dynamic vegetation model to a semi-arid
|
|
|
- Jack Holmes
- 10 years ago
- Views:
Transcription
1 Application of a conceptual distributed dynamic vegetation model to a semi-arid basin, SE of Spain By: M. Pasquato, C. Medici and F. Francés Universidad Politécnica de Valencia - Spain Research Institute of Water and Environmental Engineering European Geosciences Union General Assembly 2011
2 Research framework Dynamic vegetation modelling in semi-arid climate Dynamic modelling because there is a dynamic interaction between soil, vegetation and atmosphere. At least 1 vegetation related variable is a state variable. Semiarid regions receive precipitation ( mm p.a.) below potential ti evapotranspiration ti (Köppen climate classification) water is the limiting factor EGU
3 Introduction Insolation Controls ET and consequently soil moisture Depends on: NDVI - Solar radiation: Latitude, time (hour/month) -DEM: slope, orientation and topographic shadows (north/south slopes) Numerical indicator of surface greenness calculated using remote sensing measurements EGU
4 Model: TETIS-VEG TETIS (Francés et al., J. of Hydrol., 2007) : conceptual distributed hydrol. model HORAS (Quevedo and Francés, HESS, 2009): conceptual dynamic natural vegetation model for arid and semiarid zones TETIS HORAS State variables: 6 for rainfall-runoff model R: relative leaf biomass for vegetation model Parameters: 8 for rainfall-runoff model 6 for vegetation model EGU
5 Vegetation state variable The state variable R is equivalent to FAO crop coefficient (Allen et al., 1998) but not fixed in time T = ETP R f (θ ) If water and energy are available f(θ) θ wp θ* θ fc θ θ wp : soil moisture at wilting point θ*: critical soil moisture θ fc: soil moisture at field capacity Model is based on the hypothesis: insolation transpiration soil moisture biomass Negative feedback EGU
6 Dynamic vegetation equations R ranges between 0 and 1 R=1 when vegetation transpiration is at its potential Original eq. Parameter Description Logistic-type eq. α [d -1 ] T mx [mm d -1 ] c [-] k nat [d -1 ] k ws [d -1 ] q [-] a [-] Ratio between maximum net assimilation carbon and potential leaf biomass Maximum transpiration rate Shape exponent Seasonal leaf shedding Leaf shedding due to water stress Nonlinearity effect exponent Logistic equation exponent EGU
7 Study site: Valdeinfierno catchment (Spain) Catchment area: 440 km 2 Semi-arid climate ETP = 1180 mm Intermittent stream Natural cover 60%: P = 330 mm Coniferous forest (Pines) 32.7% Shrubland 91% 9.1% Mixed forest/shrubland 18.2% EGU
8 NDVI vs. insolation correlation 8 years of MODIS NDVI images (250m, 16days) were analyzed A negative and statistically significant (p<0.025) spatial correlation was found between NDVI and insolation for coniferous forest zones Shrublands and mixed forest/shrubland zones did not show the same behaviour (González-Hidalgo l et al., 1996) EGU
9 NDVI vs. insolation correlation Insolation vs. NDVI Kendall spatial correlation Sep-01 Jan-03 Jun-04 Oct-05 Mar-07 Jul-08 Dec coniferous forest -0.1 Significance limit We are going to concentrate on pine forest zones EGU
