Completing the square

Size: px
Start display at page:

Download "Completing the square"

Transcription

1 Completing the square mc-ty-completingsquare In this unit we consider how quadratic expressions can be written in an equivalent form using the technique known as completing the square. This technique has applications in a number of areas,butwewillseeanexampleofitsuseinsolvingaquadraticequation. In order to master the techniques explained here it is vital that you undertake plenty of practice exercisessothatallthisbecomessecondnature. Tohelpyoutoachievethis,theunitincludes a substantial number of such exercises. Afterreadingthistext,and/orviewingthevideotutorialonthistopic,youshouldbeableto: writeaquadraticexpressionasacompletesquare,plusorminusaconstant solve a quadratic equation by completing the square Contents 1. Introduction. Some simple equations. The basic technique 4. Casesinwhichthecoefficientof x isnot Summary of the process 7 6. Solving a quadratic equation by completing the square c mathcentre 009

2 1. Introduction Inthisunitwelookataprocesscalledcompletingthesquare. Itcanbeusedtowritea quadraticexpressioninanalternativeform. Laterintheunitwewillseehowitcanbeusedto solve a quadratic equation.. Some simple equations Considerthequadraticequation x = 9. Wecansolvethisbytakingthesquarerootofboth sides: x = or remembering that when we take the square root there will be two possible answers, one positive andonenegative.thisisoftenwritteninthebrieferform x = ±. Thisprocessforsolving x = 9isverystraightforward,particularlybecause: 9isa squarenumber,or completesquare. Thismeansthatitistheresultofsquaring anothernumber,orterm,inthiscasetheresultofsquaringor. x isacompletesquare-itistheresultofsquaring x. So simply square-rooting both sides solves the problem. Considertheequation x = 5. Again,wecansolvethisbytakingthesquarerootofbothsides: x = 5 or 5 Inthisexample,theright-handsideof x = 5,isnotasquarenumber. Butwecanstillsolve theequationinthesameway.itisusuallybettertoleaveyouranswerinthisexactform,rather than use a calculator to give a decimal approximation. Suppose we wish to solve the equation x 7) = Again,wecansolvethisbytakingthesquarerootofbothsides.Theleft-handsideisacomplete squarebecauseitresultsfromsquaring x 7. x 7 = or Byadding7toeachsidewecanobtainthevaluesfor x: x = 7 + or 7 Wecouldwritethisinthebrieferform x = 7 ±. c mathcentre 009

3 Supposewewishtosolve x + ) = 5 Againtheleft-handsideisacompletesquare.Takingthesquarerootofbothsides: x + = 5 or 5 Bysubtractingfromeachsidewecanobtainthevaluesfor x: x = + 5 or 5 Exercises 1. Solve the following quadratic equations a) x = 5 b) x = 10 c) x = d) x + 1) = 9 e) x + ) = 16 f) x ) = 100 g) x 1) = 5 h) x + 4) =. The basic technique Nowsupposewewantedtotrytoapplythemethodusedinthethreepreviousexamplesto x + 6x = 4 Ineachofthepreviousexamples,theleft-handsidewasacompletesquare.Thismeansthatin eachcaseittooktheform x + a) or x a).thisisnotthecasenowandsowecannotjust takethesquare-root. Whatwetrytodoinsteadisrewritetheexpressionsothatitbecomesa complete square- hence the name completing the square. Observethatcompletesquaressuchas x + a) or x a) canbeexpandedasfollows: Key Point complete squares: x + a) = x + a)x + a) = x + ax + a x a) = x a)x a) = x ax + a c mathcentre 009

4 Wewillusetheseexpansionstohelpustocompletethesquareinthefollowingexamples. Consider the quadratic expression We compare this with the complete square x + 6x 4 x + ax + a Clearlythecoefficientsof x inbothexpressionsarethesame. Wewouldliketomatchuptheterm axwiththeterm 6x.Todothisnotethat amustbe 6, sothat a =. Recall that x + a) = x + ax + a Thenwith a = x + ) = x + 6x + 9 Thismeansthatwhentryingtocompletethesquarefor x +6x 4wecanreplacethefirsttwo terms, x + 6x,by x + ) 9.So x + 6x 4 = x + ) 9 4 = x + ) 1 Wehavenowwrittentheexpression x + 6x 4asacompletesquareplusorminusaconstant. Wehavecompletedthesquare.Itisimportanttonotethattheconstantterm,,inbrackets is half the coefficient of x in the original expression. Supposewewishtocompletethesquareforthequadraticexpression x 8x + 7. Wewanttotrytorewritethissothatittakestheformofacompletesquareplusorminusa constant. We compare x 8x + 7 withthestandardform x ax + a Thecoefficientsof x arethesame.tomakethecoefficientsof xthesamewemustchoose a tobe4.recallthat x a) = x ax + a Thenwith a = 4 x 4) = x 8x + 16 Thismeansthatwhentryingtocompletethesquarefor x 8x+7wecanreplacethefirsttwo terms, x 8x,by x 4) 16. So x 8x + 7 = x 4) = x 4) 9 Wehavenowwrittentheexpression x 8x + 7asacompletesquareplusorminusaconstant. Wehavecompletedthesquare. Againnotethattheconstantterm, 4,inbracketsishalfthe coefficient of x in the original expression. 4 c mathcentre 009

