Long term cloud cover trends over the U.S. from ground based data and satellite products
|
|
|
- Annabel Todd
- 9 years ago
- Views:
Transcription
1 Long term cloud cover trends over the U.S. from ground based data and satellite products Hye Lim Yoo 12 Melissa Free 1, Bomin Sun 34 1 NOAA Air Resources Laboratory, College Park, MD, USA 2 Cooperative Institute for Climate and Satellites, University of Maryland, College Park, MD, USA 3 NOAA/NESDIS/Center for Satellite Applications and Research 4 I. M. Systems Group Inc., Rockville, MD, USA Acknowledgement: Michael J. Foster, Andrew Heidinger, Karl Göran Karlsson Jan 8, 2015 Air Resources Laboratory 1
2 Introduction: importance of clouds Aerosols Radiation Cloud Temperature Precipitation Air Resources Laboratory 2
3 Introduction: previous studies Previous work Time period Data Trend Angell NWS stations 2 %/decade Plantico et al NWS stations 3.6 %/decade Sun stations 0.55 %/decade Elliott and Angell NWS stations 0.2 %/decade Dai et al military sites 1.4 %/decade The surface cloud observations have provided the only historical record for establishing long term cloud climatology, evaluating satellite cloud observations and model simulations. To know recent trends in cloudiness, we need to examine homogeneities in surface cloud record after the early 1990s. Air Resources Laboratory 3
4 Introduction: motivation Automated Surface Observation Systems (ASOS) introduction Problems 1. We can see apparent discontinuities induced by the introduction of ASOS at NWS site. 2. These discontinuities are often not removed in climate dataset. We need long term homogeneityadjusted surface climate records (visual cloud observation) to assess satellite products and model simulations. Air Resources Laboratory 4
5 Data: data production procedure 1. DSI 3280 for NWS stations (54) before 2005 and Integrated Surface Data after The ISD data is adjusted to match the rest of the dataset. 2. The changed METAR reporting system (July 1996) is applied to DATSAV3 for military stations (101) starting with Use observations made every 3 hours in daytime to create monthly means. Removed data that was clearly from ASOS, not human observations. 4. Examine time series in comparison with precipitation days and diurnal temperature range (DTR) to determine accept or reject the adjustments. Dai et al (military) Unadjusted ISD data (mil+nws) Final adjusted data Trends %/decade* 1.5 %/decade* 0.05 %/decade Adjusted data has lower trends. Air Resources Laboratory 5
6 Data: data location NWS stations: 54 & Military stations: 101 = 155 sites Air Resources Laboratory 6
7 Data: station data improvement Original 0.54 Final 0.77 Original 0.73 Final 0.81 Air Resources Laboratory 7
8 Data: used satellite dataset ISCCP PATMOS-x PATMOS-x DCD CLARA-A1 Time period Observation time 9 AM, 3 PM 7:30AM, 1:30PM Day and night Resolution 2.5 x x x x 0.25 ISCCP: International Satellite Cloud Climatology Project PATMOS-x: AVHRR Pathfinder Atmospheres Extended PATMOS DCD: AVHRR Pathfinder Atmospheres Extended diurnally corrected daily CLARA-A1: CM SAF Cloud Albedo and Radiation Air Resources Laboratory 8
9 Result: regional mean cloud cover 65.8 % 65.8 % 61.8 % 61.8 % 65.4 % 65.4 % 65.2 % 65.2 % 44.6 % 44.6 % Satellite station 46.7 % 46.7 % 64.9% % 57.4 % 58.9 % 57.4 % 58.9 % Cloud cover from station data Region ISCCP 3pm PATMOS 1:30 pm PATMOS DCD CLARA day Central (15) E.N. Central (6) Northeast (19) Northwest (9) South (28) Southeast (43) Southwest (12) West (19) W.N. Central (4) Air Resources Laboratory 9
10 Result: cloud cover trends Annual mean U.S cloud cover anomalies from satellite data collocated with U.S weather stations trends are for , except for ISCCP which is for Air Resources Laboratory 10
11 Result: cloud cover trends for eastern Northeast ISCCP 3pm: 0.77, PATMOS 1:30pm: 0.75, PATMOS DCD: 1.1, CLARA: 2.8, Station: 0.19 Southeast ISCCP 3pm: 1.8, PATMOS 1:30pm: 1.6, PATMOS DCD: 2.1, CLARA: 4.3, Station: 0.60 Air Resources Laboratory 11
12 Southwest Result: cloud cover trends for western ISCCP 3pm: 1.5, PATMOS 1:30pm: 2.2, PATMOS DCD: 1.9, CLARA: 8.9, Station: 1.0 May result from false cloud detection due to bright surface type West ISCCP 3pm: 1.4, PATMOS 1:30pm: 1.1, PATMOS DCD: 1.3, CLARA: 5.2, Station: 0.35 Large standard deviation for two regions. Air Resources Laboratory 12
