Equations Involving Fractions


 Homer Reynolds
 4 years ago
 Views:
Transcription
1 . Equations Involving Fractions. OBJECTIVES. Determine the ecluded values for the variables of an algebraic fraction. Solve a fractional equation. Solve a proportion for an unknown NOTE The resulting equation will be equivalent unless a solution results that makes a denominator in the original equation 0. More about this later! In Chapter, you learned how to solve a variety of equations. We now want to etend that work to the solution of fractional equations, which are equations that involve algebraic fractions as one or more of their terms. To solve a fractional equation, we multiply each term of the equation by the LCD of any fractions. The resulting equation should be equivalent to the original equation and be cleared of all fractions. Eample Solving Fractional Equations Solve NOTE This equation has three terms: The,, and. 6 sign of the term is not used to find the LCD. 6 The LCD for is 6. Multiply both sides of the equation by 6. Using the,, and 6 distributive property, we multiply each term by 6. () NOTE By the multiplication property of equality, this equation is equivalent to the original equation, labeled () Solving as before, we have or To check, substitute for in the original equation. 6 or () 6 6 (True) 00 McGrawHill Companies CAUTION Be Careful! Many students have difficulty because they don t distinguish between adding or subtracting epressions (as we did in Sections. and.) and solving equations (illustrated in the above eample). In the epression we want to add the two fractions to form a single fraction. In the equation we want to solve for.
2 6 CHAPTER ALGEBRAIC FRACTIONS CHECK YOURSELF Solve and check. 6 Recall that, for any fraction, the denominator must not be equal to zero. When a fraction has a variable in the denominator, we must eclude any value for the variable that would result in division by zero. Eample Finding Ecluded Values for In the following algebraic fractions, what values for must be ecluded? (a) (b) Here can have any value, so none need to be ecluded... If 0, then is undefined; 0 is the ecluded value. (c) which is undefined, so is the ecluded. If, then 0, value. CHECK YOURSELF What values for, if any, must be ecluded? (a) (b) (c) If the denominator of an algebraic fraction contains a product of two or more variable factors, the zeroproduct principle must be used to determine the ecluded values for the variable. In some cases, you will have to factor the denominator to see the restrictions on the values for the variable. Eample Finding Ecluded Values for What values for must be ecluded in each fraction? (a) 6 6 Factoring the denominator, we have 6 6 ( 8)( ) Letting 8 0or 0, we see that 8 and make the denominator 0 so both 8 and must be ecluded. 00 McGrawHill Companies
3 EQUATIONS INVOLVING FRACTIONS SECTION. (b) 8 The denominator is zero when 8 0 Factoring, we find ( 6)( 8) 0 The denominator is zero when 6 or 8 CHECK YOURSELF What values for must be ecluded in the following fractions? (a) 0 (b) The steps for solving an equation involving fractions are summarized in the following rule. Step by Step: To Solve a Fractional Equation NOTE The equation that is formed in step can be solved by the methods of Sections. and.. Step Step Step Remove the fractions in the equation by multiplying each term by the LCD of all the fractions. Solve the equation resulting from step as before. Check your solution in the original equation. We can also solve fractional equations with variables in the denominator by using the above algorithm. Eample illustrates this approach. Eample Solving Fractional Equations Solve NOTE The factor appears twice in the LCD. The LCD of the three terms in the equation is, and so we multiply both sides of the equation by. 00 McGrawHill Companies Simplifying, we have We ll leave the check to you. Be sure to return to the original equation.