5 Supposewewishtocompletethesquareforthequadraticexpression x + 5x +. Thismeanswewanttotrytorewriteitsothatithastheformofacompletesquareplusor minusaconstant. Intheexampleswehavejustworkedthroughwehaveseenhowthiscanbe donebycomparingwiththestandardforms x + a) and x a). Wewouldliketobeable to complete the square without writing down all the working we did in the previous examples. Thekeypointtorememberisthatthenumberinthebracketofthecompletesquareishalfthe coefficient of x in the quadratic expression. Sowith x + 5x + weknowthatthecompletesquarewillbe x + 5. Thishasthesame ) x and xtermsasthegivenquadraticexpressionbuttheconstanttermisdifferent. Wemust balance the constant term by a) subtracting the extra constant that our complete square has ) 5 introduced, that is,andb)puttingintheconstanttermfromourquadratic,thatis. Putting this together we have x + 5x + = x + 5 ) Tofinishoffwejustcombinethetwoconstants ) 5 + = = 1 4 andso x + 5x + = x + 5 ) 1 4 ) 5 + 1) Wehavenowwrittentheexpression x + 5x + asacompletesquareplusorminusaconstant. Wehavecompletedthesquare. Againnotethattheconstantterm, 5,inbracketsishalfthe coefficient of x in the original expression. The explanation given above is really just an outline of our thought process; when we complete thesquareinpracticewewouldnotwriteitalldown.wewouldprobablygostraighttoequation 1).Theabilitytodothiswillcomewithpractice. Exercises Completing the square for the following quadratic expressions a) x + x + b) x + x + 5 c) x + x 1 d) x + 6x + 8 e) x 6x + 8 f) x + x + 1 g) x x 1 h) x + 10x 1 i) x + 5x + 4 j) x + 6x + 9 k) x x + 6 l) x x Cases in which the coefficient of x is not 1. We now know how to complete the square for quadratic expressions for which the coefficient of x is1.whenfacedwithaquadraticexpressionwherethecoefficientof x isnot1wecanstill usethistechniquebutweputinanextrastepfirst-wefactoroutthiscoefficient. 5 c mathcentre 009

6 Supposewewishtocompletethesquarefortheexpression x 9x Webeginbyfactoringoutthecoefficientof x,inthiscase.itdoesnotmatterthatisnot afactorof50;wecanstilldothisbywritingtheexpressionas x x + 50 ) Nowtheexpressioninbracketsisaquadraticwithcoefficientof x equalto1andsowecan proceedasbefore.thenumberinthecompletesquarewillbehalfthecoefficientof x,sowewill use x.thenwemustbalanceuptheconstanttermjustaswedidbeforebysubtracting ) ) the extra constant we have introduced, that is,andputtingintheconstantfromthe quadraticexpression,thatis 50. { x x + 50 } = { x ) Thearithmetictotidyuptheconstantsisabitmessy: ) } + 50 So putting all this together ) + 50 = = = 17 1 x x + 50 = x ) and finally and we have completed the square. x x + 50 ) = x ) ) This is the completing the square form for a quadratic expression for which the coefficient of x isnot1. Exercises Completing the square for the following quadratic expressions a) x + 4x 8 b) 5x + 10x + 15 c) x 7x + 9 d) x + 6x + 1 e) x 1x + f) 15 10x x g) 4 + 1x x h) 9 + 6x x 6 c mathcentre 009

