL 986 Input and
STGW40NC60V N-CHANNEL 50A - 600V - TO-247 Very Fast PowerMESH IGBT
N-CHANNEL 50A - 600V - TO-247 Very Fast PowerMESH IGBT Table 1: General Features STGW40NC60V 600 V < 2.5 V 50 A HIGH CURRENT CAPABILITY HIGH FREQUENCY OPERATION UP TO 50 KHz LOSSES INCLUDE DIODE RECOVERY
Analysis and Design of Improved Isolated Full-Bridge Bi-Directional DC-DC Converter
4 35th Annual IEEE Power Electronics Specialists onference Aachen, Germany, 4 Analysis and Design of Improved Isolated Full-Bridge Bi-Directional D-D onverter Rongyuan i, Andreas Pottharst, Norbert Fröhleke,
Designers Series XII. Switching Power Magazine. Copyright 2005
Designers Series XII n this issue, and previous issues of SPM, we cover the latest technologies in exotic high-density power. Most power supplies in the commercial world, however, are built with the bread-and-butter
IRLR8743PbF IRLU8743PbF HEXFET Power MOSFET
Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use l Lead-Free
W/ C V GS Gate-to-Source Voltage ± 16 dv/dt Peak Diode Recovery e 21
PD 97369 IRLB43PbF Applications l DC Motor Drive l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits
Chapter 2 Application Requirements
Chapter 2 Application Requirements The material presented in this script covers low voltage applications extending from battery operated portable electronics, through POL-converters (Point of Load), internet
2. AN IMPROVED ZVS FULL-BRIDGE DC/DC CONVERTER
2. AN IMPROVED ZVS FULL-BRIDGE DC/DC CONVERTER 2.1 Introduction Shown in Fig. 2.1(a) is the basic structure of a typical two-stage front-end converter for DC distributed power systems, often used in systems
DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs
DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs by B. Maurice, L. Wuidart 1. INTRODUCTION Unlike the bipolar transistor, which is current driven, Power MOSFETs, with their insulated gates, are voltage driven.
IRLR8729PbF IRLU8729PbF
Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use Benefits
STP62NS04Z N-CHANNEL CLAMPED 12.5mΩ - 62A TO-220 FULLY PROTECTED MESH OVERLAY MOSFET
N-CHANNEL CLAMPED 12.5mΩ - 62A TO-220 FULLY PROTECTED MESH OVERLAY MOSFET TYPE V DSS R DS(on) I D STP62NS04Z CLAMPED
Design of an Auxiliary Power Distribution Network for an Electric Vehicle
Design of an Auxiliary Power Distribution Network for an Electric Vehicle William Chen, Simon Round and Richard Duke Department of Electrical & Computer Engineering University of Canterbury, Christchurch,
RoHS Compliant Containing no Lead, no Bromide and no Halogen. IRF9310PbF SO8 Tube/Bulk 95 IRF9310TRPbF SO8 Tape and Reel 4000
PD 97437A IRF93PbF HEXFET Power MOSFET V DS 30 V R DS(on) max (@V GS = V) I D (@T A = 25 C) 4. mω 20 A * SO8 Applications Charge and Discharge Switch for Notebook PC Battery Application Features and Benefits
Application Note AN- 1095
Application Note AN- 1095 Design of the Inverter Output Filter for Motor Drives with IRAMS Power Modules Cesare Bocchiola Table of Contents Page Section 1: Introduction...2 Section 2 : Output Filter Design
W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.0. V/ns T J. mj I AR. Thermal Resistance Symbol Parameter Typ. Max.
