On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems
|
|
|
- Suzanna Dennis
- 10 years ago
- Views:
Transcription
1 Dynamics at the Horsetooth Volume 2, On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Eric Hanson Department of Mathematics Colorado State University Report submitted to Prof. P. Shipman for Math 540, Fall 2010 Abstract. Lyapunov functions are useful in analyzing the phase plane of dynamical systems. In this paper, we explore the use of techniques from numerical algebraic geometry to find a Lyapunov function of a polynomial dynamical system with a stable fixed point at the origin. Keywords: geometry Lyapunov function, polynomial dynamical system, numerical algebraic 1 Introduction Consider systems of the form ẋ = f(x), x R n (1) where f(x) is a system of polynomial equations, for which the trivial solution satisfies f(x) = 0. We take the following as definitions and theorems from [3]: Definition 1 For the equation 1 and a neighborhood D R n of x = 0 let solution for initial condition x 0 be indicated by x(x 0 ). The solution x = 0 is called stable in the sense of Lyapunov (or Lyapunov-stable) if for each ɛ > 0 a δ(ɛ) can be found such that x 0 < δ(ɛ) implies x(x 0 ) < ɛ. Let V (x) be defined and continuously differentiable in D R n and V (0) = 0 Definition 2 The function V (x) is called positively (negatively) definite in D if V (x) > 0 (< 0) for x D, x 0. Definition 3 The function V (x) is called positively (negatively) semidefinite in D if V (x) > 0 ( 0) for x D, x 0. Definition 4 The orbital derivative L t of the function V (x) in the direction of the vectorfield f(x), where x is a solution of equation 1, is L t V = dv dx ẋ = dv dv f(x) = f 1 (x) dv f n (x) (2) dx dx 1 dx n
2 Theorem 5 Consider equation 1. If a function V (x) defined in a neighborhood of x = 0 is positively definite with orbital derivative negatively semidefinite, the solution x = 0 is stable in the sense of Lyapunov. Based on theorem 5, for the system given by equation 1 with a stable equilibrium at x = 0 we call V (x) which satisfies the hypotheses of Theorem 5 a Lyapunov function for equation 1. 2 A known example Consider the following problem that appears in [3] Problem 6 Determine the stability of the trivial solution of ẋ = xy x3, ẏ = 1 2 y x2 y (3) Solution by Verhulst: V (x, y) = 1x 2 + 2y 2 is a Lyapunov function, thus by Theorem 5 the trivial solution is stable. 2.1 A symbolic method to find a solution First we conjecture that V is of the form V (x, y) = ax 2 + by 2 where a, b are non-negative real numbers. Then clearly V is defined and differentiable on all of R 2, V (0, 0) = 0 and V (x, y) > 0 for all x, y. So all that remains to find a Lyapunov function is to choose a, b such that L t V is negatively semidefinite. L t V = x 2 y 2 (2a b) (ax4 + by 4 ) If we consider y as a coefficient on x then the following are solutions to the 4th degree polynomial in x, V (x) = 0: x = ± 1 25a + 5b ± 5 25a 2 15ab + b 2 y 5 a Clearly (0, 0) is a solution to L t V (x, y) = 0. In R 3 L t V is a surface and since L t V is a continuous, differentiable function it can only change from positive to negative in real z if the surface intersects the z = 0 plane in a curve or surface. In this way we can force L t V to be semidefinite in real space by forcing all other roots of L t V to occur in complex space. In other words the surface defined by L t V in R 3 intersects the z = 0 plane in only points (in this case only the origin). In this example, we can force all other roots to be complex in their x-coordinate by choosing a, b such that 25a 2 15ab + b 2 (4) is negative. Then for any y 0 the roots of L t V are in complex space. Solving equation 4 for a: a = 1 5 (3 2 ± 1 2 5)b (5) For example, if b = 1 then a = and a = are roots to equation 4. Thus any a ( , ) with b = 1 will force equation 4 to be negative and thus all the roots of L t V other than (0, 0) to occur in complex space. So the function Dynamics at the Horsetooth 2 Vol. 2, 2010
3 L t V (x, y) = x 2 y 2 (2(0.2) (1)) ((0.2)x4 + (1)y 4 ) (6) will not change sign in real space. Choosing a test point we see L t V (0, 1) = 1 < 0, thus LtV is negative semidefinite for all of R 2. Thus we have constructed V (x, y) =.2x 2 + y 2 which is a Lyapunov function of the equation Limitations of this symbolic approach This symbolic approach relies on the ability to find an explicit formula for the roots of the orbital derivative. This limits the application of this approach to finding Lyapunov functions for systems where both the candidate Lyapunov function and ẋ = f(x) are such that the orbital derivative is either 1. of small enough degree, or 2. a special case of a higher degree polynomial, so that the quadratic formula, cubic formula, or a method of factoring can be applied to identify the real roots. Even though this symbolic method is limited to a small class of problems, it can provide an important set of examples for developing numerical methods of finding Lyapunov functions. In the following sections, we try various numerical approaches for finding a Lyapunov function for problem 3. While none of our attempts where successful each provided important insight for developing such numerical techniques. 3 Finding Lyapunov functions numerically In this section, we explore finding Lyapunov functions using techniques in numerical algebraic geometry. We make two attempts without success, but with important observations for future attempts in numerically finding Lyapunov functions. 