Chapter 5. Recommended Homework Problems 5, 7, 11, 19, 31, 45, 49, 53, 59, 61, 63, 69, 73, 77, 83

Size: px
Start display at page:

Download "Chapter 5. Recommended Homework Problems 5, 7, 11, 19, 31, 45, 49, 53, 59, 61, 63, 69, 73, 77, 83"

Transcription

1 Recommended Homework Problems 5, 7, 11, 19, 31, 45, 49, 53, 59, 61, 63, 69, 73, 77, 83

2 Potential and kinetic energy. Energy of position and energy of motion. Law of conservation of energy the total energy of an isolated body is constant.

3 Heat once thought to be a substance like a gas. Related to molecular motion. The transfer of energy from one substance to another as the result of a difference in temperature. heat high low temperature

4 Work force through distance. SYSTEM and SURROUNDINGS convenient to keep track of heat flow.

5 EXOTHERMIC AND ENDOTHERMIC (p. 236) surroundings heat heat system system

6 Calorimetry - measures heat flow. Heat capacity of a substance the amount of heat needed to raise a given amount of the substance a given temperature C(joules or cals) = q (joules or cals) ΔT( o C) Specific heat = Heat capacity divided by mass Specific heat of water the amount of heat needed to raise 1 g of water 1 o C Specific heat of water = 1 cal = 4.18 joules.

7 1045 joules raises the temperature of 50 g of Fe 46.7 o C. What is the specific heat of Fe? How many joules needed to raise temp. of 20 g HOH 15 o C?

8 Have 50 g of water at 25 o C. In another container, heat 20 g of metal to 100 o C. Drop the metal into the water. Final temperature of the water (and metal) is 31 o C. Assume the walls of the calorimeter absorb no heat all is absorbed by the water in the calorimeter. Find the SH of the metal.

9 Heat lost = heat gained SH metal x wt x ΔT = SH water x wt x ΔT

10 The total energy of an isolated body is constant. P. 255 State functions vs non state functions. P. 256 State functions independent of how it was achieved depends upon starting and final points. Work in not a state function. Depends upon the route.

11 We keep track of energy changes. The change in internal energy is given by: ΔE = E final - E initial because internal energy is a state function The internal energy of a system can change by doing work on the system: ΔE = w and the internal energy of a system can change by supplying heat to the system: ΔE = q

12 Changing the internal energy of the system by both doing work and adding heat gives: ΔE = q + w Very important both q and w have signs: + means that heat or work is added to the system and - means that heat or work is removed from the system.

13 ENTHALPY Symbol is H. Book (p. 257) The change in enthalpy of a system is equal to the heat released or absorbed at constant pressure. Difference between ΔH and ΔE: ΔH = ΔE + P ΔV We are going to call ΔH heat content

14 Exothermic vs endothermic in terms of enthalpy reactants products ΔH Heat ΔH Heat products reactants

15 Hess's Law Takes advantage of the fact that H is a state function ΔH = ΔH(products) - ΔH(reactants) Standard enthalpy of formation: ΔH f o Define one mol of the substance formed from its elements at standard conditions p. 263

16 Do all of these describe the ΔH fo of the product? S(s) + O 2 (g) --> SO 2 (g) (note - exothermic) C(s) + O 2 (g) --> CO 2 (g) -393 Pb(s) + O 2 (g) --> PbO 2 (s) -277 H 2 (g) + 1/2O 2 (g) --> H 2 O(g) kj/mol 1/2 N 2 (g) + 1/2 O 2 (g) --> NO CH 2 (g) + H 2 (g) --> CH 4 (g) -35 We define the ΔH fo for any free element as ZERO

17 Laws of Thermochemistry 1. ΔH is proportional to the amount of substance that reacts or is produced. 2. Reverse the sign and reverse the heat flow. 3. A reaction may be the sum of two or more reactions. Then ΔH is the sum of the ΔH's for the individual reactions.

18 Examples: Suppose we have: kj H 2 (g) + O 2 (g) --> H 2 O 2 (l) H 2 (g) + 1/2 O 2 (g) --> H 2 O(l) Find ΔH for 2 H 2 O 2 (l) --> 2 H 2 O(l) + O 2 (g)

19 Given: (all gases) 1/2 N 2 + 3/2 H 2 --> NH H 2 + 1/2 O 2 --> H 2 O /2 N 2 + 1/2 O 2 --> NO Find ΔH for 4 NH O 2 --> 6 H 2 O + 4 NO

20 Do the two problems again, using just Hess's Law: For 2 H 2 O 2 --> 2 H 2 O + O 2 H 2 (g) + O 2 (g) --> H 2 O 2 (l) H 2 (g) + 1/2 O 2 (g) --> H 2 O(l)

