NUMERICAL DIFFERENTIATION FORMULAE BY INTERPOLATING POLY- NOMIALS

Size: px
Start display at page:

Download "NUMERICAL DIFFERENTIATION FORMULAE BY INTERPOLATING POLY- NOMIALS"

Transcription

1 LECTURE 8 NUMERICAL DIFFERENTIATION FORMULAE BY INTERPOLATING POLY- NOMIALS Relationship Between Polynomials and Finite Difference Derivative Approimations We noted that N th degree accurate Finite Difference (FD) epressions for first derivatives have an associated error E h N dn + 1 f d N + 1 If f() is an N th degree polynomial then, d N + 1 f d N and the FD approimation to the first derivative is eact! Thus if we know that a FD approimation to a polynomial function is eact, we can derive the form of that polynomial by integrating the previous equation. f a 1 N + a 2 N a N + 1 p. 8.1

2 This implies that a distinct relationship eists between polynomials and FD epressions for derivatives (different relationships for higher order derivatives). We can in fact develop FD approimations from interpolating polynomials Developing Finite Difference Formulae by Differentiating Interpolating Polynomials Concept The approimation for the derivative of some function f can be found by p th taking the derivative of a polynomial approimation, g, of the function f. p th Procedure Establish a polynomial approimation g of degree N such that N p g is forced to be eactly equal to the functional value at N + 1 data points or nodes The derivative of the polynomial g is an approimation to the derivative of f p th p th p. 8.2

3 Approimations to First and Second Derivatives Using Quadratic Interpolation We will illustrate the use of interpolation to derive FD approimations to first and second derivatives using a 3 node quadratic interpolation function For first derivatives p1 and we must establish at least an interpolating polynomial of degree N1 with N+12 nodes For second derivatives p2 and we must establish at least an interpolating polynomial of degree N2 with N+13 nodes Thus a quadratic interpolating function will allow us to establish both first and second derivative approimations Apply a shifted coordinate system to simplify the derivation without affecting the generality of the derivation f 0 f 1 f 2 0 h 1 h 2 0 h h shifted ais p. 8.3

4 Develop a quadratic interpolating polynomial We apply the Power Series method to derive the appropriate interpolating polynomial Alternatively we could use either Lagrange basis functions or Newton forward or backward interpolation approaches in order to establish the interpolating polynomial The 3 node quadratic interpolating polynomial has the form g a o 2 + a 1 + a 2 The approimating Lagrange polynomial must match the functional values at all data points or nodes ( o 0, 1 h, 2 ) N + 1 g o f o a o a a 2 f o g 1 f 1 a o + a 1 h + a 2 f 1 g 2 f 2 a o 2 + a 1 + a 2 f 2 p. 8.4

5 Setting up the constraints as a system of simultaneous equations h 1 a o a 1 f o f a 2 f 2 Solve for a o, a 1, a 2 f 2 2f 1 + f o 4f a o, 1 f 2 3f o a , a 2 f o The interpolating polynomial and its derivative are equal to: g f 2 2f 1 + f o f 1 f 2 3f o f o g 1 f 2 2f 1 + f o f 1 f 2 3f o p. 8.5

6 Evaluating g (1) ( o ) to obtain a forward difference approimation to the first derivative Evaluating the derivative of the interpolating function at o 0 g 1 o g 1 0 g 1 o 3f o + 4f 1 f Since the function f is approimated by the interpolating function g f 1 g 1 o o Substituting in for the epression for g 1 o f 1 o 3f o + 4f 1 f p. 8.6

7 Generalize the node numbering for the approimation i i+1 i+2 generalized nodal numbering This results in the generic 3 node forward difference approimation to the first derivative at node i 1 f i 3f i + 4f i + 1 f i p. 8.7

8 Evaluating g (1) ( 1 ) to obtain a central difference approimation to the first derivative Evaluating the derivative of the interpolating function at 1 h g 1 1 g 1 h g 1 1 f 2 2f 1 + f o 4f 1 f 2 3f o h g 1 1 f 2 f o Again since the function f is approimated by the interpolating function g f 1 g Substituting in for the epression for g 1 1 f 2 f o f 1 p. 8.8