10 Objectives Explain the behaviour shown by pine cover (negative correlation between insolation and NDVI) Compare the logistic type equation with the non-logistic type one EGU
11 Methodology MODIS NDVI images were used to calibrate and test the vegetation models NDVI measures the greennes, R measures the transpiration capability respect to potential one Calibration to maximize NDVI vs. R correlation Surface was divided into 4 classes, based on received insolation 1 st class north slope;... ; 4 th class south slope Conceptual model: cannot reproduce with precision phenomena at cell scale EGU
12 Non-logistic eq.: time correlation R vs. NDVI Pearson time correlation of the 4 classes Calibration: 0.31; 0.41; 0.46; 0.48 Validation: 0.20; 0.29; 0.30; 0.26 Delay in R evolution with respect to NDVI validation calibration Sep-02 Sep-03 Sep-04 Sep-05 Sep-06 Sep-07 Sep-08 Sep-09 R1 R2 R3 R4 NDVI1 NDVI2 NDVI3 NDVI4 EGU
13 Non-logistic eq.: spatial correlation Considering the 4 classes as 4 cells and analyzing the R vs. NDVI spatial correlation: Average correlation 0.95 Separation between the 4 curves is very similar for R and NDVI Spatial correlation Sep-02 Sep-03 Sep-04 Sep-05 Sep-06 Sep-07 Sep-08 Sep-09 EGU
14 Logistic-type eq.: time correlation R vs. NDVI Pearson time correlation of the 4 classes Calibration: 0.51; 0.56; 0.59; 0.56 Validation: 0.40; 0.49; 0.52; 0.48 Lower delay and only in 2004 and validation calibration Sep-02 Sep-03 Sep-04 Sep-05 Sep-06 Sep-07 Sep-08 Sep-09 R1 R2 R3 R4 NDVI1 NDVI2 NDVI3 NDVI4 EGU
15 Logistic-type eq.: spatial correlation Considering the 4 classes as 4 cells and analyzing the R vs. NDVI spatial correlation: Average correlation 0.93 Separation between the 4 R curves tends to disappear particularly in rising limbs Spatial correlation Sep-02 Sep-03 Sep-04 Sep-05 Sep-06 Sep-07 Sep-08 Sep-09 EGU
16 Conclusions Both equations show a satisfactory reproduction of NDVI dynamic Non-logistic equation: good representation of spatial vegetation variability shows a delay of R evolution with respect to NDVI; that may be explainable if transpiration were shown to present the same delay Logistic-type equation: lower delay shown => better time variability reproduction worse representation of spatial vegetation variability EGU
17 Considering that: Future research lines NDVI and R are not the same variable R measures actual transpiration with respect to potential one Eq.1 shows a delay of R with respect to NDVI Analysis of real ET (satellite) is needed to understand if this delay is physically explainable or not. Further sites will be analyzed to determine which equation represents better vegetation dynamics. EGU
18 Thank you for your attention
AT&T Global Network Client for Windows Product Support Matrix January 29, 2015
AT&T Global Network Client for Windows Product Support Matrix January 29, 2015 Product Support Matrix Following is the Product Support Matrix for the AT&T Global Network Client. See the AT&T Global Network
Forest Fire Information System (EFFIS): Rapid Damage Assessment
Forest Fire Information System (EFFIS): Fire Danger D Rating Rapid Damage Assessment G. Amatulli, A. Camia, P. Barbosa, J. San-Miguel-Ayanz OUTLINE 1. Introduction: what is the JRC 2. What is EFFIS 3.