21 4 NH O 2 --> 6 H 2 O + 4 NO 1/2 N 2 + 3/2 H 2 --> NH H 2 + 1/2 O 2 --> H 2 O /2 N 2 + 1/2 O 2 --> NO +90.3

22 Find ΔH fo for WC Given: 2 W + 3 O 2 > 2 WO C + O 2 > CO WC + 5 O 2 > 2 WO CO Need: W + C > WC

23 HEAT OUTPUT OF REACTIONS. The heat absorbed or given off by a reaction can be treated like a product or reactant in stoichometric reaction. 2 C 2 H O 2 --> 4 CO H 2 O ΔH = kj How much heat released when 80.0 g of C 2 H 6 used? 2 C 2 H O 2 --> 4 CO H 2 O + heat

24 C 3 H O 2 --> 3 CO H 2 O ΔH = kj Calculate the mass of propane needed to produce kj of heat. C 3 H O 2 --> 3 CO H 2 O + heat

25 For 2 C 3 H 5 (NO 3 ) 3 > 3 N 2 (g) + ½ O 2 (g) + 6 CO 2 (g) + 5 H 2 O(g) Calculate ΔH when 10.0 g of nitroglycerine is exploded. Given:ΔH f : Nitroglycerine: -364 kj/mol; CO 2 (g): kj/mol; H 2 O(g): kj/mol First need to calc. ΔH rxn.

26 2 C 3 H 5 (NO 3 ) 3 > 3 N 2 (g) + ½ O 2 (g) + 6 CO 2 (g) + 5 H 2 O(g) ΔH rxn = 6[ΔH f CO 2 (g)] + 5[ΔH f H 2 O(g)] -2([ΔH f C 3 H 5 (NO 3 ) 3 ]

ENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work.

ENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work. ENERGY Thermochemistry Energy is the capacity to do work. Chapter 6 Kinetic Energy thermal, mechanical, electrical, sound Potential Energy chemical, gravitational, electrostatic Heat Heat, or thermal energy,

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5. Thermochemistry THERMODYNAMICS - study of energy and its transformations Thermochemistry - study of energy changes associated with chemical reactions Energy - capacity to do work or to transfer

More information

Thermochemistry. Thermochemistry 1/25/2010. Reading: Chapter 5 (omit 5.8) As you read ask yourself

Thermochemistry. Thermochemistry 1/25/2010. Reading: Chapter 5 (omit 5.8) As you read ask yourself Thermochemistry Reading: Chapter 5 (omit 5.8) As you read ask yourself What is meant by the terms system and surroundings? How are they related to each other? How does energy get transferred between them?

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry I. Nature of Energy Energy units SI unit is joule, J From E = 1/2 mv 2, 1J = 1kg. m 2 /s 2 Traditionally, we use the calorie as a unit of energy. 1 cal = 4.184J (exactly) The

More information

Enthalpy changes and calorimetry. Enthalpy changes in reactions Calorimetry and heat measurement Hess s Law Heats of formation

Enthalpy changes and calorimetry. Enthalpy changes in reactions Calorimetry and heat measurement Hess s Law Heats of formation Enthalpy changes and calorimetry Enthalpy changes in reactions Calorimetry and heat measurement Hess s Law Heats of formation Learning objectives Describe the standard state for thermodynamic functions

More information

Unit 5 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 5 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 5 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The internal energy of a system is always increased by. A) adding

More information

Calorimetry and Enthalpy. Chapter 5.2

Calorimetry and Enthalpy. Chapter 5.2 Calorimetry and Enthalpy Chapter 5.2 Heat Capacity Specific heat capacity (c) is the quantity of thermal energy required to raise the temperature of 1g of a substance by 1⁰C The units for specific heat

More information

Chapter 5: thermochemstry. Internal Energy: E

Chapter 5: thermochemstry. Internal Energy: E Chapter 5: thermochemstry tonight s goals Energy and Enthalpy Review Enthalpies of Reaction Calorimetry Hess Law Enthalpies of Formation Internal Energy: E E = The sum of all kinetic and potential energies

More information

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

More information

Energy and Chemical Reactions. Characterizing Energy:

Energy and Chemical Reactions. Characterizing Energy: Energy and Chemical Reactions Energy: Critical for virtually all aspects of chemistry Defined as: We focus on energy transfer. We observe energy changes in: Heat Transfer: How much energy can a material

More information

CHM111 Lab Enthalpy of Hydration of Sodium Acetate Grading Rubric

CHM111 Lab Enthalpy of Hydration of Sodium Acetate Grading Rubric Name Team Name CHM111 Lab Enthalpy of Hydration of Sodium Acetate Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper

More information

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

More information

Mr. Bracken. Multiple Choice Review: Thermochemistry

Mr. Bracken. Multiple Choice Review: Thermochemistry Mr. Bracken AP Chemistry Name Period Multiple Choice Review: Thermochemistry 1. If this has a negative value for a process, then the process occurs spontaneously. 2. This is a measure of how the disorder

