Tangents and normals

Size: px
Start display at page:

Download "Tangents and normals"

Transcription

1 Tangents and normals mc-ty-tannorm This unit explains how differentiation can be used to calculate the equations of the tangent and normaltoacurve.thetangentisastraightlinewhichjusttouchesthecurveatagivenpoint. The normal is a straight line which is perpendicular to the tangent. Tocalculatetheequationsoftheselinesweshallmakeuseofthefactthattheequationofa straightlinepassingthroughthepointwithcoordinates (x 1, y 1 )andhavinggradient misgiven by Wealsomakeuseofthefactthatiftwolineswithgradients m 1 and m respectivelyareperpendicular,then m 1 m = 1. In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. Afterreadingthistext,and/orviewingthevideotutorialonthistopic,youshouldbeableto: calculatetheequationofthetangenttoacurveatagivenpoint calculatetheequationofthenormaltoacurveatagivenpoint Contents 1. Introduction. Calculating the equation of a tangent 3. Theequationofanormaltoacurve c mathcentre 009

2 1. Introduction Considerafunction f(x)suchasthatshowninfigure1.whenwecalculatethederivative, f, ofthefunctionatapoint x = asay,wearefindingthegradientofthetangenttothegraphof thatfunctionatthatpoint. Figure1showsthetangentdrawnat x = a. Thegradientofthis tangentis f (a). f (x) f (a) Figure1.Thetangentdrawnat x = ahasgradient f (a). Wewillusethisinformationtocalculatetheequationofthetangenttoacurveataparticular point,andthentheequationofthenormaltoacurveatapoint. a Key Point f (a)isthegradientofthetangentdrawnat x = a.. Calculating the equation of a tangent Example Supposewewishtofindtheequationofthetangentto atthepointwhere x = 3. When x = 3wenotethat Sothepointofinteresthascoordinates (3, ). f(x) = x 3 3x + x 1 f(3) = = = Thenextthingthatweneedisthegradientofthecurveatthispoint.Tofindthis,weneedto differentiate f(x): f (x) = 3x 6x + 1 Wecannowcalculatethegradientofthecurveatthepointwhere x = 3. f (3) = = = 10 Sowehavethecoordinatesoftherequiredpoint, (3, ),andthegradientofthetangentatthat point, c mathcentre 009

3 Whatwewanttocalculateistheequationofthetangentatthispointonthecurve.Thetangent mustpassthroughthepointandhavegradient10.thetangentisastraightlineandsoweuse thefactthattheequationofastraightlinethatpassesthroughapoint (x 1, y 1 )andhasgradient misgivenbytheformula Substituting the given values y x 3 = 10 and rearranging y = 10(x 3) y = 10x 30 y = 10x 8 Thisistheequationofthetangenttothecurveatthepoint (3, ). Key Point Theequationofastraightlinethatpassesthroughapoint (x 1, y 1 )andhasgradient misgiven by Example Supposewewishtofindpointsonthecurve y(x)givenby y = x 3 6x + x + 3 wherethetangentsareparalleltotheline y = x + 5. Ifthetangentshavetobeparalleltothelinethentheymusthavethesamegradient. The standardequationforastraightlineis y x + c,where misthegradient. Sowhatwegain fromlookingatthisstandardequationandcomparingitwiththestraightline y = x + 5isthat thegradient, m,isequalto1. Thusthegradientsofthetangentswearetryingtofindmust also have gradient 1. Weknowthatifwedifferentiate y(x)wewillobtainanexpressionforthegradients ofthe tangentsto y(x)andwecansetthisequalto1.differentiating,andsettingthisequalto1we find dx = 3x 1x + 1 = c mathcentre 009