4 8 CHAPTER ALGEBRAIC FRACTIONS CHECK YOURSELF Solve and check. The process of solving fractional equations is eactly the same when binomials are involved in the denominators. Eample Solving Fractional Equations (a) Solve NOTE There are three terms. NOTE Each of the terms is multiplied by. CAUTION Be careful of the signs! The LCD is, and so we multiply each side (every term) by. ( ) ( ) ( ) Simplifying, we have ( ) 6 To check, substitute for in the original equation. (b) Solve NOTE Recall that 9 ( )( ) 9 In factored form, the three denominators are,, and ( )( ). This means that the LCD is ( )( ), and so we multiply: ( )( ) ( Simplifying, we have ( ) ( ) )( ) ( )( ) 9 00 McGrawHill Companies
5 EQUATIONS INVOLVING FRACTIONS SECTION. 9 CHECK YOURSELF Solve and check. (a) (b) You should be aware that some fractional equations have no solutions. Eample 6 shows that possibility. Eample 6 Solving Fractional Equations Solve The LCD is, and so we multiply each side (every term) by. ( ) ( ) ( ) Simplifying, we have 6 Now, when we try to check our result, we have NOTE is substituted for in the original equation. or 0 0 These terms are undefined. What went wrong? Remember that two of the terms in our original equation were The variable cannot have the value because is an ecluded value and. (it makes the denominator 0). So our original equation has no solution. 00 McGrawHill Companies CHECK YOURSELF 6 Solve, if possible. 6 Equations involving fractions may also lead to quadratic equations, as Eample illustrates.
6 0 CHAPTER ALGEBRAIC FRACTIONS Solving Fractional Equations Solve Eample The LCD is ( )( ). Multiply each side (every term) by ( )( ). ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) Simplifying, we have ( ) ( ) Multiply to clear of parentheses: 60 NOTE Notice that this equation is quadratic. It can be solved by the methods of Section.. In standard form, the equation is or ( 6)( 0) 0 Setting the factors to 0, we have 6 0 or So 6 and 0 are possible solutions. We will leave the check of each solution to you. CHECK YOURSELF Solve and check. 6 6 The following equation is a special kind of equation involving fractions: t 80 t a An equation of the form is said to be in proportion form, or more simply it is b c d called a proportion. This type of equation occurs often enough in algebra that it is worth developing some special methods for its solution. First, we will need some definitions. A ratio is a means of comparing two quantities. A ratio can be written as a fraction. For instance, the ratio of to can be written as. A statement that two ratios are equal is called a proportion. A proportion has the form a b c d 00 McGrawHill Companies
7 EQUATIONS INVOLVING FRACTIONS SECTION. NOTE bd is the LCD of the denominators. In the proportion above, a and d are called the etremes of the proportion, and b and c are called the means. A useful property of proportions is easily developed. If a b c d and we multiply both sides by b d, then a b bd d c bd or ad bc Rules and Properties: Proportions a If b c then ad bc d In words: In any proportion, the product of the etremes (ad) is equal to the product of the means (bc). Because a proportion is a special kind of fractional equation, this rule gives us an alternative approach to solving equations that are in the proportion form. Eample 8 Solving a Proportion 00 McGrawHill Companies NOTE The etremes are and. The means are and. Solve the equations for. (a) Set the product of the etremes equal to the product of the means. 60 Our solution is. You can check as before, by substituting in the original proportion. (b) 0 Set the product of the etremes equal to the product of the means. Be certain to use parentheses with a numerator with more than one term. ( ) 0 0 We will leave the checking of this result to the reader.