7 5. Summary of the process Itwillbeusefulifyoucangetusedtodoingthisprocessautomatically. Themethodcanbe summarised as follows: Key Point 1.factoroutthecoefficientof x -thenworkwiththequadraticexpressionwhichhasa coefficientof x equalto1.checkthecoefficientof xinthenewquadraticexpressionandtakehalfofit-thisisthe number that goes into the complete square bracket.balancetheconstanttermbysubtractingthesquareofthenumberfromstep,and putting in the constant from the quadratic expression 4. the rest is arithmetic that may often involve fractions 6. Solving a quadratic equation by completing the square Letusreturnnowtoaproblemposedearlier.Wewanttosolvetheequation x + 6x = 4. Wewritethisas x + 6x 4 = 0.Notethatthecoefficientof x is1sothereisnoneedtotake out any common factor. Completing the square for quadratic expression on the left-hand side: x + 6x 4 = 0 x + ) 9 4 = 0 1) x + ) 1 = 0 ) x + ) = 1 x + = ± 1 x = ± 1 We have solved the quadratic equation by completing the square. Toproduceequation1)wehavenotedthatthecoefficientof xinthequadraticexpressionis6 sothenumberinthe completesquare bracketmustbe;thenwehavebalancedtheconstant bysubtractingthesquareofthisnumber,,andputtingintheconstantfromthequadratic, 4. To get equation) we just do the arithmetic which in this example is quite straightforward. 7 c mathcentre 009

8 Exercises 4 Use completing the square to solve the following quadratic equations Answers a) x + 4x 1 = 0 b) x + 5x 6 = 0 c) 10x + 7x 1 = 0 d) x + 4x 8 = 0 e) x x = 0 f) x + 8x 5 = 0 Giveyouranswerseitherasfractionsorintheform p ± q 1. a) ±5 b) ± 10 c) ± d),-4 e) 1,-7 f) 1,-8 g) 1 ± 5 h) 4 ±. a) x + 1) + 1 b) x + 1) + 4 c) x + 1) d) x + ) 1 e) x ) 1 f) x + 1 ) + g) x 1 ) 5 h) x + 5) i) x + 5 ) 9 4 j) x + ) k) x 1) + 5 l) a) [ x + 1) 5 ] b) 5 [ x + 1) + ] c) [ d) x + ) ] 7 [ e) x ) 10 ] 4 g) [ x ) 1 ] h) [ x 1) 4 ] [ x 9 x ) ] 69 4 f) [ x + 5) 40 ] ) a), 6 b) 1, 6 c), 4 5 d) ± 1 e) ± 19 f) ± 8 c mathcentre 009

Factorising quadratics

Factorising quadratics Factorising quadratics An essential skill in many applications is the ability to factorise quadratic expressions. In this unit you will see that this can be thought of as reversing the process used to

More information

Afterreadingthistext,and/orviewingthevideotutorialonthistopic,youshouldbeableto: explainwhycubicequationspossesseitheronerealrootorthreerealroots

Afterreadingthistext,and/orviewingthevideotutorialonthistopic,youshouldbeableto: explainwhycubicequationspossesseitheronerealrootorthreerealroots Cubic equations Acubicequationhastheform mc-ty-cubicequations-2009- ax 3 + bx 2 + cx + d = 0 where a 0 Allcubicequationshaveeitheronerealroot,orthreerealroots.Inthisunitweexplorewhythis isso. Thenwelookathowcubicequationscanbesolvedbyspottingfactorsandusingamethodcalled

More information

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

More information

Integrating algebraic fractions

Integrating algebraic fractions Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate

More information

Many common functions are polynomial functions. In this unit we describe polynomial functions and look at some of their properties.

Many common functions are polynomial functions. In this unit we describe polynomial functions and look at some of their properties. Polynomial functions mc-ty-polynomial-2009-1 Many common functions are polynomial functions. In this unit we describe polynomial functions and look at some of their properties. In order to master the techniques

More information

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. Percentages mc-ty-percent-009-1 In this unit we shall look at the meaning of percentages and carry out calculations involving percentages. We will also look at the use of the percentage button on calculators.