9 Generalize the node numbering 0 i i i+1 This results in the generic epression for the three node central difference approimation to the first derivative 1 f i + 1 f i 1 f i p. 8.9

10 Evaluating g (1) ( 2 ) to obtain a backward difference approimation to the first derivative Evaluating the derivative of the interpolating function at 2 g 1 2 g 1 g 1 2 f 2 2f 1 + f o 4f 1 f 2 3f o g 1 2 3f 2 4f 1 + f o Again since the function f is approimated by the interpolating function g f 1 g Substituting in for the epression for g 1 2 3f 2 4f 1 + f o f 1 p. 8.10

11 Generalizing the node numbering i-1 i-2 i This results in the generic epression for a three node backward difference approimation to the first derivative 3f i 4f i 1 + f i f i 1 p. 8.11

12 Evaluating g (2) ( o ) to obtain a forward difference approimation to the second derivative g 2 We note that in general can be computed as: g 2 f 2 2f 1 + f o Evaluating the second derivative of the interpolating function at o 0 : g 2 o g 2 0 g 2 o f 2 2f 1 + f o Again since the function f is approimated by the interpolating function g, the second derivative at node o is approimated as: f 2 g 2 o o p. 8.12

13 Substituting in for the epression for g 2 o f 2 2f 1 + f o o f 2 Generalizing the node numbering i 0 i+1 1 i+2 2 This results in the generic epression for a three node forward difference approimation to the second derivative + f i f i + 2 2f i + 1 f i p. 8.13

14 Evaluating g (2) ( 1 ) to obtain a central difference approimation to the second derivative Evaluating the second derivative of the interpolating function at h : g 2 1 g 2 h 1 g 2 1 f 2 2f 1 + f o Again since the function f is approimated by the interpolating function g, the second derivative at node 1 is approimated as: f 2 g Substituting in for the epression for g 2 1 f 2 2f 1 + f o f 2 p. 8.14

15 Generalizing node numbering i-1 i i This results in the generic epression for a three node central difference approimation to the second derivative + f i f i + 1 2f i f i Notes on developing differentiation formulae by interpolating polynomials In general we can use any of the interpolation techniques to develop an interpolation function of degree N p. We can then simply differentiate the interpolating function and evaluate it at any of the nodal points used for interpolation in order to derive an approimation for the p th derivative. Orders of accuracy may vary due to the accuracy of the interpolating function varying. Eact accuracy can be obtained by substituting in Taylor series epansions or by considering the accuracy of the approimating polynomial g(). p. 8.15

16 Approimations and Associated Error Estimates to First and Second Derivatives Using Quadratic Interpolation We can derive an error estimate when using interpolating polynomials to establish finite difference formulae by simply differentiating the error estimate associated with the interpolating function. We will illustrate the use of a 3 node Newton forward interpolation formula to derive: A central approimation to the first derivative with its associated error estimate A forward approimation to the second derivative with its associated error estimate Developing a 3 node interpolating function using Newton forward interpolation A quadratic interpolating polynomial ( N 2) has 3 associated nodes ( N + 1 3) or interpolating points. We again assume that the nodes are evenly distributed as: f 0 f 1 f h h With a quadratic interpolating polynomial, we can derive differentiation formulae for both the first and second derivatives but no higher p. 8.16

17 The approimating or interpolating function is defined using Newton forward interpolation as: f g + e g f o o f o ! o 1 2 f o e o f 3 3! o 2 The error can be approimately epressed in either of the following forms: e o f 3! o e o f o ! h 3 These latter two forms which do not involve are more suitable for the necessary differentiation w.r.t. since is functionally dependent on, i.e. p. 8.17

18 The forward difference operators are defined as: f o f 1 f o 2 f o f 2 2f 1 + f o Deriving a central approimation to the first derivative and the associated error estimate Evaluating the first derivative of the function at : 1 f 1 1 g e central p. 8.18