8 CHAPTER ALGEBRAIC FRACTIONS CHECK YOURSELF 8 Solve for. (a) (b) 8 9 CHECK YOURSELF ANSWERS.. (a) none; (b) 0; (c). (a), ; (b),.. (a) 8; (b) 6. No solution. or 8 8. (a) 6; (b) As the eamples of this section illustrated, whenever an equation involves algebraic fractions, the first step of the solution is to clear the equation of fractions by multiplication. The following algorithm summarizes our work in solving equations that involve algebraic fractions. Step by Step: To Solve an Equation Involving Fractions Step Step Step Remove the fractions appearing in the equation by multiplying each side (every term) by the LCD of all the fractions. Solve the equation resulting from step. If the equation is linear, use the methods of Section. for the solution. If the equation is quadratic, use the methods of Section.. Check all solutions by substitution in the original equation. Be sure to discard any etraneous solutions, that is, solutions that would result in a zero denominator in the original equation. 00 McGrawHill Companies
9 Name. Eercises Section Date What values for, if any, must be ecluded in each of the following algebraic fractions? ANSWERS ( )( ).. ( )( ) ( )( ) ( )( ) McGrawHill Companies Solve each of the following equations for
10 ANSWERS McGrawHill Companies
11 ANSWERS Solve each of the following equations for McGrawHill Companies
12 ANSWERS a b. c. d. e. f. Getting Ready for Section.6 [Section.] Write each of the following phrases using symbols. Use the variable to represent the number in each case. (a) Onefourth of a number added to fourfifths of the same number (b) 6 times a number, decreased by (c) The quotient when more than a number is divided by 6 (d) Three times the length of a side of a rectangle decreased by (e) A distance traveled divided by (f) The speed of a truck that is mi/h slower than a car Answers. None None.,.,.,., 9., No solution No solution , 6, 6. 8, a. b. 6 c. d. 6 e. f. 00 McGrawHill Companies 6
Solutions of Linear Equations in One Variable
2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools
More informationFive 5. Rational Expressions and Equations C H A P T E R
Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.
More informationMultiplying and Dividing Algebraic Fractions
. Multiplying and Dividing Algebraic Fractions. OBJECTIVES. Write the product of two algebraic fractions in simplest form. Write the quotient of two algebraic fractions in simplest form. Simplify a comple
More informationSimplification Problems to Prepare for Calculus
Simplification Problems to Prepare for Calculus In calculus, you will encounter some long epressions that will require strong factoring skills. This section is designed to help you develop those skills.
More information9.3 OPERATIONS WITH RADICALS
9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in
More informationAnswers to Basic Algebra Review
Answers to Basic Algebra Review 1. 1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
More informationSUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills
SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)
More informationPLACEMENT TEST PREPARATION GUIDE MATHEMATICS
PLACEMENT TEST PREPARATION GUIDE MATHEMATICS Taking Your Placement Tests Are you prepared? Placement testing is mandatory for all new students. Taking time to work through this Placement Test Preparation
More informationAlgebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
More informationSystems of Equations Involving Circles and Lines
Name: Systems of Equations Involving Circles and Lines Date: In this lesson, we will be solving two new types of Systems of Equations. Systems of Equations Involving a Circle and a Line Solving a system
More informationMath 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
More informationDefinition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
More information2.3 Solving Equations Containing Fractions and Decimals
2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions
More informationSIMPLIFYING ALGEBRAIC FRACTIONS
Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is
More informationSimplifying Algebraic Fractions
5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions
More informationPreCalculus II Factoring and Operations on Polynomials
Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...
More informationFree PreAlgebra Lesson 55! page 1
Free PreAlgebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can
More informationReview of Intermediate Algebra Content
Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6
More informationCOLLEGE ALGEBRA 10 TH EDITION LIAL HORNSBY SCHNEIDER 1.11
10 TH EDITION COLLEGE ALGEBRA LIAL HORNSBY SCHNEIDER 1.11 1.1 Linear Equations Basic Terminology of Equations Solving Linear Equations Identities 1.12 Equations An equation is a statement that two expressions
More informationPolynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.
_.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic
More information3. Solve the equation containing only one variable for that variable.
