Greedy. Greedy. Greedy. Greedy. What is a Greedy Algorithm? Solves an optimization problem: the solution is best in some sense.

Size: px
Start display at page:

Download "Greedy. Greedy. Greedy. Greedy. What is a Greedy Algorithm? Solves an optimization problem: the solution is best in some sense."

Transcription

1 A Comparison Divide & Conquer Dynamic Programming Algorithm View problem as collection of Recursive nature Independent overlapping typically sequential dependence Number of depends on partitioning factors typically small Preprocessing typically sort Characteristic running time Primarily for optimization problems Optimal substructure: optimal solution to problem contains within it optimal solutions to choice property: locally optimal produces globally optimal Heuristic version useful for bounding optimal value typically log function of n depends on number and difficulty of often dominated by nlogn sort 9/7/10 1 What is a Algorithm? Solves an optimization problem: the solution is best in some sense. Strategy: At each decision point, do what looks best locally Choice does not depend on evaluating potential future choices or solving Top-down algorithmic structure With each step, reduce problem to a smaller problem Optimal Substructure: optimal solution contains in it optimal solutions to Choice Property: locally best = globally best 9/7/10 What is a Algorithm? Solves an optimization problem: the solution is best in some sense. Strategy: At each decision point, do what looks best locally Choice does not depend on evaluating potential future choices or solving Top-down algorithmic structure With each step, reduce problem to a smaller problem Optimal Substructure: optimal solution contains in it optimal solutions to Choice Property: locally best = globally best 9/7/10 3 See also: With a greedy algorithm for the N-queens problem. 9/7/10 1

2 Examples: Minimum Spanning Tree Minimum Spanning Forest Dijkstra Shortest Path Huffman Codes Fractional Knapsack Activity Selection Minimum Spanning Tree Invariant: Minimum weight spanning forest Becomes single tree at end Invariant: Minimum weight tree Spans all vertices at end A B 3 G 5 1 E F D C for Undirected, Connected, Weighted Graph G=(V,E) 9/7/10 5 9/7/10 Single Source Shortest Paths: Dijkstra s Algorithm Huffman Codes A B 3 G 5 1 E F D C 9/7/10 7 9/7/10 8

3 Fractional Knapsack : Example Activity Selection: Problem Instance Set S = {1,,..., n} of n activities Each activity i has: start time: s i finish time: f i si f i Activities i, j are compatible iff nonoverlapping: [s i, f i ) \Å [s j, f j ) =. Objective: select a maximum-sized set of mutually compatible activities 9/7/10 9 9/7/10 10 Algorithm Why does this all work? Algorithm: S = presort activities in S by nondecreasing finish time and renumber GREEDY-ACTIVITY-SELECTOR(S, f) n = S.length A = {1} j = 1 for i = to n return A» if s i f i» A = A [ {i}» j = i Why does it provide an optimal (maximal) solution? It is clear that it will provide a solution (a set of nonoverlapping activities), but there is no obvious reason to believe that it will provide a maximal set of activities. We start with a restatement of the problem in such a way that a dynamic programming solution can be constructed. This solution will be shown to be maximal. It will then be modified into a greedy solution in such a way that maximality will be preserved. 9/7/ /7/10 1 3

4 Consider the set S of activities, sorted in monotonically increasing order of finishing time: i s i f i Where the activity a i corresponds to the time interval [s i, f i ). The subset {a 3, a 9, a 11 } consists of mutually compatible activities, but is not maximal. The subsets {a 1, a, a 8, a 11 }, and {a, a, a 9, a 11 } are also compatible and are both maximal. 9/7/10 13 First Step: find an optimal substructure: an optimal solution to a subproblem that can be extended to a full solution. Define an appropriate space of : S ij = {a k S: f i s k < f k s j }, the set of all those activities compatible with a i and a j and with those that finish no later than a i and start no earlier than a j. Add two activities: a 0 :[, 0); a n+1 :[, ); which come before and after, respectively, all activities in S = S 0,n+1. Assume the activities are sorted in non-decreasing order of finish: f 0 f 1 f n < f n+1. Then S ij is empty whenever i j. 9/7/10 1 We define the suproblems: find a maximum size subset of mutually compatible activities from S ij, 0 i < j n+1. What is the substructure? Substructure: suppose a solution to S ij contains some activity a k, f i s k < f k s j. a k generates two, S ik and S kj. The solution to S ij is the union of a solution to S ik, the singleton activity {a k }, and a solution to S kj. Any solution to a larger problem can be obtained by patching together solutions for smaller problems. Cardinality (=number of activities) is also additive. Optimal Substructure: assume A ij is an optimal solution to S ij, containing an activity a k. Then A ij contains a solution to S ik (the activities that end before the beginning of a k ) and a solution to S kj (the activities that begin after the end of a k ). If these solutions were not already maximal, then one could obtain a maximal solution for, say, S ik, and splice it with {a k } and the solution to S kj to obtain a solution for S ij of greater cardinality, thus violating the optimality condition assumed for A ij. 9/7/ /7/10 1