More information

Bomb Calorimetry. Example 4. Energy and Enthalpy

Bomb Calorimetry. Example 4. Energy and Enthalpy Bomb Calorimetry constant volume often used for combustion reactions heat released by reaction is absorbed by calorimeter contents need heat capacity of calorimeter q cal = q rxn = q bomb + q water Example

More information

Chapter 5 Energy Relationships in Chemistry: Thermochemistry

Chapter 5 Energy Relationships in Chemistry: Thermochemistry Chapter 5 Energy Relationships in Chemistry: Thermochemistry In order to study thermochemical changes, we first have to define (a) system that specify part of the universe of interest to us. (b) surrounding

More information

Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510)

Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) 17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

More information

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 Standard Enthalpy Change Standard Enthalpy Change for a reaction, symbolized as H 0 298, is defined as The enthalpy change when the molar quantities of reactants

More information

Absorption of Heat. Internal energy is the appropriate energy variable to use at constant volume

Absorption of Heat. Internal energy is the appropriate energy variable to use at constant volume 6 Absorption of Heat According to the First Law, E = q + w = q - P V, assuming P-V work is the only kind that can occur. Therefore, E = q V. The subscript means that the process occurs at constant volume.

More information

Thermochemistry is study of changes in energy (heat) associated with physical or chemical changes.

Thermochemistry is study of changes in energy (heat) associated with physical or chemical changes. Thermochem 1 Thermochemistry Thermochemistry and Energy and Temperature Thermochemistry is study of changes in energy (heat) associated with physical or chemical changes. Force = push F= m a (mass x acceleration)

More information

AP Practice Questions

AP Practice Questions 1) AP Practice Questions The tables above contain information for determining thermodynamic properties of the reaction below. C 2 H 5 Cl(g) + Cl 2 (g) C 2 H 4 Cl 2 (g) + HCl(g) (a) Calculate ΔH for

More information

Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K

Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K 1 Thermodynamics There always seems to be at least one free response question that involves thermodynamics. These types of question also show up in the multiple choice questions. G, S, and H. Know what

More information

AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY AP* Chemistry THERMOCHEMISTRY Terms for you to learn that will make this unit understandable: Energy (E) the ability to do work or produce heat ; the sum of all potential and kinetic energy in a system

More information

3. Of energy, work, enthalpy, and heat, how many are state functions? a) 0 b) 1 c) 2 d) 3 e) 4 ANS: c) 2 PAGE: 6.1, 6.2

3. Of energy, work, enthalpy, and heat, how many are state functions? a) 0 b) 1 c) 2 d) 3 e) 4 ANS: c) 2 PAGE: 6.1, 6.2 1. A gas absorbs 0.0 J of heat and then performs 15.2 J of work. The change in internal energy of the gas is a) 24.8 J b) 14.8 J c) 55.2 J d) 15.2 J ANS: d) 15.2 J PAGE: 6.1 2. Calculate the work for the

More information

Thermochemical equations allow stoichiometric calculations.

Thermochemical equations allow stoichiometric calculations. CHEM 1105 THERMOCHEMISTRY 1. Change in Enthalpy ( H) Heat is evolved or absorbed in all chemical reactions. Exothermic reaction: heat evolved - heat flows from reaction mixture to surroundings; products

More information

1. The graph below represents the potential energy changes that occur in a chemical reaction. Which letter represents the activated complex?

1. The graph below represents the potential energy changes that occur in a chemical reaction. Which letter represents the activated complex? 1. The graph below represents the potential energy changes that occur in a chemical reaction. Which letter represents the activated complex? 4. According to the potential energy diagram shown above, the

More information

1/7/2013. Chapter 10. Energy Changes in Chemical Reactions. Chemistry: Atoms First Julia Burdge & Jason Overby. Thermochemistry

1/7/2013. Chapter 10. Energy Changes in Chemical Reactions. Chemistry: Atoms First Julia Burdge & Jason Overby. Thermochemistry /7/03 Chemistry: Atoms First Julia Burdge & Jason Overby 0 Thermochemistry Chapter 0 Energy Changes in Chemical Reactions Kent L. McCorkle Cosumnes River College Sacramento, CA Copyright (c) The McGraw-Hill

More information

Example. c. Calculate the amount of heat (in kj) required to heat 1.00 kg (~1 L) of water at 25 C to its boiling point.

Example. c. Calculate the amount of heat (in kj) required to heat 1.00 kg (~1 L) of water at 25 C to its boiling point. Example When consuming an ice-cold drink, one must raise the temperature of the beverage to 37.0 C (normal body temperature). Can one lose weight by drinking ice-cold beverages if the body uses up about

More information

AP Chem Lab 2 Quiz #1 Calorimetry. Conceptual Understanding. Write complete sentences to show your understanding.