13 Result: trends for (%/dec) Products JJA SON All months NWS+Military ISCCP 3 pm PATMOS 1:30 pm PATMOS DCD CLARA A1 day JJA: June July August, SON: September October November The station data has the strong negative trend in fall and slight positive trend in summer. Overall, PATMOS x products are the closest to the station data. Air Resources Laboratory 13
14 Result: correlations with DTR & preci. DTR: Diurnal Temperature Range from Historical Climatology Network (HCN) at NCDC. For military stations, we used gridded adjusted HCN data. Precipitation data: NWS cooperative weather stations (COOP) (Groisman et al. 2004) kindly provided by Pasha Groisman of NCDC. Air Resources Laboratory 14
15 Summary Homogeneity adjusted weather observations reduce trends in US total cloud cover than those in original dataset and increases the agreement between the cloud cover time series and those of physically related climate variables such as DTR and precipitation days. Trends for are all negative in both adjusted station and satellite products but satellite products are more negative than those from station data. Overall we find good agreement between inter annual variability in most of the satellite data and that in our station data, with PATMOS x products showing the best match and less well with ISCCP. 1. Time varying biases in U.S. total cloud cover data (2013), Journal of Atmospheric and Oceanic Technology, 30, Trends in U.S. Total Cloud Cover from a Homogeneity Adjusted Dataset (2014), J. Climate, 27, Observed variability and trends in U.S. cloud cover: ISCCP, PATMOS x, and CLARA A1 compared to homogeneity adjusted weather observations, submitted to Journal of Climate. Air Resources Laboratory 15
16 Back up slides Air Resources Laboratory 16
17 Collocated grids US all grids Air Resources Laboratory 17
Denis Botambekov 1, Andrew Heidinger 2, Andi Walther 1, and Nick Bearson 1
Denis Botambekov 1, Andrew Heidinger 2, Andi Walther 1, and Nick Bearson 1 1 - CIMSS / SSEC / University of Wisconsin Madison, WI, USA 2 NOAA / NESDIS / STAR @ University of Wisconsin Madison, WI, USA
Comparison of Cloud and Radiation Variability Reported by Surface Observers, ISCCP, and ERBS
Comparison of Cloud and Radiation Variability Reported by Surface Observers, ISCCP, and ERBS Joel Norris (SIO/UCSD) Cloud Assessment Workshop April 5, 2005 Outline brief satellite data description upper-level
Guy Carpenter Asia-Pacific Climate Impact Centre, School of energy and Environment, City University of Hong Kong
Diurnal and Semi-diurnal Variations of Rainfall in Southeast China Judy Huang and Johnny Chan Guy Carpenter Asia-Pacific Climate Impact Centre School of Energy and Environment City University of Hong Kong
A comparison of NOAA/AVHRR derived cloud amount with MODIS and surface observation
A comparison of NOAA/AVHRR derived cloud amount with MODIS and surface observation LIU Jian YANG Xiaofeng and CUI Peng National Satellite Meteorological Center, CMA, CHINA outline 1. Introduction 2. Data
Monsoon Variability and Extreme Weather Events
Monsoon Variability and Extreme Weather Events M Rajeevan National Climate Centre India Meteorological Department Pune 411 005 [email protected] Outline of the presentation Monsoon rainfall Variability
NOAA s National Climatic Data Center
NOAA s National Climatic Data Center World s Largest Archive of Climate and Weather Data Presented to: Quarterly Meeting, Subcommittee of Hydrology, ACWI 23 October 2014 Dongsoo Kim, Ph.D. Project Scientist
Development of an Integrated Data Product for Hawaii Climate
Development of an Integrated Data Product for Hawaii Climate Jan Hafner, Shang-Ping Xie (PI)(IPRC/SOEST U. of Hawaii) Yi-Leng Chen (Co-I) (Meteorology Dept. Univ. of Hawaii) contribution Georgette Holmes
South Africa. General Climate. UNDP Climate Change Country Profiles. A. Karmalkar 1, C. McSweeney 1, M. New 1,2 and G. Lizcano 1
UNDP Climate Change Country Profiles South Africa A. Karmalkar 1, C. McSweeney 1, M. New 1,2 and G. Lizcano 1 1. School of Geography and Environment, University of Oxford. 2. Tyndall Centre for Climate
Radiative effects of clouds, ice sheet and sea ice in the Antarctic