4 from which 3x 1x = 0 This is a quadratic equation which we can solve by factorisation. 3x 1x = 0 3x(x 4) = 0 3x = 0 or x 4 = 0 x = 0 or x = 4 Now having found these two values of x we can calculate the corresponding y coordinates. We dothisfromtheequationofthecurve: y = x 3 6x + x + 3. when x = 0: y = = 3. when x = 4: y = = = 5. Sothetwopointsare (0, 3)and (4, 5) Thesearethetwopointswherethegradientsofthetangentareequalto1,andsowherethe tangentsareparalleltothelinethatwestartedoutwith,i.e. y = x + 5. Exercise 1 1. Foreachofthefunctionsgivenbelowdeterminetheequationofthetangentatthepoints indicated. a) f(x) = 3x x + 4at x = 0and3. b) f(x) = 5x 3 + 1x 7xat x = 1and1. c) f(x) = xe x at x = 0. d) f(x) = (x + 1) 3 at x = and1. e) f(x) = sin xat x = 0and π 6. f) f(x) = 1 xat x = 3,0and..Findtheequationofeachtangentofthefunction f(x) = x 3 5x 3 + 5x 4whichisparallel totheline y = x Findtheequationofeachtangentofthefunction f(x) = x 3 +x +x+1whichisperpendicular totheline y + x + 5 = The equation of a normal to a curve In mathematics the word normal has a very specific meaning. It means perpendicular or at right angles. tangent normal Figure.Thenormalisalineatrightanglestothetangent. 4 c mathcentre 009

5 IfwehaveacurvesuchasthatshowninFigure,wecanchooseapointanddrawinthetangent tothecurveatthatpoint.thenormalisthenatrightanglestothecurvesoitisalsoatright angles(perpendicular) to the tangent. Wenowfindtheequationofthenormaltoacurve. Thereisonefurtherpieceofinformation thatweneedinordertodothis. Iftwolines,havinggradients m 1 and m respectively,areat rightanglestoeachotherthentheproductoftheirgradients, m 1 m,mustequal 1. Key Point Iftwolines,withgradients m 1 and m areatrightanglesthen m 1 m = 1 Example Supposewewishtofindtheequationofthetangentandtheequationofthenormaltothecurve atthepointwhere x =. y = x + 1 x Firstofallweshallcalculatethe ycoordinateatthepointonthecurvewhere x = : y = + 1 = 5 Nextwewantthegradientofthecurveatthepoint x =.Weneedtofind dx. Notingthatwecanwrite yas y = x + x 1 then Furthermore,when x = dx = 1 x = 1 1 x dx = = 3 4 Thisisthegradientofthetangenttothecurveatthepoint (, 5 ).Weknowthatthestandard equation for a straight line is Withthegivenvalueswehave y 5 x = c mathcentre 009

6 Rearranging y 5 ( 4 y 5 ) = 3 (x ) 4 = 3(x ) 4y 10 = 3x 6 4y = 3x + 4 Sotheequationofthetangenttothecurveatthepointwhere x = is 4y = 3x + 4. Nowweneedtofindtheequationofthenormaltothecurve. Letthegradientofthenormalbe m. Supposethegradientofthetangentis m 1. Recallthat thenormalandthetangentareperpendicularandhence m 1 m = 1.Weknow m 1 = 3 4.So andso 3 4 m = 1 m = 4 3 Soweknowthegradientofthenormalandwealsoknowthepointonthecurvethroughwhich ( it passes,, 5 ). As before, Rearranging y 5 x ( 3 y 5 ) = 4 3 = 4(x ) 3y 15 = 4x + 8 3y + 4x = y + 4x = 31 6y + 8x = 31 Thisistheequationofthenormaltothecurveatthegivenpoint. Example Considerthecurve xy = 4. Supposewewishtofindtheequationofthenormalatthepoint x =.Further,supposewewishtoknowwherethenormalmeetthecurveagain,ifitdoes. 6 c mathcentre 009