Question : How do you solve a system of linear equations? There are two basic strategies for solving a system of two linear equations and two variables. In each strategy, one of the variables is eliminated
More informationSTRAND: ALGEBRA Unit 3 Solving Equations
CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic
More informationFlorida Math 0018. Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies  Lower
Florida Math 0018 Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies  Lower Whole Numbers MDECL1: Perform operations on whole numbers (with applications, including
More informationPOLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
More informationSECTION P.5 Factoring Polynomials
BLITMCPB.QXP.0599_4874 /0/0 0:4 AM Page 48 48 Chapter P Prerequisites: Fundamental Concepts of Algebra Technology Eercises Critical Thinking Eercises 98. The common cold is caused by a rhinovirus. The
More informationHFCC Math Lab Beginning Algebra 13 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES
HFCC Math Lab Beginning Algebra 1 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES Before being able to solve word problems in algebra, you must be able to change words, phrases, and sentences
More informationSolving Equations by the Multiplication Property
2.2 Solving Equations by the Multiplication Property 2.2 OBJECTIVES 1. Determine whether a given number is a solution for an equation 2. Use the multiplication property to solve equations. Find the mean
More information1.2 Linear Equations and Rational Equations
Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of
More informationMTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006
MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions Created January 7, 2006 Math 092, Elementary Algebra, covers the mathematical content listed below. In order
More information1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
More informationRational Expressions  Complex Fractions
7. Rational Epressions  Comple Fractions Objective: Simplify comple fractions by multiplying each term by the least common denominator. Comple fractions have fractions in either the numerator, or denominator,
More informationThe numerical values that you find are called the solutions of the equation.
Appendi F: Solving Equations The goal of solving equations When you are trying to solve an equation like: = 4, you are trying to determine all of the numerical values of that you could plug into that equation.
More informationA Quick Algebra Review
1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals
More informationIntegrating algebraic fractions
Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate
More informationChapter 3 Section 6 Lesson Polynomials
Chapter Section 6 Lesson Polynomials Introduction This lesson introduces polynomials and like terms. As we learned earlier, a monomial is a constant, a variable, or the product of constants and variables.
More informationMEP Y8 Practice Book A. In this section we consider how to expand (multiply out) brackets to give two or more terms, as shown below: ( ) = +
8 Algebra: Brackets 8.1 Epansion of Single Brackets In this section we consider how to epand (multiply out) brackets to give two or more terms, as shown below: = + 3 + 6 3 18 First we revise negative numbers
More informationSimplifying Exponential Expressions
Simplifying Eponential Epressions Eponential Notation Base Eponent Base raised to an eponent Eample: What is the base and eponent of the following epression? 7 is the base 7 is the eponent Goal To write
More information10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED
CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations
More informationSection A3 Polynomials: Factoring APPLICATIONS. A22 Appendix A A BASIC ALGEBRA REVIEW
A Appendi A A BASIC ALGEBRA REVIEW C In Problems 53 56, perform the indicated operations and simplify. 53. ( ) 3 ( ) 3( ) 4 54. ( ) 3 ( ) 3( ) 7 55. 3{[ ( )] ( )( 3)} 56. {( 3)( ) [3 ( )]} 57. Show by
More information3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes
Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same
More informationSolving Quadratic Equations by Factoring
4.7 Solving Quadratic Equations by Factoring 4.7 OBJECTIVE 1. Solve quadratic equations by factoring The factoring techniques you have learned provide us with tools for solving equations that can be written
More informationPolynomials and Factoring
7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of
More information7.7 Solving Rational Equations
Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate
More informationAlum Rock Elementary Union School District Algebra I Study Guide for Benchmark III
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial
More informationA positive exponent means repeated multiplication. A negative exponent means the opposite of repeated multiplication, which is repeated
Eponents Dealing with positive and negative eponents and simplifying epressions dealing with them is simply a matter of remembering what the definition of an eponent is. division. A positive eponent means
More informationThis is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
More informationPolynomial Degree and Finite Differences
CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial
More informationCopy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2  Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers  {1,2,3,4,...}
More informationA.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it
Appendi A.3 Polynomials and Factoring A23 A.3 Polynomials and Factoring What you should learn Write polynomials in standard form. Add,subtract,and multiply polynomials. Use special products to multiply
More information2.4. Factoring Quadratic Expressions. Goal. Explore 2.4. Launch 2.4
2.4 Factoring Quadratic Epressions Goal Use the area model and Distributive Property to rewrite an epression that is in epanded form into an equivalent epression in factored form The area of a rectangle
More information6.3. section. Building Up the Denominator. To convert the fraction 2 3 factor 21 as 21 3 7. Because 2 3
0 (618) Chapter 6 Rational Epressions GETTING MORE INVOLVED 7. Discussion. Evaluate each epression. a) Onehalf of 1 b) Onethird of c) Onehalf of d) Onehalf of 1 a) b) c) d) 8 7. Eploration. Let R
More informationMath Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
More informationSection 4.1 Rules of Exponents
Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells
More informationMATH 90 CHAPTER 1 Name:.
MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.
More informationSample Problems. Practice Problems
Lecture Notes Quadratic Word Problems page 1 Sample Problems 1. The sum of two numbers is 31, their di erence is 41. Find these numbers.. The product of two numbers is 640. Their di erence is 1. Find these
More informationZero and Negative Exponents and Scientific Notation. a a n a m n. Now, suppose that we allow m to equal n. We then have. a am m a 0 (1) a m
0. E a m p l e 666SECTION 0. OBJECTIVES. Define the zero eponent. Simplif epressions with negative eponents. Write a number in scientific notation. Solve an application of scientific notation We must have
More informationThe majority of college students hold credit cards. According to the Nellie May
CHAPTER 6 Factoring Polynomials 6.1 The Greatest Common Factor and Factoring by Grouping 6. Factoring Trinomials of the Form b c 6.3 Factoring Trinomials of the Form a b c and Perfect Square Trinomials
More informationAlgebra Word Problems
WORKPLACE LINK: Nancy works at a clothing store. A customer wants to know the original price of a pair of slacks that are now on sale for 40% off. The sale price is $6.50. Nancy knows that 40% of the original
More informationZero and Negative Exponents. Section 71
Zero and Negative Exponents Section 71 Goals Goal To simplify expressions involving zero and negative exponents. Rubric Level 1 Know the goals. Level 2 Fully understand the goals. Level 3 Use the goals
More informationSystems of Linear Equations: Solving by Substitution
8.3 Sstems of Linear Equations: Solving b Substitution 8.3 OBJECTIVES 1. Solve sstems using the substitution method 2. Solve applications of sstems of equations In Sections 8.1 and 8.2, we looked at graphing
More information4.1. COMPLEX NUMBERS
4.1. COMPLEX NUMBERS What You Should Learn Use the imaginary unit i to write complex numbers. Add, subtract, and multiply complex numbers. Use complex conjugates to write the quotient of two complex numbers
More informationSolving Rational Equations and Inequalities
85 Solving Rational Equations and Inequalities TEKS 2A.10.D Rational functions: determine the solutions of rational equations using graphs, tables, and algebraic methods. Objective Solve rational equations
More informationHigher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
More information7 Literal Equations and
CHAPTER 7 Literal Equations and Inequalities Chapter Outline 7.1 LITERAL EQUATIONS 7.2 INEQUALITIES 7.3 INEQUALITIES USING MULTIPLICATION AND DIVISION 7.4 MULTISTEP INEQUALITIES 113 7.1. Literal Equations
More informationAlgebra I. In this technological age, mathematics is more important than ever. When students
In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,
More informationChapter 1: Order of Operations, Fractions & Percents
HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain
More informationAbsolute Value Equations and Inequalities
. Absolute Value Equations and Inequalities. OBJECTIVES 1. Solve an absolute value equation in one variable. Solve an absolute value inequality in one variable NOTE Technically we mean the distance between
More informationSolving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
More information1.6 The Order of Operations
1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative
More informationFlorida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies  Upper
Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies  Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic
More informationis identically equal to x 2 +3x +2
Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3
More informationSolving Quadratic & Higher Degree Inequalities
Ch. 8 Solving Quadratic & Higher Degree Inequalities We solve quadratic and higher degree inequalities very much like we solve quadratic and higher degree equations. One method we often use to solve quadratic
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More informationIOWA EndofCourse Assessment Programs. Released Items ALGEBRA I. Copyright 2010 by The University of Iowa.