Aneeqa Syed [Hatfield Consultants] Vancouver GIS Users Group Meeting December 8, 2010
NEAR-REAL-TIME FLOOD MAPPING AND MONITORING SERVICE Aneeqa Syed [Hatfield Consultants] Vancouver GIS Users Group Meeting December 8, 2010 SLIDE 1 MRC Flood Service Project Partners and Client Hatfield
Multi-scale upscaling approaches of soil properties from soil monitoring data
local scale landscape scale forest stand/ site level (management unit) Multi-scale upscaling approaches of soil properties from soil monitoring data sampling plot level Motivation: The Need for Regionalization
Global environmental information Examples of EIS Data sets and applications
METIER Graduate Training Course n 2 Montpellier - february 2007 Information Management in Environmental Sciences Global environmental information Examples of EIS Data sets and applications Global datasets
COTTON WATER RELATIONS
COTTON WATER RELATIONS Dan R. Krieg 1 INTRODUCTION Water is the most abundant substance on the Earth s surface and yet is the most limiting to maximum productivity of nearly all crop plants. Land plants,
COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*
COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) 2 Fixed Rates Variable Rates FIXED RATES OF THE PAST 25 YEARS AVERAGE RESIDENTIAL MORTGAGE LENDING RATE - 5 YEAR* (Per cent) Year Jan Feb Mar Apr May Jun
COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*
COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) 2 Fixed Rates Variable Rates FIXED RATES OF THE PAST 25 YEARS AVERAGE RESIDENTIAL MORTGAGE LENDING RATE - 5 YEAR* (Per cent) Year Jan Feb Mar Apr May Jun
Blaine Hanson Department of Land, Air and Water Resources University of California, Davis
Blaine Hanson Department of Land, Air and Water Resources University of California, Davis Irrigation Water Management - Science, Art, or Guess? Irrigation water management: questions to answer When should
AZ EGER-PATAK HIDROLÓGIAI VIZSGÁLATA, A FELSZÍNI VÍZKÉSZLETEK VÁRHATÓ VÁLTOZÁSÁBÓL ADÓDÓ MÓDOSULÁSOK AZ ÉGHAJLATVÁLTOZÁS HATÁSÁRA
AZ EGER-PATAK HIDROLÓGIAI VIZSGÁLATA, A FELSZÍNI VÍZKÉSZLETEK VÁRHATÓ VÁLTOZÁSÁBÓL ADÓDÓ MÓDOSULÁSOK AZ ÉGHAJLATVÁLTOZÁS HATÁSÁRA GÁBOR KEVE 1, GÉZA HAJNAL 2, KATALIN BENE 3, PÉTER TORMA 4 EXTRAPOLATING
Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images
Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images S. E. Báez Cazull Pre-Service Teacher Program University
Remote Sensing Department Iranian Space Agency Jeiran Amiraslani 6th June 2014
Role of E Learning in Knowledge Promotion and Capacity Building for Monitoring and Assessment of Natural Disasters: A case study for Drought Monitoring Remote Sensing Department Iranian Space Agency Jeiran
http://store.elsevier.com/forest-monitoring/ isbn-9780080982229/ Recommended citation for the full chapter:
330 V Monitoring Methods for Atmosphere-Related Variables This is a publisher-agreed excerpt of a book chapter from a book published by Elsevier. The full content can be accessed via the following link:
Resolutions of Remote Sensing
Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands) 3. Temporal (time of day/season/year) 4. Radiometric (color depth) Spatial Resolution describes how
THE ECOSYSTEM - Biomes
Biomes The Ecosystem - Biomes Side 2 THE ECOSYSTEM - Biomes By the end of this topic you should be able to:- SYLLABUS STATEMENT ASSESSMENT STATEMENT CHECK NOTES 2.4 BIOMES 2.4.1 Define the term biome.
Data Processing Flow Chart
Legend Start V1 V2 V3 Completed Version 2 Completion date Data Processing Flow Chart Data: Download a) AVHRR: 1981-1999 b) MODIS:2000-2010 c) SPOT : 1998-2002 No Progressing Started Did not start 03/12/12
GEOGG142 GMES Calibration & validation of EO products
GEOGG142 GMES Calibration & validation of EO products Dr. Mat Disney [email protected] Pearson Building room 113 020 7679 0592 www.geog.ucl.ac.uk/~mdisney Outline Calibration & validation Example:
Asia-Pacific Environmental Innovation Strategy (APEIS)
Asia-Pacific Environmental Innovation Strategy (APEIS) Integrated Environmental Monitoring IEM) Dust Storm Over-cultivation Desertification Urbanization Floods Deforestation Masataka WATANABE, National
Renewable Energy. Solar Power. Courseware Sample 86352-F0
Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this
COURSE OUTLINE. Geography 101 (C-ID Number: GEOG 110) Physical Geography (C-ID Title: Introduction to Physical Geography)
Degree Applicable Glendale Community College March 2013 COURSE OUTLINE Geography 101 (C-ID Number: GEOG 110) Physical Geography (C-ID Title: Introduction to Physical Geography) I. Catalog Statement Geography
Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling
Ecosystems THE REALM OF ECOLOGY Biosphere An island ecosystem A desert spring ecosystem Biosphere Ecosystem Ecology: Interactions between the species in a given habitat and their physical environment.