Snow and fee Covers: Interactions with the Atmosphere and Ecosystems (Proceedings of Yokohama Symposia J2 and J5, July 1993). IAHS Publ. no. 223, 1994. 29 Radiative effects of clouds, ice sheet and sea
NCDC s SATELLITE DATA, PRODUCTS, and SERVICES
**** NCDC s SATELLITE DATA, PRODUCTS, and SERVICES Satellite data and derived products from NOAA s satellite systems are available through the National Climatic Data Center. The two primary systems are
Huai-Min Zhang & NOAAGlobalTemp Team
Improving Global Observations for Climate Change Monitoring using Global Surface Temperature (& beyond) Huai-Min Zhang & NOAAGlobalTemp Team NOAA National Centers for Environmental Information (NCEI) [formerly:
USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP. M. Taylor J. Freedman K. Waight M. Brower
USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP M. Taylor J. Freedman K. Waight M. Brower Page 2 ABSTRACT Since field measurement campaigns for proposed wind projects typically last no more than
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES Mitigating Energy Risk through On-Site Monitoring Marie Schnitzer, Vice President of Consulting Services Christopher Thuman, Senior Meteorologist Peter Johnson,
Daily High-resolution Blended Analyses for Sea Surface Temperature
Daily High-resolution Blended Analyses for Sea Surface Temperature by Richard W. Reynolds 1, Thomas M. Smith 2, Chunying Liu 1, Dudley B. Chelton 3, Kenneth S. Casey 4, and Michael G. Schlax 3 1 NOAA National
2013 Annual Climate Summary for the Southeast United States
Months of heavy rain forced the U.S. Army Corp of Engineers to open the spillways at Lake Hartwell, located at the headwaters of the Savannah River along the South Carolina-Georgia border, on July 9,.
Very High Resolution Arctic System Reanalysis for 2000-2011
Very High Resolution Arctic System Reanalysis for 2000-2011 David H. Bromwich, Lesheng Bai,, Keith Hines, and Sheng-Hung Wang Polar Meteorology Group, Byrd Polar Research Center The Ohio State University
Comparison of NOAA's Operational AVHRR Derived Cloud Amount to other Satellite Derived Cloud Climatologies.
Comparison of NOAA's Operational AVHRR Derived Cloud Amount to other Satellite Derived Cloud Climatologies. Sarah M. Thomas University of Wisconsin, Cooperative Institute for Meteorological Satellite Studies
Armenian State Hydrometeorological and Monitoring Service
Armenian State Hydrometeorological and Monitoring Service Offenbach 1 Armenia: IN BRIEF Armenia is located in Southern Caucasus region, bordering with Iran, Azerbaijan, Georgia and Turkey. The total territory
ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 9 May 2011
ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 9 May 2011 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index (ONI)
Visualizing of Berkeley Earth, NASA GISS, and Hadley CRU averaging techniques
Visualizing of Berkeley Earth, NASA GISS, and Hadley CRU averaging techniques Robert Rohde Lead Scientist, Berkeley Earth Surface Temperature 1/15/2013 Abstract This document will provide a simple illustration
A SURVEY OF CLOUD COVER OVER MĂGURELE, ROMANIA, USING CEILOMETER AND SATELLITE DATA
Romanian Reports in Physics, Vol. 66, No. 3, P. 812 822, 2014 ATMOSPHERE PHYSICS A SURVEY OF CLOUD COVER OVER MĂGURELE, ROMANIA, USING CEILOMETER AND SATELLITE DATA S. STEFAN, I. UNGUREANU, C. GRIGORAS
The NASA NEESPI Data Portal to Support Studies of Climate and Environmental Changes in Non-boreal Europe
The NASA NEESPI Data Portal to Support Studies of Climate and Environmental Changes in Non-boreal Europe Suhung Shen NASA Goddard Space Flight Center/George Mason University Gregory Leptoukh, Tatiana Loboda,
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
Climate Extremes Research: Recent Findings and New Direc8ons
Climate Extremes Research: Recent Findings and New Direc8ons Kenneth Kunkel NOAA Cooperative Institute for Climate and Satellites North Carolina State University and National Climatic Data Center h#p://assessment.globalchange.gov
How To Forecast Solar Power
Forecasting Solar Power with Adaptive Models A Pilot Study Dr. James W. Hall 1. Introduction Expanding the use of renewable energy sources, primarily wind and solar, has become a US national priority.
