5.5 The real zeros of a polynomial function

Size: px
Start display at page:

Download "5.5 The real zeros of a polynomial function"

Transcription

1 5.5 The real zeros of a polynomial function Recall, that c is a zero of a polynomial f(), if f(c) = 0. Eample: a) Find real zeros of f()= + -. We need to find for which f() = 0, that is we have to solve the equation + b b 4ac - = 0. Using quadratic formula we get a 4()( ) 5 The equation has two solutions, therefore f()= + has two zeros 5, 5 b) Find real zeros of f() = 3. To find zeros we need to solve the equation 3 = 0. Using the square root method we get = 3 and 3. Hence the zeros are 3 and 3. c) Find real zeros of f() = + 4. The equation + 4 = 0 has no real solution ( = -4 is never true, no matter what is). Therefore f() = + 4 has no real zeros. Theorem Division Algorithm for Polynomials Suppose that f() and g() are polynomials and that the degree of g is not zero (g() is not a constant). Then there are unique polynomials Q() and R() such that f ( ) g( ) R( ) Q( ) g( ) or f ( ) Q( ) g( ) R( ) where the degree of R() < the degree of g(). f() is called the dividend, g() is called the divisor, Q() is the quotient and R() is the remainder. If g() = (-c), then f() = (-c)q() + R(), and the degree of R() < the degree of g()=. Hence, R() is a constant, R() = R. Note also that when = c, we get f(c) = (c-c)q(c) + R = R. Theorem Remainder Theorem If f is a polynomial, then when f() is divided by (-c), the remainder R = f(c). Factor Theorem (-c) is a factor of a polynomial f() if and only if f(c) = 0 Proof: f() = (-c)q() + f(c) Eample: a) Let f() = Find the remainder when f() is divided by - When f () is divided by (-), then the remainder R = f() = 4() 4-5() - 4= = 0. Hence, (-) is a factor of f(), that is f() = (-)Q(), where Q() is a polynomial. b) Let f() = Find the remainder when f() is divided by +.

2 Note first that + = -(-). When f () is divided by ( (- )), then the remainder is R = f(-) = (-) 6 8(-) 4 + (-) 9= = -4 Therefore (+) is not a factor of f(). Theorem A polynomial of degree n can have at most n real zeros. Eample: How many real zeros can the polynomial f() = have? Degree of f() = 6, so there are at most 6 real zeros. Eample: 5 a) Since f() = + has two real zeros and factors of f(), and f ( ) 5, then 5 5 b) Similarly, f ( ) 3 3 ( 3) ( 3)( 3) 5 and 5 are c) f() = + 4 has no real zeros, so it cannot be factored over the real numbers. We call such a polynomial irreducible or prime Theorem Every polynomial function with real coefficients can be uniquely factored into a product of linear factors (-c) and /or irreducible quadratic factors (a + b+c) Theorem A polynomial function with real coefficients and with odd degree must have at least one real zero. Theorem Rational Zeros Theorem Supose f() = a n n + a n- n- + +a + a 0, a n, a 0 0, where all coefficients a k are integers, is a polynomial of degree greater than 0. If p/q is a rational zero of f(), then p divides a 0 and q divides a n. In other words, any rational zero of a polynomial with integer coefficients, must be of the form factor of a0 factor of a n

3 Eample: List all potential zeros of the polynomial f() = a 3 = -4 ; factors: ±, ±, ±4 (p) a 0 = 6 ; factors : ±, ±, ±3, ±6 (q) p q factor factor of of a 0 a n,, 3, 6,, 3,, Remark: A polynomial function with integer coefficients might not have any rational (or even real) zeros. For eample f() = - has no rational zeros (the zeros are ), and f() = + has no real zeros at all. Once we know potential zeros, we can check whether they are actual zeros, either by computing value of the polynomial at the potential zero or performing division. Eample: Find all real zeros of the given polynomial and then factor the polynomial f() = degree of f = 3; so there are at most 3 zeros all coefficients are integers, so we will look for rational zeros among the numbers of the form a 0 = - 0 ; factors of a 0 : ±, ±, ±4, ±5, ±0, ±0 a n = ; factors of a n : ± p factor of a0,, 4, 5, 0, 0 q factor of a n factor of a0 factor of a n (i) Is = a zero? f()= () 3 + 8() + () -0= = 0; So, = is a zero Therefore, f() = = (-)Q(). To find Q(), we must divide f() = by (-). We can use either long division or a simplified version called synthetic division (applied ONLY when the divisor is of the form (-c)) Long division: this is the quotient Q() divide 3 by 3 multiply (-) and subtract; divide 9 by 9 9 multiply 9(-) and subtract; 0-0 divide 0 by 0-0 multiply 0(-) and subtract 0 this is the remainder R