Case 2:08-cv-02463-ABC-E Document 1-4 Filed 04/15/2008 Page 1 of 138. Exhibit 8
Case 2:08-cv-02463-ABC-E Document 1-4 Filed 04/15/2008 Page 1 of 138 Exhibit 8 Case 2:08-cv-02463-ABC-E Document 1-4 Filed 04/15/2008 Page 2 of 138 Domain Name: CELLULARVERISON.COM Updated Date: 12-dec-2007
Influence of Climatic Factors on Stormwater Runoff Reduction of Green Roofs
Influence of Climatic Factors on Stormwater Runoff Reduction of Green Roofs North Temperate Zone Greenskins Lab Runoff Retention / Precipitation (Annual %) Vancouver, BC 29% Malmö, Sweden 47 % Rock Springs,
Objectives. Raster Data Discrete Classes. Spatial Information in Natural Resources FANR 3800. Review the raster data model
Spatial Information in Natural Resources FANR 3800 Raster Analysis Objectives Review the raster data model Understand how raster analysis fundamentally differs from vector analysis Become familiar with
Moderate- and high-resolution Earth Observation data based forest and agriculture monitoring in Russia using VEGA Web-Service
Moderate- and high-resolution Earth Observation data based forest and agriculture monitoring in Russia using VEGA Web-Service Sergey BARTALEV and Evgeny LOUPIAN Space Research Institute, Russian Academy
Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon
Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational
defined largely by regional variations in climate
1 Physical Environment: Climate and Biomes EVPP 110 Lecture Instructor: Dr. Largen Fall 2003 2 Climate and Biomes Ecosystem concept physical and biological components of environment are considered as single,
For millennia people have known about the sun s energy potential, using it in passive
Introduction For millennia people have known about the sun s energy potential, using it in passive applications like heating homes and drying laundry. In the last century and a half, however, it was discovered
Monitoring Overview with a Focus on Land Use Sustainability Metrics
Monitoring Overview with a Focus on Land Use Sustainability Metrics Canadian Roundtable for Sustainable Crops. Nov 26, 2014 Agriclimate, Geomatics, and Earth Observation Division (ACGEO). Presentation
Welcome to NASA Applied Remote Sensing Training (ARSET) Webinar Series
Welcome to NASA Applied Remote Sensing Training (ARSET) Webinar Series Introduction to Remote Sensing Data for Water Resources Management Course Dates: October 17, 24, 31 November 7, 14 Time: 8-9 a.m.
Analysis One Code Desc. Transaction Amount. Fiscal Period
Analysis One Code Desc Transaction Amount Fiscal Period 57.63 Oct-12 12.13 Oct-12-38.90 Oct-12-773.00 Oct-12-800.00 Oct-12-187.00 Oct-12-82.00 Oct-12-82.00 Oct-12-110.00 Oct-12-1115.25 Oct-12-71.00 Oct-12-41.00
World Water and Climate Atlas
International Water Management Institute World Water and Climate Atlas Direct access to water and climate data improves agricultural planning The IWMI World Water and Climate Atlas provides rapid access
Enhanced Vessel Traffic Management System Booking Slots Available and Vessels Booked per Day From 12-JAN-2016 To 30-JUN-2017
From -JAN- To -JUN- -JAN- VIRP Page Period Period Period -JAN- 8 -JAN- 8 9 -JAN- 8 8 -JAN- -JAN- -JAN- 8-JAN- 9-JAN- -JAN- -JAN- -JAN- -JAN- -JAN- -JAN- -JAN- -JAN- 8-JAN- 9-JAN- -JAN- -JAN- -FEB- : days
Overview of NASA Applied Remote Sensing Training Program on Water Resources and Disaster Management
Overview of NASA Applied Remote Sensing Training Program on Water Resources and Disaster Management ARSET Applied Remote SEnsing Training A project of NASA Applied Sciences Outline About ARSET ARSET Trainings
Integrated Global Carbon Observations. Beverly Law Prof. Global Change Forest Science Science Chair, AmeriFlux Network Oregon State University
Integrated Global Carbon Observations Beverly Law Prof. Global Change Forest Science Science Chair, AmeriFlux Network Oregon State University Total Anthropogenic Emissions 2008 Total Anthropogenic CO 2
Wind Resource Assessment for BETHEL, ALASKA Date last modified: 2/21/2006 Compiled by: Mia Devine