PD 9727 IRFP326PbF HEXFET Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits
TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES
TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES by L. Wuidart I INTRODUCTION This paper presents an overview of the most important DC-DC converter topologies. The main object is to guide the designer in selecting
STW34NB20 N-CHANNEL 200V - 0.062 Ω - 34A TO-247 PowerMESH MOSFET
N-CHANNEL 200V - 0.062 Ω - 34A TO-247 PowerMESH MOSFET Table 1. General Features Figure 1. Package Type V DSS R DS(on) I D STW34NB20 200 V < 0.075 Ω 34 A FEATURES SUMMARY TYPICAL R DS(on) = 0.062 Ω EXTREMELY
A Zero-Voltage Switching Two-Inductor Boost Converter With an Auxiliary Transformer
A Zero-Voltage Switching Two-Inductor Boost Converter With an Auxiliary Transformer Quan Li and Peter Wolfs Central Queensland University Rockhampton Mail Center, QLD 47, Australia Abstract-The two-inductor
The leakage inductance of the power transformer
Nondissipative lamping Benefits - onverters Even if small, a transformer s leakage inductance reduces the efficiency of some isolated dc-dc converter topologies However, the technique of lossless voltage
O p t i m u m M O S F E T S e l e c t i o n f o r S y n c h r o n o u s R e c t i f i c a t i o n
V2.4. May 2012 O p t i m u m M O S F E T S e l e c t i o n f o r S y n c h r o n o u s R e c t i f i c a t i o n IFAT PMM APS SE DS Mößlacher Christian Guillemant Olivier Edition 2011-02-02 Published by
Power MOSFET FEATURES. IRF540PbF SiHF540-E3 IRF540 SiHF540. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20
Power MOSFET PRODUCT SUMMARY (V) 100 R DS(on) ( ) = 0.077 Q g (Max.) (nc) 72 Q gs (nc) 11 Q gd (nc) 32 Configuration Single TO220AB G DS ORDERING INFORMATION Package Lead (Pb)free SnPb G D S NChannel MOSFET
STN3NF06L. N-channel 60 V, 0.07 Ω, 4 A, SOT-223 STripFET II Power MOSFET. Features. Application. Description
N-channel 60 V, 0.07 Ω, 4 A, SOT-223 STripFET II Power MOSFET Features Type V DSS (@Tjmax) Exceptional dv/dt capability Avalanche rugged technology 100% avalanche tested R DS(on) max STN3NF06L 60 V < 0.1
Philosophy of Topology and Components Selection for Cost and Performance in Automotive Converters.
Philosophy of Topology and Components Selection for Cost and Performance in Automotive Converters. Alexander Isurin ( [email protected] ) Alexander Cook ([email protected] ) Vanner inc. USA Abstract- This
Power MOSFET FEATURES. IRF9640PbF SiHF9640-E3 IRF9640 SiHF9640
Power MOSFET PRODUCT SUMMARY V DS (V) 200 R DS(on) (Ω) = 10 V 0.50 Q g (Max.) (nc) 44 Q gs (nc) 7.1 Q gd (nc) 27 Configuration Single TO220AB G DS ORDERING INFORMATION Package Lead (Pb)free SnPb G S D
Soft-Switching performance of Dual Active Bridge DC-DC Converter
Soft-Switching performance of Dual Active Bridge DC-DC Converter R. T. NAAYAGI *, N. E. MASTORAKIS * Department of Electrical and Electronics Engineering Vel Tech Dr. RR and Dr. SR Technical University
STP80NF55-08 STB80NF55-08 STB80NF55-08-1 N-CHANNEL 55V - 0.0065 Ω - 80A D2PAK/I2PAK/TO-220 STripFET II POWER MOSFET
STP80NF55-08 STB80NF55-08 STB80NF55-08-1 N-CHANNEL 55V - 0.0065 Ω - 80A D2PAK/I2PAK/TO-220 STripFET II POWER MOSFET TYPE V DSS R DS(on) I D STB80NF55-08/-1 STP80NF55-08 55 V 55 V
DE275-102N06A RF Power MOSFET
N-Channel Enhancement Mode Low Q g and R g High dv/dt Nanosecond Switching Ideal for Class C, D, & E Applications Symbol Test Conditions Maximum Ratings V DSS T J = 25 C to 150 C 00 V V DGR T J = 25 C
IR1168S DUAL SMART RECTIFIER DRIVER IC
Datasheet No PD97382 September 26, 2011 IR1168S DUAL SMART RECTIFIER DRIVER IC Features Secondary-side high speed controller for synchronous rectification in resonant half bridge topologies 200V proprietary