More information

a cos x + b sin x = R cos(x α)

a cos x + b sin x = R cos(x α) a cos x + b sin x = R cos(x α) In this unit we explore how the sum of two trigonometric functions, e.g. cos x + 4 sin x, can be expressed as a single trigonometric function. Having the ability to do this

More information

5.4 Solving Percent Problems Using the Percent Equation

5.4 Solving Percent Problems Using the Percent Equation 5. Solving Percent Problems Using the Percent Equation In this section we will develop and use a more algebraic equation approach to solving percent equations. Recall the percent proportion from the last

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

More information

Numerical and Algebraic Fractions

Numerical and Algebraic Fractions Numerical and Algebraic Fractions Aquinas Maths Department Preparation for AS Maths This unit covers numerical and algebraic fractions. In A level, solutions often involve fractions and one of the Core

More information

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

More information

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. The scalar product mc-ty-scalarprod-2009- Oneofthewaysinwhichtwovectorscanbecombinedisknownasthescalarproduct.When wecalculatethescalarproductoftwovectorstheresult,asthenamesuggestsisascalar,rather than

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

Integration by substitution

Integration by substitution Integration by substitution There are occasions when it is possible to perform an apparently difficult piece of integration by first making a substitution. This has the effect of changing the variable

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

More information

0.8 Rational Expressions and Equations

0.8 Rational Expressions and Equations 96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

More information

Activity 1: Using base ten blocks to model operations on decimals

Activity 1: Using base ten blocks to model operations on decimals Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division

More information

SOLVING QUADRATIC EQUATIONS BY THE NEW TRANSFORMING METHOD (By Nghi H Nguyen Updated Oct 28, 2014))

SOLVING QUADRATIC EQUATIONS BY THE NEW TRANSFORMING METHOD (By Nghi H Nguyen Updated Oct 28, 2014)) SOLVING QUADRATIC EQUATIONS BY THE NEW TRANSFORMING METHOD (By Nghi H Nguyen Updated Oct 28, 2014)) There are so far 8 most common methods to solve quadratic equations in standard form ax² + bx + c = 0.

More information

FOIL FACTORING. Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4.

FOIL FACTORING. Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4. FOIL FACTORING Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4. First we take the 3 rd term (in this case 4) and find the factors of it. 4=1x4 4=2x2 Now

More information

Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

More information

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

More information

Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test

Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action

More information

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Year 9 set 1 Mathematics notes, to accompany the 9H book. Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

More information

FACTORING QUADRATIC EQUATIONS

FACTORING QUADRATIC EQUATIONS FACTORING QUADRATIC EQUATIONS Summary 1. Difference of squares... 1 2. Mise en évidence simple... 2 3. compounded factorization... 3 4. Exercises... 7 The goal of this section is to summarize the methods

More information

Quadratics - Build Quadratics From Roots

Quadratics - Build Quadratics From Roots 9.5 Quadratics - Build Quadratics From Roots Objective: Find a quadratic equation that has given roots using reverse factoring and reverse completing the square. Up to this point we have found the solutions

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Sometimes functions are given not in the form y = f(x) but in a more complicated form in which it is difficult or impossible to express y explicitly in terms of x. Such functions

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen A. GENERALITIES. When a given quadratic equation can be factored, there are 2 best methods

More information

Simplifying Square-Root Radicals Containing Perfect Square Factors

Simplifying Square-Root Radicals Containing Perfect Square Factors DETAILED SOLUTIONS AND CONCEPTS - OPERATIONS ON IRRATIONAL NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

More information

Algebra Practice Problems for Precalculus and Calculus

Algebra Practice Problems for Precalculus and Calculus Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials

More information

4.1. COMPLEX NUMBERS

4.1. COMPLEX NUMBERS 4.1. COMPLEX NUMBERS What You Should Learn Use the imaginary unit i to write complex numbers. Add, subtract, and multiply complex numbers. Use complex conjugates to write the quotient of two complex numbers

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

Using a table of derivatives

Using a table of derivatives Using a table of derivatives In this unit we construct a Table of Derivatives of commonly occurring functions. This is done using the knowledge gained in previous units on differentiation from first principles.

More information

3.2 The Factor Theorem and The Remainder Theorem

3.2 The Factor Theorem and The Remainder Theorem 3. The Factor Theorem and The Remainder Theorem 57 3. The Factor Theorem and The Remainder Theorem Suppose we wish to find the zeros of f(x) = x 3 + 4x 5x 4. Setting f(x) = 0 results in the polynomial

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving

More information

Homework #1 Solutions

Homework #1 Solutions Homework #1 Solutions Problems Section 1.1: 8, 10, 12, 14, 16 Section 1.2: 2, 8, 10, 12, 16, 24, 26 Extra Problems #1 and #2 1.1.8. Find f (5) if f (x) = 10x x 2. Solution: Setting x = 5, f (5) = 10(5)

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

A Systematic Approach to Factoring

A Systematic Approach to Factoring A Systematic Approach to Factoring Step 1 Count the number of terms. (Remember****Knowing the number of terms will allow you to eliminate unnecessary tools.) Step 2 Is there a greatest common factor? Tool

More information

Integrating algebraic fractions 1

Integrating algebraic fractions 1 Integrating algebraic fractions mc-ty-algfrac-2009- Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fractionasthesumofitspartialfractions. Inthisunitwewillillustratethisidea.