7 Noticethattheequationofthegivencurvecanbewritteninthealternativeform y = 4 x. A graphofthefunction y = 4 x isshowninfigure3. y normal xy = 4 x tangent Figure3.Agraphofthecurve xy = 4showingthetangentandnormalat x =. Fromthegraphwecanseethatthenormaltothecurvewhen x = doesindeedmeetthecurve again(in the third quadrant). We shall determine the point of intersection. Note that when x =, y = 4 =. Wefirstdeterminethegradientofthetangentatthepoint x =.Writing and differentiating, we find y = 4 x = 4x 1 dx = 4x = 4 x Now,when x = dx = 4 4 = 1. So,wehavethepoint (, )andweknowthegradientofthetangentthereis 1. Remember thatthetangentandnormalareatrightanglesandfortwolinesatrightanglestheproductof theirgradientsis 1.Thereforewecandeducethatthegradientofthenormalmustbe +1.So, thenormalpassesthroughthepoint (, )anditsgradientis c mathcentre 009

8 Asbefore,weusetheequationofastraightlineintheform: y x = 1 y = x y = x Sotheequationofthenormalis y = x. Wecannowfindwherethenormalintersectsthecurve xy = 4. Atanypointsofintersection both of the equations xy = 4 and y = x aretrueatthesametime,sowesolvetheseequationssimultaneously.wecansubstitute y = x fromtheequationofthenormalintotheequationofthecurve: xy = 4 x x = 4 x = 4 x = ± Sowehavetwovaluesof xwherethenormalintersectsthecurve.since y = xthecorresponding yvaluesarealsoand.soourtwopointsare (, ), (, ).Thesearethetwopoints wherethenormalmeetsthecurve.noticethatthefirstoftheseisthepointwestartedoffwith. Exercise 1.Foreachofthefunctionsgivenbelowdeterminetheequationsofthetangentandnormalat each of the points indicated. a) f(x) = x + 3x + 1at x = 0and4. b) f(x) = x 3 5x + 4at x = 1and1. c) f(x) = tanxat x = π 4. d) f(x) = 3 xat x =,0and1.. Findtheequationofeachnormalofthefunction f(x) = 1 3 x3 + x + x 1 3 whichisparallel totheline y = 1 4 x Findthe xco-ordinateofthepointwherethenormalto f(x) = x 3x + 1at x = 1 intersects the curve again. 8 c mathcentre 009

9 Answers Exercise 1 1.a) y = x + 4, y = 16x 3 b) y = 16x, y = 3x c) y = x, 3 d) y = 300x 0475, y = 4x 16, e) y = x, y = x + π 6, f) y = 1 x, y = 1 x, y = 1 x. y = x 95, y = x y = x +, y = x + 7 Exercise 1.a)At x = 0: y = 3x + 1, y = 1 1 x + 1,At x = 4: y = 11x 15, y = 3 11 x b)at x = 1: y = x + 8, y = x + 6,At x = 1: y = x,y= x + c)at x = π 4 : y = x + 1 π, y = 1 x π 8 d)at x = : y = 3 x, y = x + 7,At x = 0: y = 3 x, y = x + 3, At x = 1: y = 3 x, y = x + 1. y = 1 4 x + 9 4, y = 1 4 x c mathcentre 009

Completing the square

Completing the square Completing the square mc-ty-completingsquare-009-1 In this unit we consider how quadratic expressions can be written in an equivalent form using the technique known as completing the square. This technique

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Sometimes functions are given not in the form y = f(x) but in a more complicated form in which it is difficult or impossible to express y explicitly in terms of x. Such functions

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

Parametric Differentiation

Parametric Differentiation Parametric Differentiation mc-ty-parametric-009- Instead of a function y(x) being defined explicitly in terms of the independent variable x, it issometimesusefultodefineboth xand y intermsofathirdvariable,

More information

Factorising quadratics

Factorising quadratics Factorising quadratics An essential skill in many applications is the ability to factorise quadratic expressions. In this unit you will see that this can be thought of as reversing the process used to

More information

STRAND: ALGEBRA Unit 3 Solving Equations

STRAND: ALGEBRA Unit 3 Solving Equations CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

The Mathematics Diagnostic Test

The Mathematics Diagnostic Test The Mathematics iagnostic Test Mock Test and Further Information 010 In welcome week, students will be asked to sit a short test in order to determine the appropriate lecture course, tutorial group, whether