Power MOSFET FEATURES. IRF520PbF SiHF520-E3 IRF520 SiHF520. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20
Power MOSFET PRODUCT SUMMARY (V) 100 R DS(on) ( ) = 0.7 Q g (Max.) (nc) 16 Q gs (nc) 4.4 Q gd (nc) 7.7 Configuration Single TO0AB G DS ORDERING INFORMATION Package Lead (Pb)free SnPb G D S NChannel MOSFET
OptiMOS 3 Power-Transistor
Type IPD6N3L G OptiMOS 3 Power-Transistor Features Fast switching MOSFET for SMPS Optimized technology for DC/DC converters Qualified according to JEDEC 1) for target applications Product Summary V DS
IRL3803 PD - 91301D. HEXFET Power MOSFET V DSS = 30V. R DS(on) = 0.006Ω I D = 140A. Absolute Maximum Ratings. Thermal Resistance
l Logic-Level Gate Drive l dvanced Process Technology l Ultra Low On-Resistance l Dynamic dv/dt Rating l 175 C Operating Temperature l Fast Switching l Fully valanche Rated Description Fifth Generation
SMPS MOSFET. V DSS Rds(on) max I D
Applications l Switch Mode Power Supply ( SMPS ) l Uninterruptable Power Supply l High speed power switching SMPS MOSFET PD 92004 IRF740A HEXFET Power MOSFET V DSS Rds(on) max I D 400V 0.55Ω A Benefits
STP6NK60Z - STP6NK60ZFP STB6NK60Z - STB6NK60Z-1 N-CHANNEL 600V - 1Ω - 6A TO-220/TO-220FP/D 2 PAK/I 2 PAK Zener-Protected SuperMESH Power MOSFET
STP6NK60Z - STP6NK60ZFP STB6NK60Z - STB6NK60Z-1 N-CHANNEL 600V - 1Ω - 6A TO-220/TO-220FP/D 2 PAK/I 2 PAK Zener-Protected SuperMESH Power MOSFET TYPE V DSS R DS(on) I D Pw STP6NK60Z STP6NK60ZFP STB6NK60Z
N-channel enhancement mode TrenchMOS transistor
FEATURES SYMBOL QUICK REFERENCE DATA Trench technology d V DSS = V Low on-state resistance Fast switching I D = A High thermal cycling performance Low thermal resistance R DS(ON) mω (V GS = V) g s R DS(ON)
Design and Construction of Variable DC Source for Laboratory Using Solar Energy
International Journal of Electronics and Computer Science Engineering 228 Available Online at www.ijecse.org ISSN- 2277-1956 Design and Construction of Variable DC Source for Laboratory Using Solar Energy
AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family
AC/DC Power Supply Reference Design Advanced SMPS Applications using the dspic DSC SMPS Family dspic30f SMPS Family Excellent for Digital Power Conversion Internal hi-res PWM Internal high speed ADC Internal
Power MOSFET. IRF9520PbF SiHF9520-E3 IRF9520 SiHF9520. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS - 100 V Gate-Source Voltage V GS ± 20
Power MOSFET PRODUCT SUMMARY (V) 100 R DS(on) ( ) = 10 V 0.60 Q g (Max.) (nc) 18 Q gs (nc) 3.0 Q gd (nc) 9.0 Configuration Single TO220AB G DS ORDERING INFORMATION Package Lead (Pb)free SnPb G S D PChannel
IRFP460LC PD - 9.1232. HEXFET Power MOSFET V DSS = 500V. R DS(on) = 0.27Ω I D = 20A
HEXFET Power MOSFET PD - 9.232 IRFP460LC Ultra Low Gate Charge Reduced Gate Drive Requirement Enhanced 30V V gs Rating Reduced C iss, C oss, C rss Isolated Central Mounting Hole Dynamic dv/dt Rated Repetitive
Lower Conduction Losses Low Thermal Resistance to PCB ( 0.5 C/W)
PD -97428 IRFH5020PbF HEXFET Power MOSFET V DS 200 V 55 m: R DS(on) max (@V GS = V) Q g (typical) 36 nc R G (typical).9 : I D (@T c(bottom) = 25 C) 43 A PQFN 5X6 mm Applications Secondary Side Synchronous
91 P D @T C = 25 C Power Dissipation 330 P D @T C = 100 C Power Dissipation Linear Derating Factor
PD - 9778 IRFB4229PbF Features l dvanced Process Technology l Key Parameters Optimized for PDP Sustain, Energy Recovery and Pass Switch pplications l Low E PULSE Rating to Reduce Power Dissipation in PDP
Inrush Current. Although the concepts stated are universal, this application note was written specifically for Interpoint products.