AP Chem Lab 2 Quiz #1 Calorimetry. Conceptual Understanding. Write complete sentences to show your understanding. AP Chem Lab 2 Quiz #1 Calorimetry Name Conceptual Understanding. Write complete sentences to show your understanding. Differentiate between kinetic energy and potential energy. Energy may be transferred

More information

UNIT 1 THERMOCHEMISTRY

UNIT 1 THERMOCHEMISTRY UNIT 1 THERMOCHEMISTRY THERMOCHEMISTRY LEARNING OUTCOMES Students will be expected to: THERMOCHEMISTRY STSE analyse why scientific and technological activities take place in a variety individual and group

More information

1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics

1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics Chem 105 Fri 10-23-09 1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics 10/23/2009 1 Please PICK UP your graded EXAM in front.

More information

Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law

Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law GOAL AND OVERVIEW A simple calorimeter will be made and calibrated. It will be used to determine the heat of fusion of ice, the specific

More information

Thermodynamics: First Law, Calorimetry, Enthalpy. Calorimetry. Calorimetry: constant volume. Monday, January 23 CHEM 102H T.

Thermodynamics: First Law, Calorimetry, Enthalpy. Calorimetry. Calorimetry: constant volume. Monday, January 23 CHEM 102H T. Thermodynamics: First Law, Calorimetry, Enthalpy Monday, January 23 CHEM 102H T. Hughbanks Calorimetry Reactions are usually done at either constant V (in a closed container) or constant P (open to the

More information

Chapter 20. Thermodynamics p. 811 842. Spontaneity. What have we learned about spontaneity during this course?

Chapter 20. Thermodynamics p. 811 842. Spontaneity. What have we learned about spontaneity during this course? Chapter 20 p. 811 842 Spontaneous process: Ex. Nonspontaneous process: Ex. Spontaneity What have we learned about spontaneity during this course? 1) Q vs. K? 2) So.. Spontaneous process occurs when a system

More information

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions:

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions: SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY ANSWER SCHEME UPS 2004/2005 SK027 1 (a) Use the data in the table below to answer the following questions: Enthalpy change ΔH (kj/mol) Atomization energy

More information

Calorimeter: A device in which the heat associated with a specific process is measured.

Calorimeter: A device in which the heat associated with a specific process is measured. 1 CALORIMETRY p. 661-667 (simple), 673-675 (bomb) Calorimeter: A device in which the heat associated with a specific process is measured. There are two basic types of calorimeters: 1. Constant-pressure

More information

Introductory Chemistry, 3 rd Edition Nivaldo Tro. Roy Kennedy Massachusetts Bay Community College Wellesley Hills, Maqqwertd ygoijpk[l

Introductory Chemistry, 3 rd Edition Nivaldo Tro. Roy Kennedy Massachusetts Bay Community College Wellesley Hills, Maqqwertd ygoijpk[l Introductory Chemistry, 3 rd Edition Nivaldo Tro Quantities in Car an octane and oxygen molecules and carbon dioxide and water Chemical Reactions Roy Kennedy Massachusetts Bay Community College Wellesley

More information

Spontaneity of a Chemical Reaction

Spontaneity of a Chemical Reaction Spontaneity of a Chemical Reaction We have learned that entropy is used to quantify the extent of disorder resulting from the dispersal of matter in a system. Also; entropy, like enthalpy and internal

More information

Chapter 6 Thermodynamics: The First Law

Chapter 6 Thermodynamics: The First Law Key Concepts 6.1 Systems Chapter 6 Thermodynamics: The First Law Systems, States, and Energy (Sections 6.1 6.8) thermodynamics, statistical thermodynamics, system, surroundings, open system, closed system,

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

Enthalpy of Neutralization. Introduction

Enthalpy of Neutralization. Introduction Enthalpy of Neutralization Introduction Energy changes always accompany chemical reactions. If energy, in the form of heat, is liberated the reaction is exothermic and if energy is absorbed the reaction

More information

Chemistry 1215 Make up Lab Enthalpy of Neutralization

Chemistry 1215 Make up Lab Enthalpy of Neutralization hemistry 1215 Make up Lab Enthalpy of Neutralization Objective In this experiment you will determine the molar enthalpy of neutralization of an acid. Introduction The study of energy and its transformations

More information

Thermodynamics- Chapter 19 Schedule and Notes

Thermodynamics- Chapter 19 Schedule and Notes Thermodynamics- Chapter 19 Schedule and Notes Date Topics Video cast DUE Assignment during class time One Review of thermodynamics 1_thermo_review AND Review of thermo Wksheet 2.1ch19_intro Optional: 1sc_thermo

More information

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

More information

Transfer of heat energy often occurs during chemical reactions. A reaction

Transfer of heat energy often occurs during chemical reactions. A reaction Chemistry 111 Lab: Thermochemistry Page I-3 THERMOCHEMISTRY Heats of Reaction The Enthalpy of Formation of Magnesium Oxide Transfer of heat energy often occurs during chemical reactions. A reaction may