STAR Algorithm and Data Products (ADP) Beta Review. Suomi NPP Surface Reflectance IP ARP Product
STAR Algorithm and Data Products (ADP) Beta Review Suomi NPP Surface Reflectance IP ARP Product Alexei Lyapustin Surface Reflectance Cal Val Team 11/26/2012 STAR ADP Surface Reflectance ARP Team Member
MSG-SEVIRI cloud physical properties for model evaluations
Rob Roebeling Weather Research Thanks to: Hartwig Deneke, Bastiaan Jonkheid, Wouter Greuell, Jan Fokke Meirink and Erwin Wolters (KNMI) MSG-SEVIRI cloud physical properties for model evaluations Cloud
Marko Markovic Department of Earth and Atmospheric Sciences. University of Quebec at Montreal
An Evaluation of the Surface Radiation Budget Over North America for a Suite of Regional Climate Models and Reanalysis Data, Part 1: Comparison to Surface Stations Observations Marko Markovic Department
NOAA/National Climatic Data Center In situ snow observations
NOAA/National Climatic Data Center In situ snow observations Matt Menne NOAA/National Climatic Data Center Asheville, North Carolina, USA ECMWF Snow Archive Workshop November 17-19, 2014 1 Outline In situ
FORENSIC WEATHER CONSULTANTS, LLC
NOTE: MOST TIMES, LOCATIONS & DATA HAVE BEEN CHANGED FOR THIS SAMPLE REPORT FORENSIC WEATHER CONSULTANTS, LLC Howard Altschule Forensic Meteorologist 1971 Western Avenue, #200 Albany, New York 12203 (518)
163 ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS
ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS Rita Pongrácz *, Judit Bartholy, Enikő Lelovics, Zsuzsanna Dezső Eötvös Loránd University,
Fourth Cloud Retrieval Evaluation Workshop 4-7 March 2014, Grainau, Germany
Extending error characterization of cloud masking: Exploring the validity and usefulness of the SPARC-type and Naïve Bayesian probabilistic cloud masking methods Fourth Cloud Retrieval Evaluation Workshop
ENVIRONMENTAL STRUCTURE AND FUNCTION: CLIMATE SYSTEM Vol. II - Low-Latitude Climate Zones and Climate Types - E.I. Khlebnikova
LOW-LATITUDE CLIMATE ZONES AND CLIMATE TYPES E.I. Khlebnikova Main Geophysical Observatory, St. Petersburg, Russia Keywords: equatorial continental climate, ITCZ, subequatorial continental (equatorial
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications
Basic Climatological Station Metadata Current status. Metadata compiled: 30 JAN 2008. Synoptic Network, Reference Climate Stations
Station: CAPE OTWAY LIGHTHOUSE Bureau of Meteorology station number: Bureau of Meteorology district name: West Coast State: VIC World Meteorological Organization number: Identification: YCTY Basic Climatological
Satellite remote sensing using AVHRR, ATSR, MODIS, METEOSAT, MSG
Satellite remote sensing using AVHRR, ATSR, MODIS, METEOSAT, MSG Ralf Meerkötter, Luca Bugliaro, Knut Dammann, Gerhard Gesell, Christine König, Waldemar Krebs, Hermann Mannstein, Bernhard Mayer, presented