3.1 A first attempt First we must observe that Lyapunov functions are local, that is we only need to satisfy the conditions in a neighborhood of (0, 0). We start with the same system solved in section 2.1 and the same candidate Lyapunov function V (x, y) = ax 2 + by 2. So to meet the hypotheses of Theorem 5 we again need to find a, b such that L t V is negatively semidefinite. We attempt to numerically find an a, b that force all roots of L t V (except (0, 0)) to be complex in x for y ( 1, 1) again forcing the semidefiniteness of L t V. To do this we sample n parings of various a and b values. Then for each paring a, b we take a sample of m values y ( 1, 1) and solve the resulting L t V (x) = 0. Then check that for each y the solutions in x are complex. If a pairing a, b has complex solutions in x for each y in the sample we conjecture that it is a Lyapunov function. The process described was automated using software developed by Dan Brake and Matt Niemerg. The software automates the sampling process and the process of solving L t V (x) = 0 by calling the software package Bertini. For this example we found a range of a, b values that we conjectured would yield Lyapunov functions. One such pairing was a = 1.5, b = 2, however the resulting Dynamics at the Horsetooth 3 Vol. 2, 2010
4 L t V = x 2 y 2 ( ) (1.5 x4 2y 4 ) (7) is not negative semidefinite. Solving for x we find four lines x = ± y, x = ± where the surface defined by L t V passes through the z = 0 plane in real space resulting in regions where L t V is positive. The problem with this simple approach is that in sampling the y values for a particular a, b we are unable to detect the measure zero set of y values in real space (in this case the four lines) that defines the real roots of L t V. 3.2 A second attempt In a second attempt we try to avoid these measure zero issues by simultaneously finding two Lyapunov functions. We start with the same system solved in section 2.1, but consider two candidate Lyapunov functions V 1 (x, y) = ax 2 + by 2 and V 2 (x, y) = cx 2 + dy 2 Again we try to choose a, b, c, d such that L t V 1 and L t V 2 have roots away from a neighborhood of (0, 0), so that L t V 1 and L t V 2 are negative semidefinite. Again we use the software to automate the processing of sampling a, b, c, d. This approach fails before any conjecture can be made because of the singularity of the root (0, 0) which causes issues with the parameter homotopy used to solve the system of equations in Bertini. However, we note that this singularity at (0, 0) could be used in creating a Lyapunov, similar to how we made use of the relationship between the real numbers and the complex numbers in the symbolic approach of section 2.1. Making use of this singularity could be the key to constructing a Lyapunov function. 4 Conclusion While these experimental approaches to constructing Lyapunov functions failed, each attempt provided insight to the structure of such functions for polynomial dynamical systems. In these attempts to construct Lypunov functions, we tried to exploit the relationship between the real and complex numbers. Future attempts might benefit from including this approach, but might also consider making use of the singularity of the point (0, 0). Dynamics at the Horsetooth 4 Vol. 2, 2010
5 References [1] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler Bertini: Software for Numerical Algebraic Geometry, sommese/bertini/index.html [2] D. Brake and M. Niemerg, Software in development. [3] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2nd Edition, Springer- Verlag Berlin Heidelberg, New York, (1990). Dynamics at the Horsetooth 5 Vol. 2, 2010
CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation
CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
Computational algebraic geometry
Computational algebraic geometry Learning coefficients via symbolic and numerical methods Anton Leykin Georgia Tech AIM, Palo Alto, December 2011 Let k be a field (R or C). Ideals varieties Ideal in R
Zeros of Polynomial Functions
Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction
Unit 3: Day 2: Factoring Polynomial Expressions
Unit 3: Day : Factoring Polynomial Expressions Minds On: 0 Action: 45 Consolidate:10 Total =75 min Learning Goals: Extend knowledge of factoring to factor cubic and quartic expressions that can be factored
Factoring Trinomials: The ac Method
6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For
SOLVING POLYNOMIAL EQUATIONS
C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra
a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
0.4 FACTORING POLYNOMIALS
36_.qxd /3/5 :9 AM Page -9 SECTION. Factoring Polynomials -9. FACTORING POLYNOMIALS Use special products and factorization techniques to factor polynomials. Find the domains of radical expressions. Use
Copyrighted Material. Chapter 1 DEGREE OF A CURVE
Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two
1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style
Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with
5. Factoring by the QF method
5. Factoring by the QF method 5.0 Preliminaries 5.1 The QF view of factorability 5.2 Illustration of the QF view of factorability 5.3 The QF approach to factorization 5.4 Alternative factorization by the
3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
Equations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
Algebra I. In this technological age, mathematics is more important than ever. When students