More information

AP CHEMISTRY 2010 SCORING GUIDELINES

AP CHEMISTRY 2010 SCORING GUIDELINES 2010 SCORING GUIDELINES Question 2 (10 points) A student performs an experiment to determine the molar enthalpy of solution of urea, H 2 NCONH 2. The student places 91.95 g of water at 25 C into a coffee

More information

Sample Exercise 15.1 Writing Equilibrium-Constant Expressions

Sample Exercise 15.1 Writing Equilibrium-Constant Expressions Sample Exercise 15.1 Writing Equilibrium-Constant Expressions Write the equilibrium expression for K c for the following reactions: Solution Analyze: We are given three equations and are asked to write

More information

ENTHALPY CHANGES FOR A CHEMICAL REACTION scaling a rxn up or down (proportionality) quantity 1 from rxn heat 1 from Δ r H. = 32.

ENTHALPY CHANGES FOR A CHEMICAL REACTION scaling a rxn up or down (proportionality) quantity 1 from rxn heat 1 from Δ r H. = 32. CHEMISTRY 103 Help Sheet #10 Chapter 4 (Part II); Sections 4.6-4.10 Do the topics appropriate for your lecture Prepared by Dr. Tony Jacob http://www.chem.wisc.edu/areas/clc (Resource page) Nuggets: Enthalpy

More information

Heat of Solution. Purpose To calculate the heat of solution for sodium hydroxide (NaOH) and ammonium nitrate (NH 4 NO 3 )

Heat of Solution. Purpose To calculate the heat of solution for sodium hydroxide (NaOH) and ammonium nitrate (NH 4 NO 3 ) Heat of Solution Purpose To calculate the heat of solution for sodium hydroxide (NaOH) and ammonium nitrate (NH 4 NO 3 ) Background For a given solute, the heat of solution is the change in enerrgy that

More information

Thermodynamics. Thermodynamics 1

Thermodynamics. Thermodynamics 1 Thermodynamics 1 Thermodynamics Some Important Topics First Law of Thermodynamics Internal Energy U ( or E) Enthalpy H Second Law of Thermodynamics Entropy S Third law of Thermodynamics Absolute Entropy

More information

Reading. Spontaneity. Monday, January 30 CHEM 102H T. Hughbanks

Reading. Spontaneity. Monday, January 30 CHEM 102H T. Hughbanks Thermo Notes #3 Entropy and 2nd Law of Thermodynamics Monday, January 30 CHEM 102H T. Hughbanks Reading You should reading Chapter 7. Some of this material is quite challenging, be sure to read this material

More information

Chemical Equilibrium. Chapter 13

Chemical Equilibrium. Chapter 13 Chemical Equilibrium Chapter 13 Chemical Equilibrium When neither the products nor the reactant concentrations change any more with time. Chemical Equilibrium When the forward rate of reaction is equal

More information

Gas Phase Equilibrium

Gas Phase Equilibrium Gas Phase Equilibrium Chemical Equilibrium Equilibrium Constant K eq Equilibrium constant expression Relationship between K p and K c Heterogeneous Equilibria Meaning of K eq Calculations of K c Solving

More information

Chemistry 11 Notes on Heat and Calorimetry

Chemistry 11 Notes on Heat and Calorimetry hemistry 11 Some chemical reactions release heat to the surroundings These are exothermic Some chemical reactions absorb heat from the surroundings These are endothermic Heat is a form of energy (which

More information

Energy/Reaction Coordinate Diagrams Thermodynamics, Kinetics Dr. Ron Rusay. Entropy (ΔS) A Reaction Coordinate (Energy) Diagram

Energy/Reaction Coordinate Diagrams Thermodynamics, Kinetics Dr. Ron Rusay. Entropy (ΔS) A Reaction Coordinate (Energy) Diagram A Reaction Coordinate (Energy) Diagram Energy/Reaction Coordinate Diagrams Thermodynamics, Kinetics Dr. Ron Rusay Thermodynamic Quantities ΔG o = ΔH o - TΔS o ΔG,ΔH,ΔS, ΔE are state functions ΔE = q +

More information

Simple Experiments in Thermochemistry

Simple Experiments in Thermochemistry Simple Experiments in Thermochemistry Purpose: To demonstrate the law of conservation of energy and propose a method for making a chemical heat pack using the heats of solution of sodium bicarbonate and

More information

Enthalpy of Reaction and Calorimetry worksheet

Enthalpy of Reaction and Calorimetry worksheet Enthalpy of Reaction and Calorimetry worksheet 1. Calcium carbonate decomposes at high temperature to form carbon dioxide and calcium oxide, calculate the enthalpy of reaction. CaCO 3 CO 2 + CaO 2. Carbon

More information

Chapter 14 Chemical Equilibrium

Chapter 14 Chemical Equilibrium Chapter 14 Chemical Equilibrium Forward reaction H 2 (g) + I 2 (g) 2HI(g) Reverse reaction 2HI(g) H 2 (g) + I 2 (g) At equilibrium H 2 (g) + I 2 (g) 2HI(g) Chemical equilibrium is reached when reactants