More information

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. The scalar product mc-ty-scalarprod-2009- Oneofthewaysinwhichtwovectorscanbecombinedisknownasthescalarproduct.When wecalculatethescalarproductoftwovectorstheresult,asthenamesuggestsisascalar,rather than

More information

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those 1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

H.Calculating Normal Vectors

H.Calculating Normal Vectors Appendix H H.Calculating Normal Vectors This appendix describes how to calculate normal vectors for surfaces. You need to define normals to use the OpenGL lighting facility, which is described in Chapter

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) MONDAY, 21 MAY 1.00 PM 2.30 PM NATIONAL QUALIFICATIONS 2012

*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) MONDAY, 21 MAY 1.00 PM 2.30 PM NATIONAL QUALIFICATIONS 2012 X00//0 NTIONL QULIFITIONS 0 MONY, MY.00 PM.0 PM MTHEMTIS HIGHER Paper (Non-calculator) Read carefully alculators may NOT be used in this paper. Section Questions 0 (40 marks) Instructions for completion

More information

Many common functions are polynomial functions. In this unit we describe polynomial functions and look at some of their properties.

Many common functions are polynomial functions. In this unit we describe polynomial functions and look at some of their properties. Polynomial functions mc-ty-polynomial-2009-1 Many common functions are polynomial functions. In this unit we describe polynomial functions and look at some of their properties. In order to master the techniques

More information

SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253

SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253 SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253 1. Prove that the following differential equations are satisfied by the given functions: (a) 2 u + 2 u 2 y + 2 u 2 z =0,whereu 2 =(x2 + y 2 + z 2 ) 1/2. (b)

More information

a cos x + b sin x = R cos(x α)

a cos x + b sin x = R cos(x α) a cos x + b sin x = R cos(x α) In this unit we explore how the sum of two trigonometric functions, e.g. cos x + 4 sin x, can be expressed as a single trigonometric function. Having the ability to do this

More information

Math 265 (Butler) Practice Midterm II B (Solutions)

Math 265 (Butler) Practice Midterm II B (Solutions) Math 265 (Butler) Practice Midterm II B (Solutions) 1. Find (x 0, y 0 ) so that the plane tangent to the surface z f(x, y) x 2 + 3xy y 2 at ( x 0, y 0, f(x 0, y 0 ) ) is parallel to the plane 16x 2y 2z

More information

Integration by substitution

Integration by substitution Integration by substitution There are occasions when it is possible to perform an apparently difficult piece of integration by first making a substitution. This has the effect of changing the variable

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math 122 Spring 12 Instructor: Jeff Lang Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

More information

Math 113 HW #7 Solutions

Math 113 HW #7 Solutions Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

cos Newington College HSC Mathematics Ext 1 Trial Examination 2011 QUESTION ONE (12 Marks) (b) Find the exact value of if. 2 . 3

cos Newington College HSC Mathematics Ext 1 Trial Examination 2011 QUESTION ONE (12 Marks) (b) Find the exact value of if. 2 . 3 1 QUESTION ONE (12 Marks) Marks (a) Find tan x e 1 2 cos dx x (b) Find the exact value of if. 2 (c) Solve 5 3 2x 1. 3 (d) If are the roots of the equation 2 find the value of. (e) Use the substitution

More information

Higher. Polynomials and Quadratics 64

Higher. Polynomials and Quadratics 64 hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining

More information

Core Maths C1. Revision Notes

Core Maths C1. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y

x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y MA7 - Calculus I for thelife Sciences Final Exam Solutions Spring -May-. Consider the function defined implicitly near (,) byx y +xy =y. (a) [7 points] Use implicit differentiation to find the derivative

More information

y intercept Gradient Facts Lines that have the same gradient are PARALLEL

y intercept Gradient Facts Lines that have the same gradient are PARALLEL CORE Summar Notes Linear Graphs and Equations = m + c gradient = increase in increase in intercept Gradient Facts Lines that have the same gradient are PARALLEL If lines are PERPENDICULAR then m m = or

More information

FURTHER VECTORS (MEI)

FURTHER VECTORS (MEI) Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

Integrating algebraic fractions

Integrating algebraic fractions Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate

More information

Mathematics for Engineering Technicians

Mathematics for Engineering Technicians Unit 4: Mathematics for Engineering Technicians Unit code: A/600/0253 QCF Level 3: BTEC National Credit value: 10 Guided learning hours: 60 Aim and purpose This unit aims to give learners a strong foundation

More information

New Higher-Proposed Order-Combined Approach. Block 1. Lines 1.1 App. Vectors 1.4 EF. Quadratics 1.1 RC. Polynomials 1.1 RC

New Higher-Proposed Order-Combined Approach. Block 1. Lines 1.1 App. Vectors 1.4 EF. Quadratics 1.1 RC. Polynomials 1.1 RC New Higher-Proposed Order-Combined Approach Block 1 Lines 1.1 App Vectors 1.4 EF Quadratics 1.1 RC Polynomials 1.1 RC Differentiation-but not optimisation 1.3 RC Block 2 Functions and graphs 1.3 EF Logs

More information

*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) NATIONAL QUALIFICATIONS 2014 TUESDAY, 6 MAY 1.00 PM 2.30 PM

*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) NATIONAL QUALIFICATIONS 2014 TUESDAY, 6 MAY 1.00 PM 2.30 PM X00//0 NTIONL QULIFITIONS 0 TUESY, 6 MY.00 PM.0 PM MTHEMTIS HIGHER Paper (Non-calculator) Read carefully alculators may NOT be used in this paper. Section Questions 0 (0 marks) Instructions for completion

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

More information

2013 MBA Jump Start Program

2013 MBA Jump Start Program 2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of

More information

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3 CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

More information

Paper Reference. Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser. Tracing paper may be used.

Paper Reference. Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser. Tracing paper may be used. Centre No. Candidate No. Paper Reference 1 3 8 0 3 H Paper Reference(s) 1380/3H Edexcel GCSE Mathematics (Linear) 1380 Paper 3 (Non-Calculator) Higher Tier Monday 18 May 2009 Afternoon Time: 1 hour 45

More information

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

More information

How To Understand The Theory Of Algebraic Functions

How To Understand The Theory Of Algebraic Functions Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Year 9 set 1 Mathematics notes, to accompany the 9H book. Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

More information

Math Placement Test Practice Problems

Math Placement Test Practice Problems Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

More information

Slope-Intercept Equation. Example

Slope-Intercept Equation. Example 1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine

More information

Section 2.7 One-to-One Functions and Their Inverses

Section 2.7 One-to-One Functions and Their Inverses Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A0 of challenge: D A0 Mathematical goals Starting points Materials required Time needed Connecting perpendicular lines To help learners to: identify perpendicular gradients; identify, from their

More information

Mathematics 2540 Paper 5540H/3H

Mathematics 2540 Paper 5540H/3H Edexcel GCSE Mathematics 540 Paper 5540H/3H November 008 Mark Scheme 1 (a) 3bc 1 B1 for 3bc (accept 3cb or bc3 or cb3 or 3 b c oe, but 7bc 4bc gets no marks) (b) x + 5y B for x+5y (accept x+y5 or x + 5

More information

Integration using trig identities or a trig substitution

Integration using trig identities or a trig substitution Integration using trig identities or a trig substitution mc-ty-intusingtrig-9- Some integrals involving trigonometric functions can be evaluated by using the trigonometric identities. These allow the integrand

More information

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. The vector product mc-ty-vectorprod-2009-1 Oneofthewaysinwhichtwovectorscanecominedisknownasthevectorproduct.When wecalculatethevectorproductoftwovectorstheresult,asthenamesuggests,isavector. Inthisunityouwilllearnhowtocalculatethevectorproductandmeetsomegeometricalapplications.