813 W. Northern Lights Blvd. Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.akenergyauthority.org Wind Resource Assessment for BETHEL, ALASKA Date last modified: 2/21/2006 Compiled by: Mia
< SUBSURFACE DAMS TO AUGMENT GROUNDWATER STORAGE IN BASEMENT TERRAIN FOR HUMAN SUBSISTENCE BRAZILIAN EXPERIENCE >
CASE PROFILE COLLECTION No 5 < SUBSURFACE DAMS TO AUGMENT GROUNDWATER STORAGE IN BASEMENT TERRAIN FOR HUMAN SUBSISTENCE BRAZILIAN EXPERIENCE > Stephen Foster September 2002 TASK MANAGERS: Gabriel Azevedo
Abaya-Chamo Lakes Physical and Water Resources Characteristics, including Scenarios and Impacts
LARS 2007 Catchment and Lake Research Abaya-Chamo Lakes Physical and Water Resources Characteristics, including Scenarios and Impacts Seleshi Bekele Awulachew International Water Management Institute Introduction
Impact of water harvesting dam on the Wadi s morphology using digital elevation model Study case: Wadi Al-kanger, Sudan
Impact of water harvesting dam on the Wadi s morphology using digital elevation model Study case: Wadi Al-kanger, Sudan H. S. M. Hilmi 1, M.Y. Mohamed 2, E. S. Ganawa 3 1 Faculty of agriculture, Alzaiem
THE ROOFPOINT ENERGY AND CARBON CALCULATOR A NEW MODELING TOOL FOR ROOFING PROFESSIONALS
THE ROOFPOINT ENERGY AND CARBON CALCULATOR A NEW MODELING TOOL FOR ROOFING PROFESSIONALS James L. Hoff, VP of Research Center for Environmental Innovation in Roofing Tools and Models Tools require models
CMEMS user requirements and user uptake strategy
CMEMS Service Evolution & User Uptake Workshop CMEMS user requirements and user uptake strategy Dominique Obaton Mercator Océan CMEMS Service Evolution & User Uptake Workshop The Copernicus Marine service
Interim report of survey on soil degradation in National Forest Inventory by monitoring forest floor cover, through FAO Japan Fund Project.
Interim report of survey on soil degradation in National Forest Inventory by monitoring forest floor cover, through FAO Japan Fund Project. Jacinto Samuel García Carreón Ramón Cardoza Vázquez Soil Forest
Research on Soil Moisture and Evapotranspiration using Remote Sensing
Research on Soil Moisture and Evapotranspiration using Remote Sensing Prof. dr. hab Katarzyna Dabrowska Zielinska Remote Sensing Center Institute of Geodesy and Cartography 00-950 Warszawa Jasna 2/4 Field
Index Insurance for Climate Impacts Millennium Villages Project A contract proposal
Index Insurance for Climate Impacts Millennium Villages Project A contract proposal As part of a comprehensive package of interventions intended to help break the poverty trap in rural Africa, the Millennium
Applying MIKE SHE to define the influence of rewetting on floods in Flanders
Applying MIKE SHE to define the influence of rewetting on floods in Flanders MARK HENRY RUBARENZYA 1, PATRICK WILLEMS 2, JEAN BERLAMONT 3, & JAN FEYEN 4 1,2,3 Hydraulics Laboratory, Department of Civil
MOVING FORWARD WITH LIDAR REMOTE SENSING: AIRBORNE ASSESSMENT OF FOREST CANOPY PARAMETERS
MOVING FORWARD WITH LIDAR REMOTE SENSING: AIRBORNE ASSESSMENT OF FOREST CANOPY PARAMETERS Alicia M. Rutledge Sorin C. Popescu Spatial Sciences Laboratory Department of Forest Science Texas A&M University
SOLAR CALCULATIONS (2)
OLAR CALCULATON The orbit of the Earth is an ellise not a circle, hence the distance between the Earth and un varies over the year, leading to aarent solar irradiation values throughout the year aroximated
Auburn University s Solar Photovoltaic Array Tilt Angle and Tracking Performance Experiment
Auburn University s Solar Photovoltaic Array Tilt Angle and Tracking Performance Experiment Julie A. Rodiek 1, Steve R. Best 2, and Casey Still 3 Space Research Institute, Auburn University, AL, 36849,
Curriculum Map Earth Science - High School
September Science is a format process to use Use instruments to measure Measurement labs - mass, volume, to observe, classify, and analyze the observable properties. density environment. Use lab equipment
Increasing water availability through juniper control.