More information

Chapter 6 Chemical Calculations

Chapter 6 Chemical Calculations Chapter 6 Chemical Calculations 1 Submicroscopic Macroscopic 2 Chapter Outline 1. Formula Masses (Ch 6.1) 2. Percent Composition (supplemental material) 3. The Mole & Avogadro s Number (Ch 6.2) 4. Molar

More information

Chemistry 12 Worksheet 2-1 - Equilibrium, Enthalpy and Entropy

Chemistry 12 Worksheet 2-1 - Equilibrium, Enthalpy and Entropy Chemistry 12 Worksheet 2-1 - Equilibrium, Enthalpy and Entropy 1. What do people mean when they say that a reaction is reversible? 2. Give four things which are true about a system at equilibrium: 1. _

More information

Test Review # 9. Chemistry R: Form TR9.13A

Test Review # 9. Chemistry R: Form TR9.13A Chemistry R: Form TR9.13A TEST 9 REVIEW Name Date Period Test Review # 9 Collision theory. In order for a reaction to occur, particles of the reactant must collide. Not all collisions cause reactions.

More information

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS Rearranging atoms. In a chemical reaction, bonds between atoms in one or more molecules (reactants) break and new bonds are formed with other atoms to

More information

thermometer as simple as a styrofoam cup and a thermometer. In a calorimeter the reactants are placed into the

thermometer as simple as a styrofoam cup and a thermometer. In a calorimeter the reactants are placed into the Thermochemistry Readin assinment: Chan, Chemistry 10 th edition, pp. 249-258. Goals We will become familiar with the principles of calorimetry in order to determine the heats of reaction for endothermic

More information

87 16 70 20 58 24 44 32 35 40 29 48 (a) graph Y versus X (b) graph Y versus 1/X

87 16 70 20 58 24 44 32 35 40 29 48 (a) graph Y versus X (b) graph Y versus 1/X HOMEWORK 5A Barometer; Boyle s Law 1. The pressure of the first two gases below is determined with a manometer that is filled with mercury (density = 13.6 g/ml). The pressure of the last two gases below

More information

CHEMICAL EQUILIBRIUM

CHEMICAL EQUILIBRIUM Chemistry 10 Chapter 14 CHEMICAL EQUILIBRIUM Reactions that can go in both directions are called reversible reactions. These reactions seem to stop before they go to completion. When the rate of the forward

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

Thermodynamics. S (reactants) S S (products) AP Chemistry. Period Date / / R e v i e w. 1. Consider the first ionization of sulfurous acid:

Thermodynamics. S (reactants) S S (products) AP Chemistry. Period Date / / R e v i e w. 1. Consider the first ionization of sulfurous acid: AP Chemistry Thermodynamics 1. Consider the first ionization of sulfurous acid: H 2SO 3(aq) H + (aq) + HSO 3 - (aq) Certain related thermodynamic data are provided below: H 2SO 3(aq) H + (aq) HSO 3 - (aq)

More information

CH 223 Chapter Thirteen Concept Guide

CH 223 Chapter Thirteen Concept Guide CH 223 Chapter Thirteen Concept Guide 1. Writing Equilibrium Constant Expressions Write the equilibrium constant (K c ) expressions for each of the following reactions: (a) Cu(OH) 2 (s) (b) Cu(NH 3 ) 4

More information

Chapter 18 Homework Answers

Chapter 18 Homework Answers Chapter 18 Homework Answers 18.22. 18.24. 18.26. a. Since G RT lnk, as long as the temperature remains constant, the value of G also remains constant. b. In this case, G G + RT lnq. Since the reaction

More information

Thermochemistry: Calorimetry and Hess s Law

Thermochemistry: Calorimetry and Hess s Law Thermochemistry: Calorimetry and Hess s Law Some chemical reactions are endothermic and proceed with absorption of heat while others are exothermic and proceed with an evolution of heat. The magnitude

More information

CALORIMETRY AND HESS LAW: FINDING H o FOR THE COMBUSTION OF MAGNESIUM

CALORIMETRY AND HESS LAW: FINDING H o FOR THE COMBUSTION OF MAGNESIUM Experiment 12J FV 7/16/06 CALORIMETRY AND HESS LAW: FINDING H o FOR THE COMBUSTION OF MAGNESIUM MATERIALS: Styrofoam coffee cup and lid, thermometer, magnetic stirrer, magnetic stir bar, 50-mL and 100-

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams?