19 g 1 Evaluating in the previous epression f 1 1 f o h ! o 2 f o ! 1 2 f o e 1 1 f 1 1 f o h ! 1 o 2 f o e 1 1 f 1 1 f 1 f o h f 2 2f 1 + f o + e 1 1 f 1 1 f 2 f o e 1 1 p. 8.19

20 e 1 Now evaluate using a non dependent epression for the error term and evaluating this epression at 1 e f 3 3! o o 2 + o 1 1 e f 3 3! o 1 o 1 2 e h2 f 3 3! o e 1 1 Substituting for results in: f 1 1 f 2 f o f 3 3! o p. 8.20

21 Generalizing node numbering as: i-1 i i+1 This results in the generic epression for a three node central difference approimation to the first derivative with an appropriate error estimate E 1 f i + 1 f i 1 f i E h f 3 6 i 1 p. 8.21

22 Notes The same discrete differentiation formulae can be derived using the Taylor series approach. The results for the error estimates are the same regardless of whether you: Apply differentiation to e, which represents the error estimate for g. Apply a Taylor series analysis to the differentiation formula you derived. The error estimate for the interpolating function g with is most precise in a formal sense (i.e. it includes all H.O.T. as well!). However there is a weak dependence of on and therefore some inaccuracies may be incurred when differentiating e to obtain an error estimate for the corresponding finite difference approimation. Practically, for estimating the error of the differentiating formula derived by estimating e 1, we can apply the procedure used and eamine an estimate of the error which does not depend on. This is equivalent to eamining the leading order term in the truncated series. Note that the derivative in the error formula on the previous page may also be estimated at i p. 8.22

23 Deriving a forward difference approimation to the second derivative and the associated error estimate Evaluating the second derivative of the function at : o f 2 o g 2 o + e 2 o forward g 2 Evaluate and substitute f 2 o f o ! f o e 2 2! o f 2 o 2 f o e 2 o f 2 o f 2 2f 1 + f o e 2 o p. 8.23

24 e 2 Now evaluate using a non dependent epression for the error term and evaluating this epression at o e 2 o f 3 3! o o o + 1 o e 2 o f 3 3! o o 1 + o 2 + o o + o 2 + o o + o 1 e 2 o f 3 3! o h h e 2 o h f 3 o e 2 o Substituting for results in: f 2 o f 2 2f 1 + f o hf 3 o p. 8.24

25 Generalizing the node numbering: i i+1 i+2 This results in the generic epression for a three node forward difference approimation to the second derivative with an appropriate error estimate f i E f 2 f i + 2 2f i + 1 E hf 3 i p. 8.25

26 SUMMARY OF LECTURE 6, 7 AND 8 Difference formulae can be developed such that linear combinations of functional values at various nodes approimate a derivative at a node. In general, to develop a difference formula for you need p + 1 nodes for Oh accuracy and p + N nodes for O(h) N accuracy. Central approimations for even order derivatives require fewer nodes due to a fortunate cancelation of error terms. p f i The generic form to evaluate a difference formula p f i E a f + a f + + a f h p E Oh N when p + N nodes are used Substitute in Taylor series epansions for f, f etc. about node i, re-arrange equations such that coefficients multiply equal order derivatives at node i and generate p algebraic equations by setting the coefficient of f i equal to 1 and the p + N 1 other coefficients equal to zero. Solve for,,... a a p. 8.26

27 Forward, central and backward difference operators can be manipulated in ways analogous to differentiation to develop higher order differences Formulae to approimate differentiation using the difference operators can be established. However, general formulae for any order accuracy are difficult to establish. Also you still need Taylor series analysis to derive the accuracy of the approimations. Numerical differentiation formulae can be established by defining an interpolating polynomial for at least p + 1 nodes (to evaluate the p th derivative). Any interpolating technique formula can be used. The numerical differencing formula is simply the differentiated interpolating polynomial evaluated at one of the nodes used for interpolation. The node at which the formula is evaluated establishes whether the approimation is forward, backward, central, etc. p. 8.27

5 Numerical Differentiation

5 Numerical Differentiation D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

More information

Roots of equation fx are the values of x which satisfy the above expression. Also referred to as the zeros of an equation