2. The map below shows high-pressure and low-pressure weather systems in the United States.
1. Which weather instrument has most improved the accuracy of weather forecasts over the past 40 years? 1) thermometer 3) weather satellite 2) sling psychrometer 4) weather balloon 6. Wind velocity is
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS Author Marie Schnitzer Director of Solar Services Published for AWS Truewind October 2009 Republished for AWS Truepower: AWS Truepower, LLC
Advances in Cloud Imager Remote Sensing
Advances in Cloud Imager Remote Sensing Andrew Heidinger NOAA/NESDIS/ORA Madison, Wisconsin With material from Mike Pavolonis, Robert Holz, Amato Evan and Fred Nagle STAR Science Symposium November 9,
How To Find Out If The Winds From The Oak Ridge Site Are Calm
EVALUATING THE WIND DATA FROM THE AUTOMATED SURFACE OBSERVING SYSTEM IN OAK RIDGE, TENNESSEE - IS KOQT THE CALMEST SITE IN THE US? Thomas E. Bellinger, CCM Y-12 National Security Complex Oak Ridge, Tennessee
Strong coherence between cloud cover and surface temperature
Strong coherence between cloud cover and surface temperature variance in the UK E. W. Mearns* and C. H. Best * School of Geosciences, University of Aberdeen, Kings College, Aberdeen AB24 3UE Independent
Use of numerical weather forecast predictions in soil moisture modelling
Use of numerical weather forecast predictions in soil moisture modelling Ari Venäläinen Finnish Meteorological Institute Meteorological research [email protected] OBJECTIVE The weather forecast models
A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands
Supplementary Material to A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands G. Lenderink and J. Attema Extreme precipitation during 26/27 th August
Climate and Weather. This document explains where we obtain weather and climate data and how we incorporate it into metrics:
OVERVIEW Climate and Weather The climate of the area where your property is located and the annual fluctuations you experience in weather conditions can affect how much energy you need to operate your
Cloud Climatology for New Zealand and Implications for Radiation Fields
Cloud Climatology for New Zealand and Implications for Radiation Fields G. Pfister, R.L. McKenzie, J.B. Liley, A. Thomas National Institute of Water and Atmospheric Research, Lauder, New Zealand M.J. Uddstrom
Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al.
Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al. Anonymous Referee #1 (Received and published: 20 October 2010) The paper compares CMIP3 model
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations 22 September 2011 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1 Fog or low level clouds?
RE: James vs. ABC Company Greentown, NJ D/A: February 20, 2011
PO Box 7100 Hackettstown, NJ 07840 Phone: 1 800 427 3456 Fax: 908-850-8664 http://www.weatherworksinc.com June 16, 2012 Attn: John Doe Law Offices of John Doe 123 Fourth Street Smithtown, NJ 04506 RE:
Joel R. Norris * Scripps Institution of Oceanography, University of California, San Diego. ) / (1 N h. = 8 and C L
10.4 DECADAL TROPICAL CLOUD AND RADIATION VARIABILITY IN OBSERVATIONS AND THE CCSM3 Joel R. Norris * Scripps Institution of Oceanography, University of California, San Diego 1. INTRODUCTION Clouds have
Data Processing Flow Chart
Legend Start V1 V2 V3 Completed Version 2 Completion date Data Processing Flow Chart Data: Download a) AVHRR: 1981-1999 b) MODIS:2000-2010 c) SPOT : 1998-2002 No Progressing Started Did not start 03/12/12
J3.3 AN END-TO-END QUALITY ASSURANCE SYSTEM FOR THE MODERNIZED COOP NETWORK
J3.3 AN END-TO-END QUALITY ASSURANCE SYSTEM FOR THE MODERNIZED COOP NETWORK Christopher A. Fiebrich*, Renee A. McPherson, Clayton C. Fain, Jenifer R. Henslee, and Phillip D. Hurlbut Oklahoma Climatological
GLOBAL CLIMATE MONITOR
FP7 INCO- 2011 7 INCO- LAB project 294947 https://swanproject.arizona.edu/ GLOBAL CLIMATE MONITOR Natalia Limones ([email protected]) José I. Alvarez ([email protected]) Juan M. Camarillo ([email protected])
Heavy Rainfall from Hurricane Connie August 1955 By Michael Kozar and Richard Grumm National Weather Service, State College, PA 16803
Heavy Rainfall from Hurricane Connie August 1955 By Michael Kozar and Richard Grumm National Weather Service, State College, PA 16803 1. Introduction Hurricane Connie became the first hurricane of the
Climatography of the United States No. 20 1971-2000
Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 59.3 41.7 5.5 79 1962
CALIPSO, CloudSat, CERES, and MODIS Merged Data Product
CALIPSO, CloudSat, CERES, and MODIS Merged Data Product Seiji Kato 1, Sunny Sun-Mack 2, Walter F. Miller 2, Fred G. Rose 2, and Victor E. Sothcott 2 1 NASA Langley Research Center 2 Science and Systems
Climatography of the United States No. 20 1971-2000
Climate Division: CA 6 NWS Call Sign: SAN Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 65.8 49.7 57.8
Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements
Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements Z. Li, M. C. Cribb, and F.-L. Chang Earth System Science Interdisciplinary Center University of Maryland College
Distribution Restriction Statement Approved for public release; distribution is unlimited.