1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams? Name: Tuesday, May 20, 2008 1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams? 2 5 1. P2O 5 3. P10O4 2. P5O 2 4. P4O10 2. Which substance

More information

Kinetic Molecular Theory (con t) Kinetic Molecular Theory Gas Liquid Solid 1. Slightly 2. High 3. Does not expand to

Kinetic Molecular Theory (con t) Kinetic Molecular Theory Gas Liquid Solid 1. Slightly 2. High 3. Does not expand to Kinetic Energy and (Kelvin) Temperature Temperature is a Kinetic Energy and (Kelvin) Temperature(2) The Kelvin temperature scale is called the Absolute Zero - Zero degrees on the 1. Highly 2. Low 3. Fills

More information

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work. The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

More information

APS Science Curriculum Unit Planner

APS Science Curriculum Unit Planner Grade Level/Subject APS Science Curriculum Unit Planner Enduring Understanding Chemistry Stage 1: Desired Results Topic 3: Kinetics: The Kinetic Theory can explain the phases of matter, the energetics

More information

10-Jul-12 Chemsheets AS 029 1

10-Jul-12 Chemsheets AS 029 1 www.cemseets.co.uk 10-Jul-12 Chemsheets AS 029 1 DEFINITIONS What is enthalpy? It is a measure of the heat content of a substance Enthalpy change ( ) = Change in heat content at constant pressure Standard

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Given: 4 NO2(g) + O2(g) 2 N2O5(g) ΔH = -110.2 kj find ΔH for N2O5(g) 2 NO2(g) + 1/2 O2(g).

More information

Ca 3 N 2 (s) + 6H 2 O(l) H 2NH 3 (g) + 3Ca(OH) 2 (s) mole ratio 1 : 6 : 2 : 3 molar mass (g/mole)

Ca 3 N 2 (s) + 6H 2 O(l) H 2NH 3 (g) + 3Ca(OH) 2 (s) mole ratio 1 : 6 : 2 : 3 molar mass (g/mole) 1. STOICHIOMETRY INVOLVING ONLY PURE SUBSTANCES For all chemical reactions, the balanced chemical equation gives the mole ratios of reactants and products. If we are dealing with pure chemicals, the molar

More information

Thermochemistry I: Endothermic & Exothermic Reactions

Thermochemistry I: Endothermic & Exothermic Reactions THERMOCHEMISTRY I 77 Thermochemistry I: Endothermic & Exothermic Reactions OBJECTIVES: Learn elementary concepts of calorimetry and thermochemistry Practice techniques of careful temperature, mass, and

More information

Chemical reactions allow living things to grow, develop, reproduce, and adapt.

Chemical reactions allow living things to grow, develop, reproduce, and adapt. Section 2: Chemical reactions allow living things to grow, develop, reproduce, and adapt. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the parts of a chemical reaction?

More information

A k 1. At equilibrium there is no net change in [A] or [B], namely d[a] dt

A k 1. At equilibrium there is no net change in [A] or [B], namely d[a] dt Chapter 15: Chemical Equilibrium Key topics: Equilibrium Constant Calculating Equilibrium Concentrations The Concept of Equilibrium Consider the reaction A k 1 k 1 B At equilibrium there is no net change

More information

Calculations with Chemical Reactions

Calculations with Chemical Reactions Calculations with Chemical Reactions Calculations with chemical reactions require some background knowledge in basic chemistry concepts. Please, see the definitions from chemistry listed below: Atomic

More information

Heat as Energy Transfer. Heat is energy transferred from one object to another because of a difference in temperature

Heat as Energy Transfer. Heat is energy transferred from one object to another because of a difference in temperature Unit of heat: calorie (cal) Heat as Energy Transfer Heat is energy transferred from one object to another because of a difference in temperature 1 cal is the amount of heat necessary to raise the temperature

More information

Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria. Example of Equilibrium. !A(g) + "B(g)!

Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria. Example of Equilibrium. !A(g) + B(g)! Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria CHEM 102H T. Hughbanks Example of Equilibrium N 2 + 3H 2! 2 NH 3 Reactions can occur, in principle, in either direction.

More information

CHAPTER 14 (MOORE) CHEMICAL EQUILIBRIUM

CHAPTER 14 (MOORE) CHEMICAL EQUILIBRIUM CHAPTER 14 (MOORE) CHEMICAL EQUILIBRIUM This chapter deals with chemical equilibrium, or how far chemical reactions proceed. Some reactions convert reactants to products with near 100% efficiency but others

More information

11 Thermodynamics and Thermochemistry

11 Thermodynamics and Thermochemistry Copyright ç 1996 Richard Hochstim. All rights reserved. Terms of use.» 37 11 Thermodynamics and Thermochemistry Thermodynamics is the study of heat, and how heat can be interconverted into other energy

More information

Unit 4: THERMOCHEMISTRY AND NUCLEAR CHEMISTRY

Unit 4: THERMOCHEMISTRY AND NUCLEAR CHEMISTRY Unit 4: THERMOCHEMISTRY AND NUCLEAR CHEMISTRY Chapter 6: Thermochemistry 6.1: The Nature of Energy and Types of Energy Energy (E): - the ability to do work or produce heat. Different Types of Energy: 1.