Roots of equation fx are the values of x which satisfy the above expression. Also referred to as the zeros of an equation LECTURE 20 SOLVING FOR ROOTS OF NONLINEAR EQUATIONS Consider the equation f = 0 Roots of equation f are the values of which satisfy the above epression. Also referred to as the zeros of an equation f()

More information

7.7 Solving Rational Equations

7.7 Solving Rational Equations Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

Moving Least Squares Approximation

Moving Least Squares Approximation Chapter 7 Moving Least Squares Approimation An alternative to radial basis function interpolation and approimation is the so-called moving least squares method. As we will see below, in this method the

More information

The numerical values that you find are called the solutions of the equation.

The numerical values that you find are called the solutions of the equation. Appendi F: Solving Equations The goal of solving equations When you are trying to solve an equation like: = 4, you are trying to determine all of the numerical values of that you could plug into that equation.

More information

Roots of Equations (Chapters 5 and 6)

Roots of Equations (Chapters 5 and 6) Roots of Equations (Chapters 5 and 6) Problem: given f() = 0, find. In general, f() can be any function. For some forms of f(), analytical solutions are available. However, for other functions, we have

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation Interpolation, Extrapolation & Polynomial Approximation November 16, 2015 Introduction In many cases we know the values of a function f (x) at a set of points x 1, x 2,..., x N, but we don t have the analytic

More information

Core Maths C1. Revision Notes

Core Maths C1. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

More information

Integrating algebraic fractions

Integrating algebraic fractions Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate

More information

Linearly Independent Sets and Linearly Dependent Sets

Linearly Independent Sets and Linearly Dependent Sets These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation

More information

Homework 2 Solutions

Homework 2 Solutions Homework Solutions 1. (a) Find the area of a regular heagon inscribed in a circle of radius 1. Then, find the area of a regular heagon circumscribed about a circle of radius 1. Use these calculations to

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

1 Review of Newton Polynomials

1 Review of Newton Polynomials cs: introduction to numerical analysis 0/0/0 Lecture 8: Polynomial Interpolation: Using Newton Polynomials and Error Analysis Instructor: Professor Amos Ron Scribes: Giordano Fusco, Mark Cowlishaw, Nathanael

More information

Systems of Equations Involving Circles and Lines

Systems of Equations Involving Circles and Lines Name: Systems of Equations Involving Circles and Lines Date: In this lesson, we will be solving two new types of Systems of Equations. Systems of Equations Involving a Circle and a Line Solving a system

More information

Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.

Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4. _.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic

More information

QUADRATIC, EXPONENTIAL AND LOGARITHMIC FUNCTIONS

QUADRATIC, EXPONENTIAL AND LOGARITHMIC FUNCTIONS QUADRATIC, EXPONENTIAL AND LOGARITHMIC FUNCTIONS Content 1. Parabolas... 1 1.1. Top of a parabola... 2 1.2. Orientation of a parabola... 2 1.3. Intercept of a parabola... 3 1.4. Roots (or zeros) of a parabola...

More information

Partial Fractions: Undetermined Coefficients

Partial Fractions: Undetermined Coefficients 1. Introduction Partial Fractions: Undetermined Coefficients Not every F(s) we encounter is in the Laplace table. Partial fractions is a method for re-writing F(s) in a form suitable for the use of the

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

A Quick Algebra Review

A Quick Algebra Review 1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

More information

Introduction to the Finite Element Method (FEM)

Introduction to the Finite Element Method (FEM) Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional

More information

Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON

Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON John Burkardt Information Technology Department Virginia Tech http://people.sc.fsu.edu/ jburkardt/presentations/cg lab fem basis tetrahedron.pdf

More information

Implicit Differentiation

Implicit Differentiation Revision Notes 2 Calculus 1270 Fall 2007 INSTRUCTOR: Peter Roper OFFICE: LCB 313 [EMAIL: roper@math.utah.edu] Standard Disclaimer These notes are not a complete review of the course thus far, and some

More information

4.5 Chebyshev Polynomials

4.5 Chebyshev Polynomials 230 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION 4.5 Chebyshev Polynomials We now turn our attention to polynomial interpolation for f (x) over [ 1, 1] based on the nodes 1 x 0 < x 1 < < x N 1. Both

More information

Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems

Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems Students Currently in Algebra Maine East Math Placement Eam Review Problems The actual placement eam has 100 questions 3 hours. The placement eam is free response students must solve questions and write

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all. 1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

Sequences. A sequence is a list of numbers, or a pattern, which obeys a rule.