INTERPOINT Although the concepts stated are universal, this application note was written specifically for Interpoint products. In today s applications, high surge currents coming from the dc bus are a
Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers
Design and Applications of HCPL-00 and HCPL-00 Gate Drive Optocouplers Application Note 00 Introduction The HCPL-00 (DIP-) and HCPL-00 (SO-) consist of GaAsP LED optically coupled to an integrated circuit
IRFR3707Z IRFU3707Z HEXFET Power MOSFET
Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use Benefits
T.FRANCIS, D.NARASIMHARAO
Applications (IJERA) ISSN: 48-96 wwwijeracom ol, Issue 3, May-Jun 0, pp40-46 A Soft-Switching DC/DC Converter With High oltage Gain for Renewable Energy Application TFRANCIS M-Tech Scholar, Power electronics
Power MOSFET FEATURES. IRF740PbF SiHF740-E3 IRF740 SiHF740. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 400 V Gate-Source Voltage V GS ± 20
Power MOSFET PRODUCT SUMMARY (V) 400 R DS(on) (Ω) = 0.55 Q g (Max.) (nc) 63 Q gs (nc) 9.0 Q gd (nc) 3 Configuration Single FEATURES Dynamic dv/dt Rating Repetitive Avalanche Rated Fast Switching Ease of
ULRASONIC GENERATOR POWER CIRCUITRY. Will it fit on PC board
ULRASONIC GENERATOR POWER CIRCUITRY Will it fit on PC board MAJOR COMPONENTS HIGH POWER FACTOR RECTIFIER RECTIFIES POWER LINE RAIL SUPPLY SETS VOLTAGE AMPLITUDE INVERTER INVERTS RAIL VOLTAGE FILTER FILTERS
SMPS MOSFET. V DSS R DS (on) max I D
Applications l Switch Mode Power Supply (SMPS) l Uninterruptable Power Supply l High speed power switching SMPS MOSFET PD 93773A IRF820A HEXFET Power MOSFET V DSS R DS (on) max I D 500V 3.0Ω 2.5A Benefits
STP10NK60Z/FP, STB10NK60Z/-1 STW10NK60Z N-CHANNEL 600V-0.65Ω-10A TO-220/FP/D 2 PAK/I 2 PAK/TO-247 Zener-Protected SuperMESH Power MOSFET
STP10NK60Z/FP, STB10NK60Z/-1 STW10NK60Z N-CHANNEL 600V-0.65Ω-10A TO-220/FP/D 2 PAK/I 2 PAK/TO-247 Zener-Protected SuperMESH Power MOSFET TYPE V DSS R DS(on) I D Pw STP10NK60Z STP10NK60ZFP STB10NK60Z STB10NK60Z-1
N-Channel 20-V (D-S) 175 C MOSFET
N-Channel -V (D-S) 75 C MOSFET SUD7N-4P PRODUCT SUMMARY V DS (V) r DS(on) ( ) (A) a.37 @ V GS = V 37.6 @ V GS = 4.5 V 9 TO-5 D FEATURES TrenchFET Power MOSFET 75 C Junction Temperature PWM Optimized for
A I DM. -55 to + 175 T STG. Storage Temperature Range C Soldering Temperature, for 10 seconds 300 (1.6mm from case) Mounting torque, 6-32 or M3 screw
IGITL UIO MOSFET P 9673 IRFB565PbF Features Key Parameters Optimized for Class udio mplifier pplications Low R SON for Improved Efficiency Low Q G and Q SW for Better TH and Improved Efficiency Low Q RR
MOSFET TECHNOLOGY ADVANCES DC-DC CONVERTER EFFICIENCY FOR PROCESSOR POWER
MOSFET TECHNOLOGY ADVANCES DC-DC CONVERTER EFFICIENCY FOR PROCESSOR POWER Naresh Thapar, R.Sodhi, K.Dierberger, G.Stojcic, C.Blake, and D.Kinzer International Rectifier Corporation El Segundo, CA 90245.