More information

Experiment 6 Coffee-cup Calorimetry

Experiment 6 Coffee-cup Calorimetry 6-1 Experiment 6 Coffee-cup Calorimetry Introduction: Chemical reactions involve the release or consumption of energy, usually in the form of heat. Heat is measured in the energy units, Joules (J), defined

More information

Procedure. Day 1 - Calibration of the Calorimeter. (Part I) The Heat Capacity of the Calorimeter.

Procedure. Day 1 - Calibration of the Calorimeter. (Part I) The Heat Capacity of the Calorimeter. Thermochemistry Experiment 10 Thermochemistry is the study of the heat energy involved in chemical reactions and changes of physical state. Heat energy is always spontaneously transferred from hotter to

More information

AAHS-CHEMISTRY FINAL EXAM PREP-REVIEW GUIDE MAY-JUNE 2014 DR. GRAY CLASS OF 2016

AAHS-CHEMISTRY FINAL EXAM PREP-REVIEW GUIDE MAY-JUNE 2014 DR. GRAY CLASS OF 2016 AAHS-CHEMISTRY FINAL EXAM PREP-REVIEW GUIDE MAY-JUNE 2014 DR. GRAY CLASS OF 2016 UNIT I: (CHAPTER 1-Zumdahl text) The Nature of Science and Chemistry 1. Explain why knowledge of chemistry is central to

More information

Thermodynamics explores the connection between energy and the EXTENT of a reaction but does not give information about reaction rates (Kinetics).

Thermodynamics explores the connection between energy and the EXTENT of a reaction but does not give information about reaction rates (Kinetics). Thermodynamics explores the connection between energy and the EXTENT of a reaction but does not give information about reaction rates (Kinetics). Rates of chemical reactions are controlled by activation

More information

Moles and Chemical Reactions. Moles and Chemical Reactions. Molar mass = 2 x 12.011 + 6 x 1.008 + 1 x15.999 = 46.069 g/mol

Moles and Chemical Reactions. Moles and Chemical Reactions. Molar mass = 2 x 12.011 + 6 x 1.008 + 1 x15.999 = 46.069 g/mol We have used the mole concept to calculate mass relationships in chemical formulas Molar mass of ethanol (C 2 H 5 OH)? Molar mass = 2 x 12.011 + 6 x 1.008 + 1 x15.999 = 46.069 g/mol Mass percentage of

More information

Name: Date: A) -156 kj/mol B) kj/mol C) -272 kj/mol D) -198 kj/mol E) -122 kj/mol

Name: Date: A) -156 kj/mol B) kj/mol C) -272 kj/mol D) -198 kj/mol E) -122 kj/mol Name: Date: 1. A coffee cup calorimeter containing 100.0 ml of concentrated HCl at 20.3 C. When 1.82 g Zn(s) is added, the temperature rises to 30.5 C. What is the heat of reaction per mol of reacted Zn?

More information

Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc

Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc O B J E C T I V E 1. Using a simple calorimeter, Determine the heat of fusion of ice

More information

Chapter 13. Chemical Equilibrium

Chapter 13. Chemical Equilibrium Chapter 13 Chemical Equilibrium Chapter 13 Preview Chemical Equilibrium The Equilibrium condition and constant Chemical equilibrium, reactions, constant expression Equilibrium involving Pressure Chemical

More information

q = (mass) x (specific heat) x T = m c T (1)

q = (mass) x (specific heat) x T = m c T (1) Experiment: Heat Effects and Calorimetry Heat is a form of energy, sometimes called thermal energy, which can pass spontaneously from an object at a high temperature to an object at a lower temperature.

More information

Explorations in Thermodynamics: Calorimetry, Enthalpy & Heats of Reaction

Explorations in Thermodynamics: Calorimetry, Enthalpy & Heats of Reaction Explorations in Thermodynamics: Calorimetry, Enthalpy & Heats of Reaction Dena K. Leggett, Ph.D. and Jon H. Hardesty, Ph.D. Collin County Community College Dept. of Chemistry 1. Introduction: One of the

More information

Chemical system. Chemical reaction A rearrangement of bonds one or more molecules becomes one or more different molecules A + B C.

Chemical system. Chemical reaction A rearrangement of bonds one or more molecules becomes one or more different molecules A + B C. Chemical system a group of molecules that can react with one another. Chemical reaction A rearrangement of bonds one or more molecules becomes one or more different molecules A + B C Reactant(s) Product(s)

More information

Energy Flow in Marine Ecosystem

Energy Flow in Marine Ecosystem Energy Flow in Marine Ecosystem Introduction Marin ecosystem is a functional system and consists of living groups and the surrounding environment It is composed of some groups and subgroups 1. The physical

More information

Chemical Equilibrium

Chemical Equilibrium Chapter 13 Chemical Equilibrium Equilibrium Physical Equilibrium refers to the equilibrium between two or more states of matter (solid, liquid and gas) A great example of physical equilibrium is shown

More information