4 Synthetic division: So, Q() = and f() = = (-)( + 9+0). Now we must find zeros of Q() = Since it is a quadratic polynomial we solve the equation Q() = 0 or = 0 either by factoring or using the quadratic formula (if factoring does not work). Since = (+4)(+5), the equation becomes (+4)(+5) = 0 the zeros are -4 and -5. Therefore the zeros of f() are, -4, -5 and f() = (-)(+4)(+5) Solving polynomial equations If f() is a polynomial, then the equation f() = 0 is called a polynomial equation. To solve such an equation, means to find zeros of the polynomial function f(). Eample: Solve the equation = 0 Let f() = We look for the rational zeros, since the equation has integer coefficients. Factors of a o are : ±, ±, ±4, ±8 Factors of a n =a 3 are : ±, ± p factor of a0 Possible zeros: q factor of a n,, 4, 8, Is = a zero? f() = = 9 0, so = is not a zero Is = - a zero? f(-) = = - 5 0, so = - is not a zero Is = a zero? f() = = 0, so = is a zero Since = is a zero, then (-) is a factor of f(), that is f() = (-)Q(). To find Q() we ll use synthetic division And therefore, Q() = Since Q() is a quadratic polynomial, we use the learned techniques to try to factor it. Indeed Q() = -7-4 = (+)(-4). Therefore f() = = (-)( -7-4)= (-)(+)( - 4). So the zeros, or the solutions of f() = 0, are, -/, 4.

5 5. Polynomial Functions A polynomial functions is a function of the form f() = a n n + a n- n- + + a + a 0 Eample: f() = The domain of a polynomial function is the set of all real numbers. The -intercepts are the solutions of the equation a n n + a n- n- + + a + a 0 = 0 The y-intercept is y = f(0) = a 0. The graph of a polynomial function does not have holes or gaps (we say that a polynomial function is continuous) and it does not have sharp corners or cusps (we say it is smooth). The graphs of some power functions are given below Power functions: f() = n, n is a natural number n- even n- odd Notice that when n is even, a power function y = n behaves like a parabola (graph is symmetric about the y-ais and contains points (-,), (0,0), (,)). When n is odd, a power function y = n, n > has the graph similar to the cube function (symmetric about the origin, contains the points (-,-), (0,0), (,)). Power function f() = a n, a 0 The graph of f() = a n is obtained from the graph of y = n by stretching by a factor of a, if a is positive, and stretching by the factor of a and reflecting about the -ais, if a is negative. n- even n odd

6 Zeros of a polynomial function If r is such a number that f(r) = 0, then r is called a zero of the function f. If r is a zero of a polynomial function f, then we have the following: (i) f(r) = 0 (ii) (r, 0 ) is an -intercept of f (iii) (-r) is a factor of f(), that is f() = (-r)q() ( q() is the quotient in the division f() (-r)) We say that r is a zero of multiplicity n, if n is the largest power, such that f() = (-r) n q() Eample: Let f() = Note that f() = () 4 -() 3 +3() -()- = = 0. Therefore, r = is a zero of f. This also means, that (,0 ) is an -intercept and that (-) is a factor of f(), that is, when f() is divided by (-) the remainder is 0. To find the other factor, q, we perform the division Therefore, f() = = (-)( ). What is the multiplicity of that zero? Since (-) is a factor of f(), then the multiplicity of = is at least. If = had the multiplicity two, then f() would have (-) as a factor. Which means that the quotient q above, q() = 3 + +, would have (-) as a factor. If (-) were a factor of q(), then = would be a zero of q. But q() = () 3 () + () + = 3 0. This means that (-) is not a factor of q() and consequently, (-) is not a factor of f(). Hence, the multiplicity of = is one. Eample: Find all zeros of function f() = (-3)(+)(+3) (-5) 4 and determine their multiplicity To find zeros, solve the equation f() = 0 (-3)(+)(+3) (-5) 4 = 0 (use the Zero Product property) -3 = 0 or + = 0 or +3= 0 or - 5 = 0 So the zeros are : 3, -, -3, 5 To find the multiplicities: (i) factor the polynomial completely; use eponents to indicate multiple factors (ii) The multiplicity of a zero r is the eponent of the factor (-r) that appears in the product