Tim Deboodt, OSU Crook County Extension Agent 498 SE Lynn Blvd. Prineville, OR 97754 541-447-6228 [email protected] Increasing water availability through juniper control. Throughout the region
CE394K GIS IN WATER RESOURCES TERM PROJECT REPORT
CE394K GIS IN WATER RESOURCES TERM PROJECT REPORT Soil Water Balance in Southern California Cheng-Wei Yu Environmental and Water Resources Engineering Program Introduction Historical Drought Condition
Data Management Framework for the North American Carbon Program
Data Management Framework for the North American Carbon Program Bob Cook, Peter Thornton, and the Steering Committee Image courtesy of NASA/GSFC NACP Data Management Planning Workshop New Orleans, LA January
Water Balance Study: A Component of the Watershed Management Plan for the Carneros Creek Watershed, Napa County, California
Water Balance Study: A Component of the Watershed Management Plan for the Carneros Creek Watershed, Napa County, California prepared for Stewardship Support and Watershed Assessment in the Napa River Watershed:
How To Calculate Global Radiation At Jos
IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 7, Issue 4 Ver. I (Jul. - Aug. 2015), PP 01-06 www.iosrjournals.org Evaluation of Empirical Formulae for Estimating Global Radiation
SMEX04 Land Use Classification Data
Notice to Data Users: The documentation for this data set was provided solely by the Principal Investigator(s) and was not further developed, thoroughly reviewed, or edited by NSIDC. Thus, support for
Choosing a Cell Phone Plan-Verizon
Choosing a Cell Phone Plan-Verizon Investigating Linear Equations I n 2008, Verizon offered the following cell phone plans to consumers. (Source: www.verizon.com) Verizon: Nationwide Basic Monthly Anytime
2003 Acoma/Laguna Irrigation Water Use Survey
2003 Prepared for: Prepared by: United States Department of Interior Keller-Bliesner Engineering LLC Bureau of Indian Affairs Logan, Utah Albuquerque Area Office February 17, 2003 and United States Department
Time Series Analysis of Remote Sensing Data for Assessing Response to Community Based Rangeland Management
Time Series Analysis of Remote Sensing Data for Assessing Response to Community Based Rangeland Management Jay Angerer Texas A&M University MOR2 Annual Meeting June, 2013 Research Questions During the
Research Roadmap for the Future. National Grape and Wine Initiative March 2013
Research Roadmap for the Future National Grape and Wine Initiative March 2013 Objective of Today s Meeting Our mission drives the roadmap Our Mission Drive research to maximize productivity, sustainability
Climate and Global Dynamics e-mail: [email protected] National Center for Atmospheric Research phone: (303) 497-1761 Boulder, CO 80307
Sean C. Swenson Climate and Global Dynamics P.O. Box 3000 [email protected] National Center for Atmospheric Research (303) 497-1761 Boulder, CO 80307 Education Ph.D. University of Colorado at Boulder,
The Next Generation Science Standards (NGSS) Correlation to. EarthComm, Second Edition. Project-Based Space and Earth System Science
The Next Generation Science Standards (NGSS) Achieve, Inc. on behalf of the twenty-six states and partners that collaborated on the NGSS Copyright 2013 Achieve, Inc. All rights reserved. Correlation to,
GCOS science conference, 2 Mar. 2016, Amsterdam. Japan Meteorological Agency (JMA)
GCOS science conference, 2 Mar. 2016, Amsterdam Status of Surface Radiation Budget Observation for Climate Nozomu Ohkawara Japan Meteorological Agency (JMA) Contents 1. Background 2. Status t of surface
Using Remote Sensing to Monitor Soil Carbon Sequestration
Using Remote Sensing to Monitor Soil Carbon Sequestration E. Raymond Hunt, Jr. USDA-ARS Hydrology and Remote Sensing Beltsville Agricultural Research Center Beltsville, Maryland Introduction and Overview