Sequences. A sequence is a list of numbers, or a pattern, which obeys a rule. Sequences A sequence is a list of numbers, or a pattern, which obeys a rule. Each number in a sequence is called a term. ie the fourth term of the sequence 2, 4, 6, 8, 10, 12... is 8, because it is the

More information

Numerical Analysis An Introduction

Numerical Analysis An Introduction Walter Gautschi Numerical Analysis An Introduction 1997 Birkhauser Boston Basel Berlin CONTENTS PREFACE xi CHAPTER 0. PROLOGUE 1 0.1. Overview 1 0.2. Numerical analysis software 3 0.3. Textbooks and monographs

More information

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

More information

Chapter 9 Partial Differential Equations

Chapter 9 Partial Differential Equations 363 One must learn by doing the thing; though you think you know it, you have no certainty until you try. Sophocles (495-406)BCE Chapter 9 Partial Differential Equations A linear second order partial differential

More information

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

More information

Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test

Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

STRAND: ALGEBRA Unit 3 Solving Equations

STRAND: ALGEBRA Unit 3 Solving Equations CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic

More information

Homework 2 Solutions

Homework 2 Solutions Homework Solutions Igor Yanovsky Math 5B TA Section 5.3, Problem b: Use Taylor s method of order two to approximate the solution for the following initial-value problem: y = + t y, t 3, y =, with h = 0.5.

More information

Section 3-3 Approximating Real Zeros of Polynomials

Section 3-3 Approximating Real Zeros of Polynomials - Approimating Real Zeros of Polynomials 9 Section - Approimating Real Zeros of Polynomials Locating Real Zeros The Bisection Method Approimating Multiple Zeros Application The methods for finding zeros

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Method To Solve Linear, Polynomial, or Absolute Value Inequalities: Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

More information

Integrals of Rational Functions

Integrals of Rational Functions Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

More information

Lesson 9.1 Solving Quadratic Equations

Lesson 9.1 Solving Quadratic Equations Lesson 9.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with a. One -intercept and all nonnegative y-values. b. The verte in the third quadrant and no -intercepts. c. The verte

More information

Sect. 1.3: Factoring

Sect. 1.3: Factoring Sect. 1.3: Factoring MAT 109, Fall 2015 Tuesday, 1 September 2015 Algebraic epression review Epanding algebraic epressions Distributive property a(b + c) = a b + a c (b + c) a = b a + c a Special epansion

More information

Answers to Basic Algebra Review

Answers to Basic Algebra Review Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract

More information

THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION

THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION ERICA CHAN DECEMBER 2, 2006 Abstract. The function sin is very important in mathematics and has many applications. In addition to its series epansion, it

More information

Version 1.0. General Certificate of Education (A-level) January 2012. Mathematics MPC4. (Specification 6360) Pure Core 4. Final.

Version 1.0. General Certificate of Education (A-level) January 2012. Mathematics MPC4. (Specification 6360) Pure Core 4. Final. Version.0 General Certificate of Education (A-level) January 0 Mathematics MPC (Specification 660) Pure Core Final Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together

More information

Derivative Approximation by Finite Differences

Derivative Approximation by Finite Differences Derivative Approximation by Finite Differences David Eberly Geometric Tools, LLC http://wwwgeometrictoolscom/ Copyright c 998-26 All Rights Reserved Created: May 3, 2 Last Modified: April 25, 25 Contents

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

Piecewise Cubic Splines

Piecewise Cubic Splines 280 CHAP. 5 CURVE FITTING Piecewise Cubic Splines The fitting of a polynomial curve to a set of data points has applications in CAD (computer-assisted design), CAM (computer-assisted manufacturing), and

More information

Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials

Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials Date Period Unit 6: Polynomials DAY TOPIC 1 Polynomial Functions and End Behavior Polynomials and Linear Factors 3 Dividing Polynomials 4 Synthetic Division and the Remainder Theorem 5 Solving Polynomial

More information

Taylor Polynomials. for each dollar that you invest, giving you an 11% profit.