7 f() = (-3) (+) (+3) (-5) 4 zeros multiplicity 4 Suppose r is the zero of a polynomial function. (Remember that (r,0) is then an -intercept) If r is a zero of even multiplicity, then the graph of f will touch the ais at the intercept (r, 0) as shown below. or If r is a zero of odd multiplicity, then the graph of f will cross the -ais at the intercept (r,0) as shown below. Multiplicity one Multiplicity larger than (odd) or or

8 One of the theorems of algebra says that every polynomial can be factored in such a way that the only factors are : (a) a number (the leading coefficient) (b) ( r) n, where r is a zero with multiplicity n (c) ( +b +c) m, where + b + c is prime Remark: This theorem says that such factorization is possible, but it does not say how to obtain such factorization. End behavior of a polynomial function When is large ( is large positive or large negative), then the graph of f() = a n n + a n- n- + + a + a 0 behaves like the graph of y = a n n, where a n is the leading coefficient and n is the degree of f(). n- odd a n positive a n negative n- even a n positive a n negative Eample: Determine the degree and the leading coefficient of the polynomial function f() = 3(-)(+4) ( +) 3. Give the equation of the power function that the function f behaves like for with large absolute value. f() = 3(-)(+4) ( +) 3 This polynomial is already factored. The leading coefficient is 3. The degree can be obtained by adding the highest eponents of from each factor

9 factor 3 - (+ ) ( +) 3 degree 0 6 Degree = = 9 Therefore, for large, f() behaves like y = 3 9. Sketching the graph of a polynomial function (I) use transformations, when possible (II) If the transformations cannot be performed, use the information above to sketch the graph Eample: Graph f() = (-) We can graph this function using transformations The order of transformations is as follows ) graph basic function y = 5 ) Shift the graph unit to the right to obtain y = (-) 5 3) Stretch the graph by a factor of, to obtain y = (-) 5 4) Shift the graph up by 3 units to obtain y = (-) 5 + 3

10 Eample: Graph f() = (-3)(+4) 3 Transformations cannot be used (i) Determine the zeros, if any, of f, their multiplicity and the behavior of graph near each zero f() = (-) (+) 3 zeros - multiplicity 3 behavior of graph touches -ais at Crosses -ais at - like a cubic function (ii) Determine the end behavior of f We need the leading coefficient and the degree of f() f () = (-3)(+4) 3 Leading coefficient = Degree: factor (-3) (+4) 3 degree 0 3 Degree of f = 0++3 = 5 f() behaves as y = 5 for large (iii) Use the information from (i) and (ii) to draw the graph. The graph will start in the third quadrant (green piece). It will continue to the first zero (-) at which it will cross the - ais like a cubic function (red piece). The graph will increase for a while, but then it will have to turn to reach the second zero( ), at which it will touch the -ais (red piece). Since there are no more zeros, the graph will continue, eventually to reach green piece that depicts its behavior for the large positive.

11 Eample: Graph f() = ( +)(+4) Note that + is always positive, so f() can be zero only when = 0 or = -4 zeros 0-4 multiplicity behavior of graph touches -ais at Touches ais at - 4 End behavior: Leading coefficient = factor + (+4) degree Degree of f() = + + = 6 and f behaves like y = 6 for large, that is, it looks as below

12 The graph of the function is below Remarks: - We don t have enough information to know at what points eactly the graph will change the direction (these points are called turning points). (You can learn this in Calculus.) But, we know that there are at most (n-) turning points (n is the degree of the polynomial) - Though we know how the graph of a polynomial function behaves for large positive and negative values and close to its zeros, we need Calculus to determine its behavior in- between. In this course however, we ll assume that nothing etraordinary takes place there. 5. Properties of Rational functions A rational function is a function of the form 0 0 ) ( ) ( ) ( b b b b a a a a q p polynomial polynomial f k k k k n n n n Eample ) ( 4 f The domain of a rational function is the set of all real numbers ecept those, for which q() = 0 To find the domain: (i) solve q() = 0 (ii) Write Df = { q() 0} Eample: Find the domain of ) ( 4 f (i) Solve: denominator = 0