Introduction: Growth analysis and crop dry matter accumulation
PBIO*3110 Crop Physiology Lecture #2 Fall Semester 2008 Lecture Notes for Tuesday 9 September How is plant productivity measured? Introduction: Growth analysis and crop dry matter accumulation Learning
150 Watts. Solar Panel. one square meter. Watts
Tool USE WITH Energy Fundamentals Activity land art generator initiative powered by art! 150 Watts 1,000 Watts Solar Panel one square meter 600 Watts SECTION 1 ENERGY EFFICIENCY 250 Watts 1,000 Watts hits
Figure 1.1 The Sandveld area and the Verlorenvlei Catchment - 2 -
Figure 1.1 The Sandveld area and the Verlorenvlei Catchment - 2 - Figure 1.2 Homogenous farming areas in the Verlorenvlei catchment - 3 - - 18 - CHAPTER 3: METHODS 3.1. STUDY AREA The study area, namely
Soil Water Storage in Soybean Crop Measured by Polymer Tensiometers and Estimated by Agrometeorological Methods
Journal of Agricultural Science; Vol. 8, No. 7; 2016 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Soil Water Storage in Soybean Crop Measured by Polymer Tensiometers
6. Base your answer to the following question on the graph below, which shows the average monthly temperature of two cities A and B.
1. Which single factor generally has the greatest effect on the climate of an area on the Earth's surface? 1) the distance from the Equator 2) the extent of vegetative cover 3) the degrees of longitude
Sandia National Laboratories New Mexico Wind Resource Assessment Lee Ranch
Sandia National Laboratories New Mexico Wind Resource Assessment Lee Ranch Data Summary and Transmittal for September December 2002 & Annual Analysis for January December 2002 Prepared for: Sandia National
Solar chilled drinking water sourced from thin air: modelling and simulation of a solar powered atmospheric water generator
20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Solar chilled drinking water sourced from thin air: modelling and simulation
USE OF REMOTE SENSING FOR WIND ENERGY ASSESSMENTS
RECOMMENDED PRACTICE DNV-RP-J101 USE OF REMOTE SENSING FOR WIND ENERGY ASSESSMENTS APRIL 2011 FOREWORD (DNV) is an autonomous and independent foundation with the objectives of safeguarding life, property
Arturo Sanchez-Azofeifa, PhD, PEng Cassidy Rankine, Gilberto Zonta-Pastorello Centre for Earth Observation Sciences (CEOS) Earth and Atmospheric
Arturo Sanchez-Azofeifa, PhD, PEng Cassidy Rankine, Gilberto Zonta-Pastorello Centre for Earth Observation Sciences (CEOS) Earth and Atmospheric Sciences Department University of Alberta Microsoft WSN
Assessment of cork production in new Quercus suber plantations under future climate. Joana A Paulo Margarida Tomé João HN Palma
Assessment of cork production in new Quercus suber plantations under future climate Joana A Paulo Margarida Tomé João HN Palma 22 May 2012 1 Introduction Climate is related to several variables that affect
Chapter 1 FAO cropwater productivity model to simulate yield response to water
Chapter 1 FAO cropwater productivity model to simulate yield response to water AquaCrop Version 3.1plus Reference Manual January 2011 Developed by Dirk RAES, Pasquale STEDUTO, Theodore C. HSIAO, and Elias
TEACHING SUSTAINABLE ENERGY SYSTEMS A CASE STUDY
M. Brito 1,3, K. Lobato 2,3, P. Nunes 2,3, F. Serra 2,3 1 Instituto Dom Luiz, University of Lisbon (PORTUGAL) 2 SESUL Sustainable Energy Systems at University of Lisbon (PORTUGAL) 3 FCUL, University of
Comparison of different methods in estimating potential evapotranspiration at Muda Irrigation Scheme of Malaysia
Journal of Agriculture and Rural Development in the Tropics and Subtropics Vol. 113 No. 1 (2012) 77 85 urn:nbn:de:hebis:34-2012091441739 ISSN: 1612-9830 journal online: www.jarts.info Comparison of different
Monitoring Soil Moisture from Space. Dr. Heather McNairn Science and Technology Branch Agriculture and Agri-Food Canada [email protected].