More information

MBA Jump Start Program

MBA Jump Start Program MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions. (x 1)(x 2 + 1) Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

More information

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method. A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

More information

x 3 1 In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

x 3 1 In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. Partial fractions An algebraic fraction such as partial fractions. Specifically mc-ty-partialfractions-009-3x + 5 x 5x 3 canoftenbebrokendownintosimplerpartscalled 3x + 5 x 5x 3 x 3 Inthisunitweexplainhowthisprocessiscarriedout.

More information

Solving Quadratic Equations by Factoring

Solving Quadratic Equations by Factoring 4.7 Solving Quadratic Equations by Factoring 4.7 OBJECTIVE 1. Solve quadratic equations by factoring The factoring techniques you have learned provide us with tools for solving equations that can be written

More information

POLYNOMIALS and FACTORING

POLYNOMIALS and FACTORING POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use

More information

Exponents, Radicals, and Scientific Notation

Exponents, Radicals, and Scientific Notation General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

More information

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS Class Meetings: MW 2:00-3:15 pm in Physics 144, September 7 to December 14 [Thanksgiving break November 23 27; final exam December 21] Instructor:

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved. 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

Sect 6.7 - Solving Equations Using the Zero Product Rule

Sect 6.7 - Solving Equations Using the Zero Product Rule Sect 6.7 - Solving Equations Using the Zero Product Rule 116 Concept #1: Definition of a Quadratic Equation A quadratic equation is an equation that can be written in the form ax 2 + bx + c = 0 (referred

More information

Partial Fractions Examples

Partial Fractions Examples Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.

More information

COLLEGE ALGEBRA 10 TH EDITION LIAL HORNSBY SCHNEIDER 1.1-1

COLLEGE ALGEBRA 10 TH EDITION LIAL HORNSBY SCHNEIDER 1.1-1 10 TH EDITION COLLEGE ALGEBRA LIAL HORNSBY SCHNEIDER 1.1-1 1.1 Linear Equations Basic Terminology of Equations Solving Linear Equations Identities 1.1-2 Equations An equation is a statement that two expressions

More information

Math 1050 Khan Academy Extra Credit Algebra Assignment

Math 1050 Khan Academy Extra Credit Algebra Assignment Math 1050 Khan Academy Extra Credit Algebra Assignment KhanAcademy.org offers over 2,700 instructional videos, including hundreds of videos teaching algebra concepts, and corresponding problem sets. In

More information

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

More information

Determinants can be used to solve a linear system of equations using Cramer s Rule.

Determinants can be used to solve a linear system of equations using Cramer s Rule. 2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

More information

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Copyrighted Material. Chapter 1 DEGREE OF A CURVE Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

More information

EAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors.

EAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. EAP/GWL Rev. 1/2011 Page 1 of 5 Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. Example: Set the factors of a polynomial equation (as opposed to an

More information

Algebra I Credit Recovery

Algebra I Credit Recovery Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,

More information

FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project

FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project 9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

More information

FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

More information

SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD

SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD A quadratic equation in one variable has as standard form: ax^2 + bx + c = 0. Solving it means finding the values of x that make the equation true.

More information

Dr Brian Beaudrie pg. 1

Dr Brian Beaudrie pg. 1 Multiplication of Decimals Name: Multiplication of a decimal by a whole number can be represented by the repeated addition model. For example, 3 0.14 means add 0.14 three times, regroup, and simplify,

More information

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. The vector product mc-ty-vectorprod-2009-1 Oneofthewaysinwhichtwovectorscanecominedisknownasthevectorproduct.When wecalculatethevectorproductoftwovectorstheresult,asthenamesuggests,isavector. Inthisunityouwilllearnhowtocalculatethevectorproductandmeetsomegeometricalapplications.

More information

Balancing Chemical Equations

Balancing Chemical Equations Balancing Chemical Equations A mathematical equation is simply a sentence that states that two expressions are equal. One or both of the expressions will contain a variable whose value must be determined

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

ACCUPLACER. Testing & Study Guide. Prepared by the Admissions Office Staff and General Education Faculty Draft: January 2011

ACCUPLACER. Testing & Study Guide. Prepared by the Admissions Office Staff and General Education Faculty Draft: January 2011 ACCUPLACER Testing & Study Guide Prepared by the Admissions Office Staff and General Education Faculty Draft: January 2011 Thank you to Johnston Community College staff for giving permission to revise

More information

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

More information

Lesson Plan. N.RN.3: Use properties of rational and irrational numbers.