13 ( )() 4 0 ( ) 4 5 ( 5) (ii) Df = { 5 } = (, 5) ( 5, 5) ( 5, ) 5 Recall the graphs of f ( ) and g( ) f ( ) Note that when is small (close to 0 on the -ais) then its reciprocal is a large number (positive when is positive and negative when is negative). For eample if = then / = 0, 000; if = then / = -,000,000. The smaller, the larger /. In mathematics we indicate that fact by saying that when > 0 approaches 0, then / = f() increases without bound and write as 0 +, then f() + or lim f ( ). Note that in such a case, the point (, f()) on the graph approaches 0 the y-ais. We say that the y-ais is a vertical asymptote. If on the other hand + (that is, increases without bound) than the values / become smaller and smaller (if = 0,000, then / = 0.000; if =,000,000 then / = ) so we say that as +, then / = f() 0 or that lim f ( ) 0. Note that in this case, the point (, f()) on the graph of the function approaches the -ais. We say that the -ais is a horizontal asymptote.

14 g( ) A rational function often has asymptotes: vertical and/or horizontal/oblique. Informally speaking, an asymptote is a straight line (vertical, horizontal or slanted) toward which the graph comes near. Vertical and horizontal asymptotes vertical and oblique asymptotes vertical and horizontal asymptotes Eample: Given the graph of a function, find the domain and give the equations of any asymptotes a) Domain ={ -,3} ; vertical asymptotes: =-, = 3; horizontal asymptote: y =

15 b) Domain = { } ; vertical asymptote: = ; slanted asymptote : y = + ( line passes through (0,) and (,5)) How to find asymptotes Vertical:. Reduce f() to the lowest terms: (i) factor completely the numerator and the denominator; (ii) cancel common factors. Solve the equation: denominator = 0 3. If = r is a solution found in, then the line = r is a vertical asymptote Horizontal: a) if the degree of the numerator < the degree of the denominator, then the line y = 0 is the horizontal asymptote an (b) if the degree of the numerator = the degree of the denominator, then the line y = is b the horizontal asymptote (c) if the degree of the numerator > the degree of the denominator, then the graph does not have a horizontal asymptote, however k Oblique: (d) if the degree of the numerator = + the degree of the denominator, then the line y = (quotient obtained by dividing the numerator by the denominator) is an oblique(slanted) asymptote. Remarks:. A rational function can have only one horizontal/oblique asymptote, but many vertical asymptotes.. If a rational function has a horizontal asymptote, then it does not have an oblique one. 3. The graph of a rational function can cross a horizontal/oblique asymptote, but does not cross a vertical asymptote 4. Horizontal/oblique asymptotes describe the behavior of function for with large absolute value (the end behavior); vertical asymptotes describe the behavior of function near a point.

16 Eample: Find the asymptotes for the following functions a) 3 5 f ( ) 6 Vertical asymptote: ) f is in lowest terms Horizontal/oblique asymptote: ) -6 = 0 = 6 = 3 3) vertical asymptote: = 3 degree of numerator () = degree of the denominator(), 3 y is the horizontal asymptote 5 b) f ( ) Vertical asymptote: ) ( 5 5 f ) is in lowest terms (numerator can t be factored) ( ) ) = 0 3 (-) = 0 = 0 or - = 0 = 0 or = 3) vertical asymptotes : = 0, = Horizontal/oblique asymptote: degree of numerator () < degree of the denominator(3), y = 0 is the horizontal asymptote c) f 5 3 ) ( Vertical asymptote: ) f() is in lowest terms (the denominator cannot be factored) ) + = 0 = - (not possible) no solution 3) vertical asymptotes : none Horizontal/oblique asymptote: degree of numerator (5) > degree of the denominator(), there is no horizontal asymptote degree of numerator (5) + degree of the denominator(), there is no oblique asymptote d) f 3 ) 3 ( 4 Vertical asymptote: ) f() is in lowest terms ) - = 0 = =

17 3) vertical asymptotes : = -, = Horizontal/oblique asymptote: degree of numerator (3) > degree of the denominator(), there is no horizontal asymptote degree of numerator (3) = + degree of the denominator(), there is an oblique asymptote Oblique asymptote: y = 3-4 Remark: When looking for a vertical asymptote, it is important to make sure that the function is reduced to the 4 lowest terms. To see why, consider function f ( ). Note that 4 ( )( ) f ( ) ( ), ( ) hole at (-, -4), hence has no asymptote. if. The graph of f() is therefore a straight line y = -, with a Graphing rational functions We can graph some rational functions using transformations Eample: Use transformations to graph f ( ) ( 3) Basic function: y y (shift left by 3) ( 3)