IOWA EndofCourse Assessment Programs Released Items Copyright 2010 by The University of Iowa. ALGEBRA I 1 Sally works as a car salesperson and earns a monthly salary of $2,000. She also earns $500 for
More informationCalculator Worksheetpage 1
Calculator Worksheetpage 1 Name On this worksheet, I will be referencing keys that are on the TI30Xa. If you re using a different calculator, similar keys should be there; you just need to fi them! Positive/Negative
More informationMultiplying and Dividing Radicals
9.4 Multiplying and Dividing Radicals 9.4 OBJECTIVES 1. Multiply and divide expressions involving numeric radicals 2. Multiply and divide expressions involving algebraic radicals In Section 9.2 we stated
More informationNegative Integer Exponents
7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions
More informationAlgebra 1 Course Title
Algebra 1 Course Title Course wide 1. What patterns and methods are being used? Course wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
More information5.4 Solving Percent Problems Using the Percent Equation
5. Solving Percent Problems Using the Percent Equation In this section we will develop and use a more algebraic equation approach to solving percent equations. Recall the percent proportion from the last
More informationMATH0910 Review Concepts (Haugen)
Unit 1 Whole Numbers and Fractions MATH0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,
More informationMultiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20
SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed
More information12.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following:
Section 1.6 Logarithmic and Exponential Equations 811 1.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solve Quadratic Equations (Section
More informationMATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab
MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring noncourse based remediation in developmental mathematics. This structure will
More informationFactoring Trinomials using Algebra Tiles Student Activity
Factoring Trinomials using Algebra Tiles Student Activity Materials: Algebra Tiles (student set) Worksheet: Factoring Trinomials using Algebra Tiles Algebra Tiles: Each algebra tile kits should contain
More informationMULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.
1.4 Multiplication and (125) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with
More informationPERT Mathematics Test Review
PERT Mathematics Test Review Prof. Miguel A. Montañez ESL/Math Seminar Math Test? NO!!!!!!! I am not good at Math! I cannot graduate because of Math! I hate Math! Helpful Sites Math Dept Web Site Wolfson
More informationis the degree of the polynomial and is the leading coefficient.
Property: T. HrubikVulanovic email: thrubik@kent.edu Content (in order sections were covered from the book): Chapter 6 HigherDegree Polynomial Functions... 1 Section 6.1 HigherDegree Polynomial Functions...
More informationFractions and Linear Equations
Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps
More information25 Rational Functions
5 Rational Functions Find the domain of each function and the equations of the vertical or horizontal asymptotes, if any 1 f () = The function is undefined at the real zeros of the denominator b() = 4
More informationSimplification of Radical Expressions
8. Simplification of Radical Expressions 8. OBJECTIVES 1. Simplify a radical expression by using the product property. Simplify a radical expression by using the quotient property NOTE A precise set of
More information5.2 Percent: Converting Between Fractions, Decimals, and Percents
5.2 Percent: Converting Between Fractions, Decimals, and Percents The concept of percent permeates most common uses of mathematics in everyday life. We pay taes based on percents, many people earn income
More informationVocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
More informationHIBBING COMMUNITY COLLEGE COURSE OUTLINE
HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE:  Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,
More informationPartial Fractions Decomposition
Partial Fractions Decomposition Dr. Philippe B. Laval Kennesaw State University August 6, 008 Abstract This handout describes partial fractions decomposition and how it can be used when integrating rational
More informationSequences. A sequence is a list of numbers, or a pattern, which obeys a rule.
Sequences A sequence is a list of numbers, or a pattern, which obeys a rule. Each number in a sequence is called a term. ie the fourth term of the sequence 2, 4, 6, 8, 10, 12... is 8, because it is the
More informationCore Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
More informationAlgebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
More informationSECTION 1.6 Other Types of Equations
BLITMC1B.111599_11174 12//2 1:58 AM Page 11 Section 1.6 Other Types of Equations 11 12. A person throws a rock upward from the edge of an 8foot cliff. The height, h, in feet, of the rock above the water
More informationCPM Educational Program
CPM Educational Program A California, NonProfit Corporation Chris Mikles, National Director (888) 8084276 email: mikles @cpm.org CPM Courses and Their Core Threads Each course is built around a few
More information