5 Use Optimal Substructure to construct an optimal solution: Any solution to a nonempty problem S ij includes some activity a k, and any optimal solution to S ij must contain optimal solutions to S ik and S kj. For each a k in S 0,n+1, find (recursively) optimal solutions of S 0k and S k,n+1, say A 0k and A k,n+1. Splice them together, along with a k, to form solutions A k. Take a maximal A k as an optimal solution A 0,n+1. We need to look at the recursion in more detail (cost??) Second Step: the recursive algorithm. Let c[i,j] denote the maximum number of compatible activities in S ij. It is easy to see that c[i,j] = 0, whenever i j - and S ij is empty. If, in a non-empty set of activities S ij, the activity a k occurs as part of a maximal compatible subset, this generates two, S ik and S kj, and the equation c[i,j] = c[i,k] c[k,j], which tells us how the cardinalities are related. The problem is that k is not known a priori. Solution: c[i,j] = max i<k<j (c[i,k] c[k,j]), if S ij. And one can write an easy bottom up (dynamic programming) algorithm to compute a maximal solution. 9/7/ /7/10 18 A better mousetrap. Recall S ij = {a k S: f i s k < f k s j }. Theorem 1.1. Consider any nonempty subproblem S ij, and let a m be the activity in S ij with the earliest finish time: f m = min{f k : a k S ij }. Then: 1. a m is used in some maximum size subset of mutually compatible activities of S ij (e.g., A ij = A im U {a m } U A mj ).. The subproblem S im is empty, so that choosing a m leaves the subproblem S mj as the only one that may be nonempty. Proof: ) if S im is nonempty then S ij must contain an activity (finishing) prior to a m. Contradiction. 1) Suppose A ij is a maximal subset. Either a m is in A ij, and we are done, or it is not. If not, let a k be the earliest finishing activity in A ij. It can be replaced by a m (since it finishes no earlier than a m ) thus giving a maximal subset containing a m. 9/7/10 19 Why is this a better mousetrap? The dynamic programming solution requires solving j - i 1 to solve S ij. Total Running Time??? Theorem 1.1 gives us conditions under which solving S ij requires solving ONE subproblem only, since the other implied by the dynamic programming recurrence relation are empty, or irrelevant (they might give us other maximal solutions, but we need just one) Lots less computation Another benefit comes from the observation that the problem can be solved in a top-down fashion: take the earliest finishing activity, a m, and you are left with the problem S m,n+1. It is easy to see that each activity needs to be looked at only once: linear time (after sorting). 9/7/10 0 5

6 The Algorithm: R_A_S(s, f, k, n) 1. m = k + 1. while m n and s[m] < f[k] // find first activity in S k to finish 3. do m = m + 1. if m n 5. then return {a m } + R_A_S(s, f, m, n). else return. The Recursive Activity Selector Algorithm: Cormen, Leiserson, Rivest, Stein: Fig. 1.1 The time is - fairly obviously Θ(n). 9/7/10 1 9/7/10 A Slightly Different Perspective. Rather than start from a dynamic programming approach, moving to a greedy strategy, start with identifying the characteristics of the greedy approach. Choice Property. Choice that looks best in the current problem will work: no need to look ahead to its implications for the solution. 1. Make a choice and leave a subproblem to solve.. Prove that the greedy choice is always safe - there is an optimal solution starting from a greedy choice. 3. Prove that, having made a greedy choice, the solution of the remaining subproblem can be added to the greedy choice providing a solution to the original problem. This is important because it reduces the amount of computational complexity we have to deal with. Can t expect this to hold all the time: maximization of a function with multiple relative maxima on an interval - the gradient method would lead to a greedy choice, but may well lead to a relative maximum that is far from the actual maximum. 9/7/10 3 9/7/10

7 Optimal Substructure. While the greedy choice property tells us that we should be able to solve the problem with little computation, we need to know that the solution can be properly reconstructed: an optimal solution contains optimal sub-solutions to the. Note: An induction can then be used to turn the construction around (bottom-up). In the case of a problem possessing only the Optimal Substructure property there is little chance that we will be able to find methods more efficient than dynamic programming (with memoization). Upper Bound Lower Bound 9/7/10 5 9/7/10 7

Near Optimal Solutions

Near Optimal Solutions Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8] Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)