Lesson Plan. N.RN.3: Use properties of rational and irrational numbers. N.RN.3: Use properties of rational irrational numbers. N.RN.3: Use Properties of Rational Irrational Numbers Use properties of rational irrational numbers. 3. Explain why the sum or product of two rational

More information

1.6 The Order of Operations

1.6 The Order of Operations 1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

More information

IOWA End-of-Course Assessment Programs. Released Items ALGEBRA I. Copyright 2010 by The University of Iowa.

IOWA End-of-Course Assessment Programs. Released Items ALGEBRA I. Copyright 2010 by The University of Iowa. IOWA End-of-Course Assessment Programs Released Items Copyright 2010 by The University of Iowa. ALGEBRA I 1 Sally works as a car salesperson and earns a monthly salary of $2,000. She also earns $500 for

More information

Interpretation of Test Scores for the ACCUPLACER Tests

Interpretation of Test Scores for the ACCUPLACER Tests Interpretation of Test Scores for the ACCUPLACER Tests ACCUPLACER is a trademark owned by the College Entrance Examination Board. Visit The College Board on the Web at: www.collegeboard.com/accuplacer

More information

How To Factor By Grouping

How To Factor By Grouping Lecture Notes Factoring by the AC-method page 1 Sample Problems 1. Completely factor each of the following. a) 4a 2 mn 15abm 2 6abmn + 10a 2 m 2 c) 162a + 162b 2ax 4 2bx 4 e) 3a 2 5a 2 b) a 2 x 3 b 2 x

More information

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

More information

Chapter R.4 Factoring Polynomials

Chapter R.4 Factoring Polynomials Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x

More information

Tool 1. Greatest Common Factor (GCF)

Tool 1. Greatest Common Factor (GCF) Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

More information

Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1

Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 What are the multiples of 5? The multiples are in the five times table What are the factors of 90? Each of these is a pair of factors.

More information

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

More information

2.3 Solving Equations Containing Fractions and Decimals

2.3 Solving Equations Containing Fractions and Decimals 2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions

More information

NSM100 Introduction to Algebra Chapter 5 Notes Factoring

NSM100 Introduction to Algebra Chapter 5 Notes Factoring Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

More information

5. Factoring by the QF method

5. Factoring by the QF method 5. Factoring by the QF method 5.0 Preliminaries 5.1 The QF view of factorability 5.2 Illustration of the QF view of factorability 5.3 The QF approach to factorization 5.4 Alternative factorization by the

More information

Systems of Equations Involving Circles and Lines

Systems of Equations Involving Circles and Lines Name: Systems of Equations Involving Circles and Lines Date: In this lesson, we will be solving two new types of Systems of Equations. Systems of Equations Involving a Circle and a Line Solving a system

More information

Academic Success Centre

Academic Success Centre 250) 960-6367 Factoring Polynomials Sometimes when we try to solve or simplify an equation or expression involving polynomials the way that it looks can hinder our progress in finding a solution. Factorization

More information

Algebra 2: Q1 & Q2 Review

Algebra 2: Q1 & Q2 Review Name: Class: Date: ID: A Algebra 2: Q1 & Q2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which is the graph of y = 2(x 2) 2 4? a. c. b. d. Short

More information

Assessment Schedule 2013

Assessment Schedule 2013 NCEA Level Mathematics (9161) 013 page 1 of 5 Assessment Schedule 013 Mathematics with Statistics: Apply algebraic methods in solving problems (9161) Evidence Statement ONE Expected Coverage Merit Excellence

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Any Any Any natural number that that that greater greater than than than 1 1can can 1 be can be be factored into into into a a a product of of of prime prime numbers. For For For

More information

9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11. 9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role

More information

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

More information

PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

PROBLEMS AND SOLUTIONS - OPERATIONS ON IRRATIONAL NUMBERS

PROBLEMS AND SOLUTIONS - OPERATIONS ON IRRATIONAL NUMBERS PROBLEMS AND SOLUTIONS - OPERATIONS ON IRRATIONAL NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE

QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE MODULE - 1 Quadratic Equations 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write

More information

Binary Adders: Half Adders and Full Adders

Binary Adders: Half Adders and Full Adders Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order

More information

2.5 Zeros of a Polynomial Functions

2.5 Zeros of a Polynomial Functions .5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information