18 y ( 3) ( 3) (vertical stretch) y ( 3) (Shift down by ). Find the domain: (i) solve q() = 0 (ii) Df = { q() 0} 5.3 Sketching the graph of a rational function f ( ) p( ) q( ). Find - and y-intercepts: y-intercept: y = f(0) - intercepts: numerator = 0 3. Find vertical asymptotes, if any Remark: If = r is ecluded from the domain and = r is not a vertical asymptote, then the graph of f will pass through the point (r, reduced f (r)) but the point itself will not be included. We put an open circle around that point The graph of f has a hole at = r 4. Find the horizontal/oblique asymptote, if any. 5. Find the points where the graph crosses the horizontal/oblique asymptote y = m +b (i) solve the equation f() = m + b 6. Check for symmetries (i) If f(-) = f(), then the graph is symmetric about y- ais; (ii) If f(-) = - f(), then the graph is symmetric about the origin Remark: If the graph is symmetric then only graph function for >0 and use symmetry to graph the corresponding part for <0 7. Make the sign chart for the reduced f() (i) plot -intercepts and points ecluded from the domain on the number line; these points divide the number line into a finite number of test intervals (ii) choose a point in each test interval and compute the value of f at the test point (iii) based on the sign of f at the test point, assign the sign to each test interval Remark: When f() > 0, then the graph of f is above the -ais. When f() < 0, then the graph is below the -ais 8. Sketch the graph of f using )-7): (i) Draw coordinate system and draw all asymptotes using a dashed line (ii) plot the intercepts, points where the graph crosses the horizontal/oblique asymptote and the points from the table in step 7. (iii) join the points with a continuous curve taking into consideration position of the graph relative to the -ais (step 7) and behavior near asymptotes.

19 Eample: Graph f ( ) 4 ) Domain: 4 = 0 = 4 =, = - Df = { -, } ) y intercept: y = f(0) = (-)/(-4)= 3 - intercepts: + = 0 (+4)(-3) = 0 = - 4 or = 3 ( 4)( 3) 3) Vertical asymptotes f ( ) 4 ( )( ) (-)(+) = 0 = = - vertical asymptotes: = -, = 4) Horizontal/oblique asymptotes Degree of numerator() = degree of the denominator(), y = /= is the horizontal asymptote 5) Intersection with asymptote: f() = The graph crosses the horizontal asymptote at = 8, that is at the point (8,) 6) Symmetries: f ( ) 4 7) ( ) f ( ) ( ) 4 4 f() is not the same as f(-), so f is not even and therefore not symmetric about y-ais ( ) f ( ) ( ) 4 4 f ( ) 4 4 f(-) and f() are not the same so, f is not odd and therefore not symmetric about the origin f ( ) 4-5 ( 5) ( 5) 8 positive ( 5) 4-3 ( 3) ( 3) 6 negative ( 3) positive

20 negative positive ) 5.4 Solving polynomial and rational inequalities Solving by graphing To solve an inequality f() > 0 (< 0, > 0, < 0) by graphing: (i) Graph function y = f(). Make sure to compute eactly the -intercepts (solve f() = 0) (ii) Read the solutions from the graph. To solve f() > 0, find the intervals (the values) on which the graph is above -ais but not on ais. To solve f() < 0, find the intervals (the values) on which the graph is below -ais, but not on the -ais. To solve f() > 0, find intervals (the values) on which the graph is above or on the -ais. To solve f() < 0, find intervals (the values) on which the graph is below or on the -ais.

21 Eample: The graph of a function f is given below. Use the graph to solve given inequality: a) f() > 0 for in (-,-) (-,) (4, +) f() > 0 for in (-,] [4, +) b) f() < 0 for in (-4,-3)(,3) f() < 0 for in [-4,-3) [, 3) 3 Eample: Solve ( ) ( 4) 0 3 Let f ( ) ( ) ( 4). f is a polynomial with zeros: 0,, -4. The multiplicities of zeros are, 3, respectively. The graph will cross the ais at 0 and and touch the -ais at -4. For large, f() behaves line y = 6. The graph of f() is below:

22 Now, f() > 0 when belongs to (-,-4) (-4,0) (, +). 3 Therefore the solution of ( ) ( 4) 0 is (-,-4) (-4,0) (, +). Algebraic methods Solving a Polynomial Inequality: polynomial > 0 (> 0, < 0, < 0) (i) Write the inequality in the standard form (0 on the right hand side) (ii) Find the zeros of the polynomial that is solve the equation : polynomial = 0 (iii) Plot the zeros on the number line (iv) The zeros divide the number line into a finite number of intervals on which the polynomial has the same sign. Choose a number in each interval (a test point) and evaluate the value of the polynomial at each number. (v) If the value of the polynomial at the chosen number is positive (> 0), then the polynomial is positive on the whole interval If the value of the polynomial at the chosen number is negative (< 0), then the polynomial is negative on the whole interval (vi) Choose, as the solution, the intervals on which the polynomial has a desired sign. Use interval notation. Include the endpoints only when the original inequality is < or >. If there are two separate intervals on which the polynomial has a desired sign, use the union sign,, between the intervals. Eample: Solve 3 > (i) 3 > 3 > 0 (ii) 3 = 0 ( - )= 0 = 0 or =0 = = (iii) (iv) interval Test point Value of 3 - at the test point (-, -) - (-) 3 (-) = -8 + = -6 negative (-,0) (-0.5) - (-0.5)= =.375 positive (0, ) 0.5 (.5) 3 -(.5)= negative (, ) 3 - = 6 positive

23 (v) (vi) Since the inequality is 3 > 0, we choose the intervals on which the polynomial is positive and include the endpoints. There are two intervals, so we use. Solution: [-,0] [,) P Solving a Rational Inequality: 0 Q ( 0, 0, 0), P, Q are polynomials (i) P Write the inequality in the standard form 0 Q ( 0, 0, 0) (0 on the right hand side) (ii) Solve the equations: P = 0 and Q = 0 (iii) Plot the solutions on the number line. Place open circle at each solution of Q = 0; those numbers cannot ever be included in the solution set (they make the denominator zero and are out of the domain) (iv) The solutions divide the number line into a finite number of intervals. A rational function will have a constant sign in each interval. Choose a number in each interval and evaluate the value of the epression P at each number. Q (v) P P If the value of is positive (> 0), then is positive on the whole interval Q Q If the value of Q P is negative (< 0), then Q P is negative on the whole interval (vi) Choose, as the solution, the intervals on which Q P has a desired sign. Use interval notation. Include the endpoints only when the original inequality is < or >. Remember to never include the endpoint with an open circle! If there are two or more such intervals, use the union sign,. Eample: Solve 4 (i) ( 4) (ii) Numerator = 0 denominator = 0 +0 = 0-4 = 0 = 0 = 4

24 (iii) (iv) interval Test point 0 Value of 4 (- 4) (4, 0) (0, +) at the test point negative positive negative (v) 0 (vi) Since the inequality is > 0, we choose the intervals on which 4 endpoints that do not have an open circle. Solution: (4, 0] 0 is positive and include 4

Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd

Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd 5.1 Polynomial Functions A polynomial unctions is a unction o the orm = a n n + a n-1 n-1 + + a 1 + a 0 Eample: = 3 3 + 5 - The domain o a polynomial unction is the set o all real numbers. The -intercepts

More information

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

LIMITS AND CONTINUITY

LIMITS AND CONTINUITY LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from

More information

Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.

Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4. _.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic

More information

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

More information

MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions

MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions The goal of this workshop is to familiarize you with similarities and differences in both the graphing and expression of polynomial

More information

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Method To Solve Linear, Polynomial, or Absolute Value Inequalities: Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

More information

Core Maths C1. Revision Notes

Core Maths C1. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

More information

Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

More information

Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (

More information

7.7 Solving Rational Equations

7.7 Solving Rational Equations Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

More information

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information

Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005

Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005 Polynomials Dr. philippe B. laval Kennesaw State University April 3, 2005 Abstract Handout on polynomials. The following topics are covered: Polynomial Functions End behavior Extrema Polynomial Division

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

More information

The degree of a polynomial function is equal to the highest exponent found on the independent variables.