Monitoring Soil Moisture from Space Dr. Heather McNairn Science and Technology Branch Agriculture and Agri-Food Canada [email protected] What is Remote Sensing? Scientists turn the raw data collected
IRRIGATION TECH SEMINAR SERIES
AGENDA: WATERIGHT Web-Based Irrigation Scheduling January 15, 2009 Work Shop Registration Welcome Introduction Overview of WATERIGHT Break Example Break More Examples Bill Green, CIT Pete Canessa, CIT
CHAPTER 5 HYDROLOGIC CYCLE... 1 5.1 INTRODUCTION...2 5.2 GLOBAL WATER BALANCE... 2 5.3 PHASE CHANGE... 3 5.4 CYCLING OF WATER ON LAND... 5 5.4.
Chapter 5 Hydrologic Cycle CHAPTER 5 HYDROLOGIC CYCLE... 1 5.1 INTRODUCTION...2 5.2 GLOBAL WATER BALANCE... 2 5.3 PHASE CHANGE... 3 5.4 CYCLING OF WATER ON LAND... 5 5.4.1 Interception and throughfall...
Australia s National Carbon Accounting System. Dr Gary Richards Director and Principal Scientist
Australia s National Carbon Accounting System Dr Gary Richards Director and Principal Scientist Government Commitment The Australian Government has committed to a 10 year, 3 phase, ~$35M program for a
6.4 Taigas and Tundras
6.4 Taigas and Tundras In this section, you will learn about the largest and coldest biomes on Earth. The taiga is the largest land biome and the tundra is the coldest. The taiga The largest land biome
The Watergy greenhouse: Improved productivity and water use efficiency using a closed greenhouse
The Watergy greenhouse: Improved productivity and water use efficiency using a closed greenhouse Guillermo Zaragoza PhD Physics Estación Experimental Fundación Cajamar (Almería - Spain) Closed greenhouses
Evaluation of surface runoff conditions. scanner in an intensive apple orchard
Evaluation of surface runoff conditions by high resolution terrestrial laser scanner in an intensive apple orchard János Tamás 1, Péter Riczu 1, Attila Nagy 1, Éva Lehoczky 2 1 Faculty of Agricultural
Optimization of water management for irrigation in Region of Murcia
Optimization of water management for irrigation in Region of Murcia Mariano Soto (CRCC) District Level Oussama Mounzer (CEBAS-CSIC) Plot Level 2 nd MEDITERRANEAN WATER FORUM 3 rd Dutch Spanish Water Event:
Introduction to GIS (Basics, Data, Analysis) & Case Studies. 13 th May 2004. Content. What is GIS?
Introduction to GIS (Basics, Data, Analysis) & Case Studies 13 th May 2004 Content Introduction to GIS Data concepts Data input Analysis Applications selected examples What is GIS? Geographic Information