Taylor Polynomials. for each dollar that you invest, giving you an 11% profit. Taylor Polynomials Question A broker offers you bonds at 90% of their face value. When you cash them in later at their full face value, what percentage profit will you make? Answer The answer is not 0%.

More information

To add fractions we rewrite the fractions with a common denominator then add the numerators. = +

To add fractions we rewrite the fractions with a common denominator then add the numerators. = + Partial Fractions Adding fractions To add fractions we rewrite the fractions with a common denominator then add the numerators. Example Find the sum of 3 x 5 The common denominator of 3 and x 5 is 3 x

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results

Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results Unit Title: Quadratic Expressions & Equations Course: Algebra I Unit 8 - Quadratic Expressions & Equations Brief Summary of Unit: At

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

More information

Zeros of a Polynomial Function

Zeros of a Polynomial Function Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

More information

SOLVING POLYNOMIAL EQUATIONS

SOLVING POLYNOMIAL EQUATIONS C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

More information

Five 5. Rational Expressions and Equations C H A P T E R

Five 5. Rational Expressions and Equations C H A P T E R Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.

More information

1 Determine whether an. 2 Solve systems of linear. 3 Solve systems of linear. 4 Solve systems of linear. 5 Select the most efficient

1 Determine whether an. 2 Solve systems of linear. 3 Solve systems of linear. 4 Solve systems of linear. 5 Select the most efficient Section 3.1 Systems of Linear Equations in Two Variables 163 SECTION 3.1 SYSTEMS OF LINEAR EQUATIONS IN TWO VARIABLES Objectives 1 Determine whether an ordered pair is a solution of a system of linear

More information

Version 1.0. General Certificate of Education (A-level) June 2013. Mathematics MPC3. (Specification 6360) Pure Core 3. Final.

Version 1.0. General Certificate of Education (A-level) June 2013. Mathematics MPC3. (Specification 6360) Pure Core 3. Final. Version.0 General Certificate of Education (A-level) June 0 Mathematics MPC (Specification 660) Pure Core Final Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together with

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

More information

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

More information

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

More information

Work as the Area Under a Graph of Force vs. Displacement

Work as the Area Under a Graph of Force vs. Displacement Work as the Area Under a Graph of vs. Displacement Situation A. Consider a situation where an object of mass, m, is lifted at constant velocity in a uniform gravitational field, g. The applied force is

More information

Chapter 3 Section 6 Lesson Polynomials

Chapter 3 Section 6 Lesson Polynomials Chapter Section 6 Lesson Polynomials Introduction This lesson introduces polynomials and like terms. As we learned earlier, a monomial is a constant, a variable, or the product of constants and variables.

More information

Core Maths C3. Revision Notes

Core Maths C3. Revision Notes Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

More information

Partial Fractions Decomposition

Partial Fractions Decomposition Partial Fractions Decomposition Dr. Philippe B. Laval Kennesaw State University August 6, 008 Abstract This handout describes partial fractions decomposition and how it can be used when integrating rational

More information

Equations Involving Fractions

Equations Involving Fractions . Equations Involving Fractions. OBJECTIVES. Determine the ecluded values for the variables of an algebraic fraction. Solve a fractional equation. Solve a proportion for an unknown NOTE The resulting equation

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

5 Systems of Equations

5 Systems of Equations Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

More information

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

More information

Polynomials. Teachers Teaching with Technology. Scotland T 3. Teachers Teaching with Technology (Scotland)

Polynomials. Teachers Teaching with Technology. Scotland T 3. Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology T Scotland Polynomials Teachers Teaching with Technology (Scotland) POLYNOMIALS Aim To demonstrate how the TI-8 can be used

More information

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y).