The degree of a polynomial function is equal to the highest exponent found on the independent variables. DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

A Quick Algebra Review

A Quick Algebra Review 1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

More information

Answers to Basic Algebra Review

Answers to Basic Algebra Review Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract

More information

Section 3-3 Approximating Real Zeros of Polynomials

Section 3-3 Approximating Real Zeros of Polynomials - Approimating Real Zeros of Polynomials 9 Section - Approimating Real Zeros of Polynomials Locating Real Zeros The Bisection Method Approimating Multiple Zeros Application The methods for finding zeros

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

2.5 Zeros of a Polynomial Functions

2.5 Zeros of a Polynomial Functions .5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and

More information

Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems

Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems Students Currently in Algebra Maine East Math Placement Eam Review Problems The actual placement eam has 100 questions 3 hours. The placement eam is free response students must solve questions and write

More information

2-5 Rational Functions

2-5 Rational Functions -5 Rational Functions Find the domain of each function and the equations of the vertical or horizontal asymptotes, if any 1 f () = The function is undefined at the real zeros of the denominator b() = 4

More information

3.6 The Real Zeros of a Polynomial Function

3.6 The Real Zeros of a Polynomial Function SECTION 3.6 The Real Zeros of a Polynomial Function 219 3.6 The Real Zeros of a Polynomial Function PREPARING FOR THIS SECTION Before getting started, review the following: Classification of Numbers (Appendix,

More information

STRAND: ALGEBRA Unit 3 Solving Equations

STRAND: ALGEBRA Unit 3 Solving Equations CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic

More information

Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds

Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative

More information

Graphing Rational Functions

Graphing Rational Functions Graphing Rational Functions A rational function is defined here as a function that is equal to a ratio of two polynomials p(x)/q(x) such that the degree of q(x) is at least 1. Examples: is a rational function

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

More information

Lesson 9.1 Solving Quadratic Equations

Lesson 9.1 Solving Quadratic Equations Lesson 9.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with a. One -intercept and all nonnegative y-values. b. The verte in the third quadrant and no -intercepts. c. The verte

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

Solutions of Linear Equations in One Variable

Solutions of Linear Equations in One Variable 2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

More information

3.3 Real Zeros of Polynomials

3.3 Real Zeros of Polynomials 3.3 Real Zeros of Polynomials 69 3.3 Real Zeros of Polynomials In Section 3., we found that we can use synthetic division to determine if a given real number is a zero of a polynomial function. This section

More information

How To Understand And Solve Algebraic Equations

How To Understand And Solve Algebraic Equations College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides

More information

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123 Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

Some Lecture Notes and In-Class Examples for Pre-Calculus:

Some Lecture Notes and In-Class Examples for Pre-Calculus: Some Lecture Notes and In-Class Examples for Pre-Calculus: Section.7 Definition of a Quadratic Inequality A quadratic inequality is any inequality that can be put in one of the forms ax + bx + c < 0 ax

More information

Procedure for Graphing Polynomial Functions

Procedure for Graphing Polynomial Functions Procedure for Graphing Polynomial Functions P(x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

Zeros of a Polynomial Function

Zeros of a Polynomial Function Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

More information

is the degree of the polynomial and is the leading coefficient.

is the degree of the polynomial and is the leading coefficient. Property: T. Hrubik-Vulanovic e-mail: thrubik@kent.edu Content (in order sections were covered from the book): Chapter 6 Higher-Degree Polynomial Functions... 1 Section 6.1 Higher-Degree Polynomial Functions...

More information

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

More information

MATH 21. College Algebra 1 Lecture Notes

MATH 21. College Algebra 1 Lecture Notes MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

More information

Mathematics 31 Pre-calculus and Limits

Mathematics 31 Pre-calculus and Limits Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals

More information

Functions: Piecewise, Even and Odd.

Functions: Piecewise, Even and Odd. Functions: Piecewise, Even and Odd. MA161/MA1161: Semester 1 Calculus. Prof. Götz Pfeiffer School of Mathematics, Statistics and Applied Mathematics NUI Galway September 21-22, 2015 Tutorials, Online Homework.

More information

3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS 3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

More information

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: A-APR.3: Identify zeros of polynomials

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

5.1 Radical Notation and Rational Exponents

5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

More information

Determinants can be used to solve a linear system of equations using Cramer s Rule.

Determinants can be used to solve a linear system of equations using Cramer s Rule. 2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

More information

Administrative - Master Syllabus COVER SHEET

Administrative - Master Syllabus COVER SHEET Administrative - Master Syllabus COVER SHEET Purpose: It is the intention of this to provide a general description of the course, outline the required elements of the course and to lay the foundation for

More information

Higher. Polynomials and Quadratics 64

Higher. Polynomials and Quadratics 64 hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining

More information

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary) Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

3 e) x f) 2. Precalculus Worksheet P.1. 1. Complete the following questions from your textbook: p11: #5 10. 2. Why would you never write 5 < x > 7?