CEMP-CP Regulation No. 415-1-15 Department of the Army U.S. Army Corps of Engineers Washington, DC 20314-1000 Construction CONSTRUCTION TIME EXTENSIONS FOR WEATHER ER 415-1-15 Distribution Restriction
Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product
Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product Michael J. Lewis Ph.D. Student, Department of Earth and Environmental Science University of Texas at San Antonio ABSTRACT
Climatography of the United States No. 20 1971-2000
Climate Division: CA 2 NWS Call Sign: SAC Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 53.8 38.8 46.3
Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia
Application of Numerical Weather Prediction Models for Drought Monitoring Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia Contents 1. Introduction 2. Numerical Weather Prediction Models -
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.
The State of the Climate And Extreme Weather. Deke Arndt NOAA s National Climatic Data Center
The State of the Climate And Extreme Weather Deke Arndt June Feb 2013 2011 1 The world s largest archive of weather and climate data NCDC is located in Asheville, North Carolina A place of active retirement
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective
COASTAL WIND ANALYSIS BASED ON ACTIVE RADAR IN QINGDAO FOR OLYMPIC SAILING EVENT
COASTAL WIND ANALYSIS BASED ON ACTIVE RADAR IN QINGDAO FOR OLYMPIC SAILING EVENT XIAOMING LI a, b, * a Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, 82234, Germany
Remote Sensing of Contrails and Aircraft Altered Cirrus Clouds
Remote Sensing of Contrails and Aircraft Altered Cirrus Clouds R. Palikonda 1, P. Minnis 2, L. Nguyen 1, D. P. Garber 1, W. L. Smith, r. 1, D. F. Young 2 1 Analytical Services and Materials, Inc. Hampton,
T.A. Tarasova, and C.A.Nobre
SEASONAL VARIATIONS OF SURFACE SOLAR IRRADIANCES UNDER CLEAR-SKIES AND CLOUD COVER OBTAINED FROM LONG-TERM SOLAR RADIATION MEASUREMENTS IN THE RONDONIA REGION OF BRAZIL T.A. Tarasova, and C.A.Nobre Centro
Solar Radiation Measurement. Bruce W Forgan, WMO RAV Metrology Workshop, Melbourne, Novemberr 2011
Solar Radiation Measurement Bruce W Forgan, WMO RAV Metrology Workshop, Melbourne, Novemberr 2011 Why Do We Need Data on Solar Energy? Global Climate System Climate Energy Balance Solar Exposure and Irradiance
Climate, Drought, and Change Michael Anderson State Climatologist. Managing Drought Public Policy Institute of California January 12, 2015
Climate, Drought, and Change Michael Anderson State Climatologist Managing Drought Public Policy Institute of California January 12, 2015 Oroville Reservoir January 2009 Presentation Overview The Rules
4.3. David E. Rudack*, Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA 1.
43 RESULTS OF SENSITIVITY TESTING OF MOS WIND SPEED AND DIRECTION GUIDANCE USING VARIOUS SAMPLE SIZES FROM THE GLOBAL ENSEMBLE FORECAST SYSTEM (GEFS) RE- FORECASTS David E Rudack*, Meteorological Development
Clouds, Circulation, and Climate Sensitivity
Clouds, Circulation, and Climate Sensitivity Hui Su 1, Jonathan H. Jiang 1, Chengxing Zhai 1, Janice T. Shen 1 David J. Neelin 2, Graeme L. Stephens 1, Yuk L. Yung 3 1 Jet Propulsion Laboratory, California