STP60NF06FP. N-channel 60V - 0.014Ω - 30A TO-220FP STripFET II Power MOSFET. General features. Description. Internal schematic diagram.
N-channel 60V - 0.014Ω - 30A TO-220FP STripFET II Power MOSFET General features Type V DSS R DS(on) I D STP60NF06FP 60V
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF HIGH AND LOW SIDE DRIVER Product Summary
Data Sheet No. PD6147 rev.u Features Floating channel designed for bootstrap operation Fully operational to +5V or +6V Tolerant to negative transient voltage dv/dt immune Gate drive supply range from 1
AUIRLR2905 AUIRLU2905
Features dvanced Planar Technology Logic Level Gate Drive Low On-Resistance Dynamic dv/dt Rating 175 C Operating Temperature Fast Switching Fully valanche Rated Repetitive valanche llowed up to Tjmax Lead-Free,
Chapter 35 Alternating Current Circuits
hapter 35 Alternating urrent ircuits ac-ircuits Phasor Diagrams Resistors, apacitors and nductors in ac-ircuits R ac-ircuits ac-ircuit power. Resonance Transformers ac ircuits Alternating currents and
IR2110(S)/IR2113(S) & (PbF)
Data Sheet No. PD6147 Rev.T Features Floating channel designed for bootstrap operation Fully operational to +5V or +6V Tolerant to negative transient voltage dv/dt immune Gate drive supply range from 1
Features. Symbol JEDEC TO-220AB
Data Sheet June 1999 File Number 2253.2 3A, 5V,.4 Ohm, N-Channel Power MOSFET This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching
STP60NF06. N-channel 60V - 0.014Ω - 60A TO-220 STripFET II Power MOSFET. General features. Description. Internal schematic diagram.
N-channel 60V - 0.014Ω - 60A TO-220 STripFET II Power MOSFET General features Type V DSS R DS(on) I D STP60NF06 60V
Hybrid Power System with A Two-Input Power Converter
Hybrid Power System with A Two-Input Power Converter Y. L. Juan and H. Y. Yang Department of Electrical Engineering National Changhua University of Education Jin-De Campus, Address: No.1, Jin-De Road,
IRLR8256PbF IRLU8256PbF HEXFET Power MOSFET
Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use Benefits
Symbol Parameter Value Unit V DS Drain-source Voltage (V GS =0) 50 V V DGR Drain- gate Voltage (R GS =20kΩ) 50 V
BUZ71A N - CHANNEL 50V - 0.1Ω - 13A TO-220 STripFET POWER MOSFET TYPE V DSS R DS(on) I D BUZ71A 50 V < 0.12 Ω 13 A TYPICAL RDS(on) = 0.1 Ω AVALANCHE RUGGED TECHNOLOGY 100% AVALANCHE TESTED HIGH CURRENT
Understanding Diode Reverse Recovery and its Effect on Switching Losses
Understanding Diode Reverse Recovery and its Effect on Switching Losses Peter Haaf, Senior Field Applications Engineer, and Jon Harper, Market Development Manager, Fairchild Semiconductor Europe Abstract
OptiMOS 3 Power-Transistor
Type IPD36N4L G OptiMOS 3 Power-Transistor Features Fast switching MOSFET for SMPS Optimized technology for DC/DC converters Qualified according to JEDEC ) for target applications Product Summary V DS
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 Impact Factor (2014): 5.
The Derivative of a Switched Coupled Inductor DC DC Step-Up Converter by Using a Voltage Lift Network with Closed Loop Control for Micro Source Applications Sangeetha K 1, Akhil A. Balakrishnan 2 1 PG
A Double Grounded Transformerless Photovoltaic Array String Inverter with Film Capacitors and Silicon. Carbide Transistors. Lloyd C.
A Double Grounded Transformerless Photovoltaic Array String Inverter with Film Capacitors and Silicon Carbide Transistors by Lloyd C. Breazeale A Dissertation Presented in Partial Fulfillment of the Requirements
5W LED Lump Module Design with FT831B
5W LED Lump Module Design with FT831B 2009 Fremont Micro Devices ERP831BA1 - Page1 Index 1 INTRODUCTION... 3 2 MODULE SPECIFICATION... 3 2.1 Input Characteristics... 3 2.2 Output Characteristics... 3 2.3