3 e) x f) 2. Precalculus Worksheet P.1. 1. Complete the following questions from your textbook: p11: #5 10. 2. Why would you never write 5 < x > 7? Precalculus Worksheet P.1 1. Complete the following questions from your tetbook: p11: #5 10. Why would you never write 5 < > 7? 3. Why would you never write 3 > > 8? 4. Describe the graphs below using

More information

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433 Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

More information

Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials

Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials Date Period Unit 6: Polynomials DAY TOPIC 1 Polynomial Functions and End Behavior Polynomials and Linear Factors 3 Dividing Polynomials 4 Synthetic Division and the Remainder Theorem 5 Solving Polynomial

More information

Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Five 5. Rational Expressions and Equations C H A P T E R

Five 5. Rational Expressions and Equations C H A P T E R Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.

More information

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of. Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Mathematics. Accelerated GSE Analytic Geometry B/Advanced Algebra Unit 7: Rational and Radical Relationships

Mathematics. Accelerated GSE Analytic Geometry B/Advanced Algebra Unit 7: Rational and Radical Relationships Georgia Standards of Excellence Frameworks Mathematics Accelerated GSE Analytic Geometry B/Advanced Algebra Unit 7: Rational and Radical Relationships These materials are for nonprofit educational purposes

More information

M 1310 4.1 Polynomial Functions 1

M 1310 4.1 Polynomial Functions 1 M 1310 4.1 Polynomial Functions 1 Polynomial Functions and Their Graphs Definition of a Polynomial Function Let n be a nonnegative integer and let a, a,..., a, a, a n n1 2 1 0, be real numbers, with a

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

Estimated Pre Calculus Pacing Timeline

Estimated Pre Calculus Pacing Timeline Estimated Pre Calculus Pacing Timeline 2010-2011 School Year The timeframes listed on this calendar are estimates based on a fifty-minute class period. You may need to adjust some of them from time to

More information

Algebra 2: Q1 & Q2 Review

Algebra 2: Q1 & Q2 Review Name: Class: Date: ID: A Algebra 2: Q1 & Q2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which is the graph of y = 2(x 2) 2 4? a. c. b. d. Short

More information

1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved.

1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved. 1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal

More information

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

COLLEGE ALGEBRA. Paul Dawkins

COLLEGE ALGEBRA. Paul Dawkins COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

SOLVING POLYNOMIAL EQUATIONS

SOLVING POLYNOMIAL EQUATIONS C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

More information

Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks

Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Algebra 2 Year-at-a-Glance Leander ISD 2007-08 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks

More information

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

More information

2.4 Real Zeros of Polynomial Functions

2.4 Real Zeros of Polynomial Functions SECTION 2.4 Real Zeros of Polynomial Functions 197 What you ll learn about Long Division and the Division Algorithm Remainder and Factor Theorems Synthetic Division Rational Zeros Theorem Upper and Lower

More information

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives 6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

More information

Chapter 7 - Roots, Radicals, and Complex Numbers

Chapter 7 - Roots, Radicals, and Complex Numbers Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

More information

SAMPLE. Polynomial functions

SAMPLE. Polynomial functions Objectives C H A P T E R 4 Polnomial functions To be able to use the technique of equating coefficients. To introduce the functions of the form f () = a( + h) n + k and to sketch graphs of this form through

More information

Math 131 College Algebra Fall 2015

Math 131 College Algebra Fall 2015 Math 131 College Algebra Fall 2015 Instructor's Name: Office Location: Office Hours: Office Phone: E-mail: Course Description This course has a minimal review of algebraic skills followed by a study of

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

Simplification Problems to Prepare for Calculus

Simplification Problems to Prepare for Calculus Simplification Problems to Prepare for Calculus In calculus, you will encounter some long epressions that will require strong factoring skills. This section is designed to help you develop those skills.

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

Equations Involving Fractions

Equations Involving Fractions . Equations Involving Fractions. OBJECTIVES. Determine the ecluded values for the variables of an algebraic fraction. Solve a fractional equation. Solve a proportion for an unknown NOTE The resulting equation

More information