More information

100. In general, we can define this as if b x = a then x = log b

100. In general, we can define this as if b x = a then x = log b Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,

More information

Parametric Equations and the Parabola (Extension 1)

Parametric Equations and the Parabola (Extension 1) Parametric Equations and the Parabola (Extension 1) Parametric Equations Parametric equations are a set of equations in terms of a parameter that represent a relation. Each value of the parameter, when

More information

Math 115 HW #8 Solutions

Math 115 HW #8 Solutions Math 115 HW #8 Solutions 1 The function with the given graph is a solution of one of the following differential equations Decide which is the correct equation and justify your answer a) y = 1 + xy b) y

More information

Scan Conversion of Filled Primitives Rectangles Polygons. Many concepts are easy in continuous space - Difficult in discrete space

Scan Conversion of Filled Primitives Rectangles Polygons. Many concepts are easy in continuous space - Difficult in discrete space [email protected] CSE 480/580 Lecture 7 Slide 1 2D Primitives I Point-plotting (Scan Conversion) Lines Circles Ellipses Scan Conversion of Filled Primitives Rectangles Polygons Clipping In graphics must

More information

Differentiation of vectors

Differentiation of vectors Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where

More information

Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 119 HSN22400

Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 119 HSN22400 hsn.uk.net Higher Mathematics UNIT OUTCOME 4 Circles Contents Circles 119 1 Representing a Circle 119 Testing a Point 10 3 The General Equation of a Circle 10 4 Intersection of a Line an a Circle 1 5 Tangents

More information

Solutions to Practice Problems for Test 4

Solutions to Practice Problems for Test 4 olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B. Thursday, January 29, 2004 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B. Thursday, January 29, 2004 9:15 a.m. to 12:15 p.m. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B Thursday, January 9, 004 9:15 a.m. to 1:15 p.m., only Print Your Name: Print Your School s Name: Print your name and

More information

Mark Howell Gonzaga High School, Washington, D.C.

Mark Howell Gonzaga High School, Washington, D.C. Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,

More information

Homework #2 Solutions

Homework #2 Solutions MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution

More information

National 5 Mathematics Course Assessment Specification (C747 75)

National 5 Mathematics Course Assessment Specification (C747 75) National 5 Mathematics Course Assessment Specification (C747 75) Valid from August 013 First edition: April 01 Revised: June 013, version 1.1 This specification may be reproduced in whole or in part for

More information

Version : 1.0 0609. klm. General Certificate of Education. Mathematics 6360. MPC1 Pure Core 1. Mark Scheme. 2009 examination - June series

Version : 1.0 0609. klm. General Certificate of Education. Mathematics 6360. MPC1 Pure Core 1. Mark Scheme. 2009 examination - June series Version :.0 0609 klm General Certificate of Education Mathematics 660 MPC Pure Core Mark Scheme 009 examination - June series Mark schemes are prepared by the Principal Examiner and considered, together

More information

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

Average rate of change of y = f(x) with respect to x as x changes from a to a + h: L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

CIRCLE COORDINATE GEOMETRY

CIRCLE COORDINATE GEOMETRY CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

Review Sheet for Test 1

Review Sheet for Test 1 Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

More information

GRAPHING IN POLAR COORDINATES SYMMETRY

GRAPHING IN POLAR COORDINATES SYMMETRY GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry - y-axis,

More information

Assessment Schedule 2013

Assessment Schedule 2013 NCEA Level Mathematics (9161) 013 page 1 of 5 Assessment Schedule 013 Mathematics with Statistics: Apply algebraic methods in solving problems (9161) Evidence Statement ONE Expected Coverage Merit Excellence

More information

Homework #1 Solutions

Homework #1 Solutions MAT 303 Spring 203 Homework # Solutions Problems Section.:, 4, 6, 34, 40 Section.2:, 4, 8, 30, 42 Section.4:, 2, 3, 4, 8, 22, 24, 46... Verify that y = x 3 + 7 is a solution to y = 3x 2. Solution: From

More information

SPECIFICATION. Mathematics 6360 2014. General Certificate of Education

SPECIFICATION. Mathematics 6360 2014. General Certificate of Education Version 1.0: 0913 General Certificate of Education Mathematics 6360 014 Material accompanying this Specification Specimen and Past Papers and Mark Schemes Reports on the Examination Teachers Guide SPECIFICATION

More information

Linear and quadratic Taylor polynomials for functions of several variables.