In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,
Algebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
5-3 Polynomial Functions. not in one variable because there are two variables, x. and y
y. 5-3 Polynomial Functions State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why. 1. 11x 6 5x 5 + 4x 2 coefficient of the
Factoring Polynomials and Solving Quadratic Equations
Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
Math 2280 - Assignment 6
Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue
Class Meeting # 1: Introduction to PDEs
MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x
SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS
(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.
Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method
Factoring Cubic Polynomials
Factoring Cubic Polynomials Robert G. Underwood 1. Introduction There are at least two ways in which using the famous Cardano formulas (1545) to factor cubic polynomials present more difficulties than
Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
Week 1: Functions and Equations
Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.1-2.2, and Chapter
3 1. Note that all cubes solve it; therefore, there are no more
Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if
Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test
Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action
FACTORING QUADRATICS 8.1.1 and 8.1.2
FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.
College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran
College Algebra - MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or x-intercept) of a polynomial is identical to the process of factoring a polynomial.
Zeros of Polynomial Functions
Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
1 Mathematical Models of Cost, Revenue and Profit
Section 1.: Mathematical Modeling Math 14 Business Mathematics II Minh Kha Goals: to understand what a mathematical model is, and some of its examples in business. Definition 0.1. Mathematical Modeling
Mathematics Review for MS Finance Students
Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,
Section 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
Understanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section
ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 5-3.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 6-4.2 Solving Equations by
UNCORRECTED PAGE PROOFS
number and and algebra TopIC 17 Polynomials 17.1 Overview Why learn this? Just as number is learned in stages, so too are graphs. You have been building your knowledge of graphs and functions over time.
2.5 ZEROS OF POLYNOMIAL FUNCTIONS. Copyright Cengage Learning. All rights reserved.
2.5 ZEROS OF POLYNOMIAL FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions.
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
MATH 21. College Algebra 1 Lecture Notes
MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a
A characterization of trace zero symmetric nonnegative 5x5 matrices
A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the
Algebra 1 Course Information
Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through
The degree of a polynomial function is equal to the highest exponent found on the independent variables.
DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to [email protected]. Thank you! PLEASE NOTE
Stability. Chapter 4. Topics : 1. Basic Concepts. 2. Algebraic Criteria for Linear Systems. 3. Lyapunov Theory with Applications to Linear Systems
Chapter 4 Stability Topics : 1. Basic Concepts 2. Algebraic Criteria for Linear Systems 3. Lyapunov Theory with Applications to Linear Systems 4. Stability and Control Copyright c Claudiu C. Remsing, 2006.
Lecture 7: Finding Lyapunov Functions 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1
PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM
ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM DANIEL PARKER Abstract. This paper provides a foundation for understanding Lenstra s Elliptic Curve Algorithm for factoring large numbers. We give
Solutions Manual for How to Read and Do Proofs
Solutions Manual for How to Read and Do Proofs An Introduction to Mathematical Thought Processes Sixth Edition Daniel Solow Department of Operations Weatherhead School of Management Case Western Reserve
Name Intro to Algebra 2. Unit 1: Polynomials and Factoring
Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332
LAKE ELSINORE UNIFIED SCHOOL DISTRICT
LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:
Zeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
The Method of Least Squares
The Method of Least Squares Steven J. Miller Mathematics Department Brown University Providence, RI 0292 Abstract The Method of Least Squares is a procedure to determine the best fit line to data; the
DRAFT. Further mathematics. GCE AS and A level subject content
Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed
CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
Solving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
3-17 15-25 5 15-10 25 3-2 5 0. 1b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true
Section 5.2 solutions #1-10: a) Perform the division using synthetic division. b) if the remainder is 0 use the result to completely factor the dividend (this is the numerator or the polynomial to the
is the degree of the polynomial and is the leading coefficient.