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 =0, x 1 = π 4, x

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

More information

Partial Fractions. p(x) q(x)

Partial Fractions. p(x) q(x) Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break

More information

Chapter 4 One Dimensional Kinematics

Chapter 4 One Dimensional Kinematics Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity

More information

Solutions of Linear Equations in One Variable

Solutions of Linear Equations in One Variable 2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

More information

Section 1-4 Functions: Graphs and Properties

Section 1-4 Functions: Graphs and Properties 44 1 FUNCTIONS AND GRAPHS I(r). 2.7r where r represents R & D ependitures. (A) Complete the following table. Round values of I(r) to one decimal place. r (R & D) Net income I(r).66 1.2.7 1..8 1.8.99 2.1

More information

Grade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 %

Grade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 % Performance Assessment Task Number Towers Grade 9 The task challenges a student to demonstrate understanding of the concepts of algebraic properties and representations. A student must make sense of the

More information

SOLVING EQUATIONS WITH EXCEL

SOLVING EQUATIONS WITH EXCEL SOLVING EQUATIONS WITH EXCEL Excel and Lotus software are equipped with functions that allow the user to identify the root of an equation. By root, we mean the values of x such that a given equation cancels

More information

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential

More information

NSM100 Introduction to Algebra Chapter 5 Notes Factoring

NSM100 Introduction to Algebra Chapter 5 Notes Factoring Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

More information

When factoring, we look for greatest common factor of each term and reverse the distributive property and take out the GCF.

When factoring, we look for greatest common factor of each term and reverse the distributive property and take out the GCF. Factoring: reversing the distributive property. The distributive property allows us to do the following: When factoring, we look for greatest common factor of each term and reverse the distributive property

More information

Math Common Core Sampler Test

Math Common Core Sampler Test High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests

More information

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

More information

Section 3-7. Marginal Analysis in Business and Economics. Marginal Cost, Revenue, and Profit. 202 Chapter 3 The Derivative

Section 3-7. Marginal Analysis in Business and Economics. Marginal Cost, Revenue, and Profit. 202 Chapter 3 The Derivative 202 Chapter 3 The Derivative Section 3-7 Marginal Analysis in Business and Economics Marginal Cost, Revenue, and Profit Application Marginal Average Cost, Revenue, and Profit Marginal Cost, Revenue, and

More information

Version. General Certificate of Education (A-level) January 2013. Mathematics MPC3. (Specification 6360) Pure Core 3. Final.

Version. General Certificate of Education (A-level) January 2013. Mathematics MPC3. (Specification 6360) Pure Core 3. Final. Version General Certificate of Education (A-level) January Mathematics MPC (Specification 66) Pure Core Final Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together with

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

Basics of Polynomial Theory

Basics of Polynomial Theory 3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where

More information

Algebra Practice Problems for Precalculus and Calculus

Algebra Practice Problems for Precalculus and Calculus Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials

More information

Substitute 4 for x in the function, Simplify.

Substitute 4 for x in the function, Simplify. Page 1 of 19 Review of Eponential and Logarithmic Functions An eponential function is a function in the form of f ( ) = for a fied ase, where > 0 and 1. is called the ase of the eponential function. The

More information

Solving Linear Programs in Excel

Solving Linear Programs in Excel Notes for AGEC 622 Bruce McCarl Regents Professor of Agricultural Economics Texas A&M University Thanks to Michael Lau for his efforts to prepare the earlier copies of this. 1 http://ageco.tamu.edu/faculty/mccarl/622class/

More information

CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES INTRODUCTION

CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES INTRODUCTION CHAP FINITE EEMENT ANAYSIS OF BEAMS AND FRAMES INTRODUCTION We learned Direct Stiffness Method in Chapter imited to simple elements such as D bars we will learn Energ Method to build beam finite element

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method. A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

More information

A Detailed Price Discrimination Example

A Detailed Price Discrimination Example A Detailed Price Discrimination Example Suppose that there are two different types of customers for a monopolist s product. Customers of type 1 have demand curves as follows. These demand curves include

More information