Linear and quadratic Taylor polynomials for functions of several variables. ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

More information

DERIVATIVES AS MATRICES; CHAIN RULE

DERIVATIVES AS MATRICES; CHAIN RULE DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we

More information

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0, Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

More information

FINAL EXAM SOLUTIONS Math 21a, Spring 03

FINAL EXAM SOLUTIONS Math 21a, Spring 03 INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic

More information

Graphing Quadratic Equations

Graphing Quadratic Equations .4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations

More information

Mark Scheme January 2009

Mark Scheme January 2009 Mark January 009 GCE GCE Mathematics (87/87,97/97) Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WCV 7BH Edexcel is one of the leading examining

More information

mathcentrecommunityproject

mathcentrecommunityproject Mathematical Symbols and Abbreviations mccp-matthews-symbols-001 This leaflet provides information on symbols and notation commonly used in mathematics. It is designed to enable further information to

More information

Oxford Cambridge and RSA Examinations

Oxford Cambridge and RSA Examinations Oxford Cambridge and RSA Examinations OCR FREE STANDING MATHEMATICS QUALIFICATION (ADVANCED): ADDITIONAL MATHEMATICS 6993 Key Features replaces and (MEI); developed jointly by OCR and MEI; designed for

More information

On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems

On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Dynamics at the Horsetooth Volume 2, 2010. On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Eric Hanson Department of Mathematics Colorado State University

More information

Math 2280 - Assignment 6

Math 2280 - Assignment 6 Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue

More information

Polynomials Past Papers Unit 2 Outcome 1

Polynomials Past Papers Unit 2 Outcome 1 PSf Polnomials Past Papers Unit 2 utcome 1 Multiple Choice Questions Each correct answer in this section is worth two marks. 1. Given p() = 2 + 6, which of the following are true? I. ( + 3) is a factor

More information

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t.

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t. REPASO. The mass m kg of a radio-active substance at time t hours is given b m = 4e 0.t. Write down the initial mass. The mass is reduced to.5 kg. How long does this take?. The function f is given b f()

More information

Co-ordinate Geometry THE EQUATION OF STRAIGHT LINES

Co-ordinate Geometry THE EQUATION OF STRAIGHT LINES Co-ordinate Geometry THE EQUATION OF STRAIGHT LINES This section refers to the properties of straight lines and curves using rules found by the use of cartesian co-ordinates. The Gradient of a Line. As

More information

Numerical and Algebraic Fractions

Numerical and Algebraic Fractions Numerical and Algebraic Fractions Aquinas Maths Department Preparation for AS Maths This unit covers numerical and algebraic fractions. In A level, solutions often involve fractions and one of the Core

More information

Straight Line. Paper 1 Section A. O xy

Straight Line. Paper 1 Section A. O xy PSf Straight Line Paper 1 Section A Each correct answer in this section is worth two marks. 1. The line with equation = a + 4 is perpendicular to the line with equation 3 + + 1 = 0. What is the value of

More information

AP CALCULUS AB 2008 SCORING GUIDELINES

AP CALCULUS AB 2008 SCORING GUIDELINES AP CALCULUS AB 2008 SCORING GUIDELINES Question 1 Let R be the region bounded by the graphs of y = sin( π x) and y = x 4 x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line

More information

Don't Forget the Differential Equations: Finishing 2005 BC4

Don't Forget the Differential Equations: Finishing 2005 BC4 connect to college success Don't Forget the Differential Equations: Finishing 005 BC4 Steve Greenfield available on apcentral.collegeboard.com connect to college success www.collegeboard.com The College

More information

PROVINCE OF THE EASTERN CAPE EDUCATION

PROVINCE OF THE EASTERN CAPE EDUCATION PROVINCE OF THE EASTERN CAPE EDUCATION DIRECTORATE: CURRICULUM FET PROGRAMMES LESSON PLANS TERM 4 MATHEMATICS GRADE 12 FOREWORD The following Grade 10, 11 and 12 Lesson Plans were developed by Subject

More information