Property: T. Hrubik-Vulanovic e-mail: [email protected] Content (in order sections were covered from the book): Chapter 6 Higher-Degree Polynomial Functions... 1 Section 6.1 Higher-Degree Polynomial Functions...
How To Understand The Theory Of Algebraic Functions
Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
A Systematic Approach to Factoring
A Systematic Approach to Factoring Step 1 Count the number of terms. (Remember****Knowing the number of terms will allow you to eliminate unnecessary tools.) Step 2 Is there a greatest common factor? Tool
Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date
Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many
Some Problems of Second-Order Rational Difference Equations with Quadratic Terms
International Journal of Difference Equations ISSN 0973-6069, Volume 9, Number 1, pp. 11 21 (2014) http://campus.mst.edu/ijde Some Problems of Second-Order Rational Difference Equations with Quadratic
Successful completion of Math 7 or Algebra Readiness along with teacher recommendation.
MODESTO CITY SCHOOLS COURSE OUTLINE COURSE TITLE:... Basic Algebra COURSE NUMBER:... RECOMMENDED GRADE LEVEL:... 8-11 ABILITY LEVEL:... Basic DURATION:... 1 year CREDIT:... 5.0 per semester MEETS GRADUATION
Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross
CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal
1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
A UNIVERSAL METHOD OF SOLVING QUARTIC EQUATIONS
International Journal of Pure and Applied Mathematics Volume 71 No. 011, 51-59 A UNIVERSAL METHOD OF SOLVING QUARTIC EQUATIONS Sergei L. Shmakov Saratov State University 83, Astrakhanskaya Str., Saratov,
Question 1a of 14 ( 2 Identifying the roots of a polynomial and their importance 91008 )
Quiz: Factoring by Graphing Question 1a of 14 ( 2 Identifying the roots of a polynomial and their importance 91008 ) (x-3)(x-6), (x-6)(x-3), (1x-3)(1x-6), (1x-6)(1x-3), (x-3)*(x-6), (x-6)*(x-3), (1x- 3)*(1x-6),
Mathematics Georgia Performance Standards
Mathematics Georgia Performance Standards K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by
How To Factor Quadratic Trinomials
Factoring Quadratic Trinomials Student Probe Factor Answer: Lesson Description This lesson uses the area model of multiplication to factor quadratic trinomials Part 1 of the lesson consists of circle puzzles
Essential Mathematics for Computer Graphics fast
John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made
tegrals as General & Particular Solutions
tegrals as General & Particular Solutions dy dx = f(x) General Solution: y(x) = f(x) dx + C Particular Solution: dy dx = f(x), y(x 0) = y 0 Examples: 1) dy dx = (x 2)2 ;y(2) = 1; 2) dy ;y(0) = 0; 3) dx
Rolle s Theorem. q( x) = 1
Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question
NSM100 Introduction to Algebra Chapter 5 Notes Factoring
Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the
expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.
A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are
Trigonometric Functions and Equations
Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending
1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.
1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs
Exact Values of the Sine and Cosine Functions in Increments of 3 degrees
Exact Values of the Sine and Cosine Functions in Increments of 3 degrees The sine and cosine values for all angle measurements in multiples of 3 degrees can be determined exactly, represented in terms
Network Traffic Modelling
University of York Dissertation submitted for the MSc in Mathematics with Modern Applications, Department of Mathematics, University of York, UK. August 009 Network Traffic Modelling Author: David Slade
Factoring and Applications
Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the
Common Core Standards Practice Week 8
Common Core Standards Practice Week 8 Selected Response 1. Describe the end behavior of the polynomial f(x) 5 x 8 8x 1 6x. A down and down B down and up C up and down D up and up Constructed Response.
1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
REVIEW EXERCISES DAVID J LOWRY
REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and
calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,
Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS
ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for
Factoring Special Polynomials
6.6 Factoring Special Polynomials 6.6 OBJECTIVES 1. Factor the difference of two squares 2. Factor the sum or difference of two cubes In this section, we will look at several special polynomials. These
Microeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