More information

Solutions to Homework 6

Solutions to Homework 6 Solutions to Homework 6 Debasish Das EECS Department, Northwestern University ddas@northwestern.edu 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example

More information

Scheduling Shop Scheduling. Tim Nieberg

Scheduling Shop Scheduling. Tim Nieberg Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations

More information

Full and Complete Binary Trees

Full and Complete Binary Trees Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

More information

CS473 - Algorithms I

CS473 - Algorithms I CS473 - Algorithms I Lecture 4 The Divide-and-Conquer Design Paradigm View in slide-show mode 1 Reminder: Merge Sort Input array A sort this half sort this half Divide Conquer merge two sorted halves Combine

More information

Find-The-Number. 1 Find-The-Number With Comps

Find-The-Number. 1 Find-The-Number With Comps Find-The-Number 1 Find-The-Number With Comps Consider the following two-person game, which we call Find-The-Number with Comps. Player A (for answerer) has a number x between 1 and 1000. Player Q (for questioner)

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

Warshall s Algorithm: Transitive Closure

Warshall s Algorithm: Transitive Closure CS 0 Theory of Algorithms / CS 68 Algorithms in Bioinformaticsi Dynamic Programming Part II. Warshall s Algorithm: Transitive Closure Computes the transitive closure of a relation (Alternatively: all paths

More information

Closest Pair Problem

Closest Pair Problem Closest Pair Problem Given n points in d-dimensions, find two whose mutual distance is smallest. Fundamental problem in many applications as well as a key step in many algorithms. p q A naive algorithm

More information

CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010

CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010 CS 598CSC: Combinatorial Optimization Lecture date: /4/010 Instructor: Chandra Chekuri Scribe: David Morrison Gomory-Hu Trees (The work in this section closely follows [3]) Let G = (V, E) be an undirected

More information

Single machine parallel batch scheduling with unbounded capacity

Single machine parallel batch scheduling with unbounded capacity Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University

More information

Matrix-Chain Multiplication

Matrix-Chain Multiplication Matrix-Chain Multiplication Let A be an n by m matrix, let B be an m by p matrix, then C = AB is an n by p matrix. C = AB can be computed in O(nmp) time, using traditional matrix multiplication. Suppose

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

How To Find An Optimal Search Protocol For An Oblivious Cell

How To Find An Optimal Search Protocol For An Oblivious Cell The Conference Call Search Problem in Wireless Networks Leah Epstein 1, and Asaf Levin 2 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il 2 Department of Statistics,

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion. Ernie Croot. February 3, 2010 Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

More information

Cpt S 223. School of EECS, WSU

Cpt S 223. School of EECS, WSU The Shortest Path Problem 1 Shortest-Path Algorithms Find the shortest path from point A to point B Shortest in time, distance, cost, Numerous applications Map navigation Flight itineraries Circuit wiring

More information

GRAPH THEORY LECTURE 4: TREES

GRAPH THEORY LECTURE 4: TREES GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection

More information

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004 Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February

More information

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu COPYRIGHT NOTICE: Ariel Rubinstein: Lecture Notes in Microeconomic Theory is published by Princeton University Press and copyrighted, c 2006, by Princeton University Press. All rights reserved. No part

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

Definition 11.1. Given a graph G on n vertices, we define the following quantities:

Definition 11.1. Given a graph G on n vertices, we define the following quantities: Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define

More information

Lecture 1: Course overview, circuits, and formulas

Lecture 1: Course overview, circuits, and formulas Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik

More information

Classification - Examples

Classification - Examples Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking

More information

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92. Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure

More information

the recursion-tree method

the recursion-tree method the recursion- method recurrence into a 1 recurrence into a 2 MCS 360 Lecture 39 Introduction to Data Structures Jan Verschelde, 22 November 2010 recurrence into a The for consists of two steps: 1 Guess

More information

ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015

ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE STEINER FOREST PROBLEM An initially given graph G. s 1 s 2 A sequence of demands (s i, t i ) arriving

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

5.1 Bipartite Matching

5.1 Bipartite Matching CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

17.3.1 Follow the Perturbed Leader

17.3.1 Follow the Perturbed Leader CS787: Advanced Algorithms Topic: Online Learning Presenters: David He, Chris Hopman 17.3.1 Follow the Perturbed Leader 17.3.1.1 Prediction Problem Recall the prediction problem that we discussed in class.

More information

Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction

Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction Lecture 11 Dynamic Programming 11.1 Overview Dynamic Programming is a powerful technique that allows one to solve many different types of problems in time O(n 2 ) or O(n 3 ) for which a naive approach

More information

Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NP-Complete. Polynomial-Time Algorithms

Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NP-Complete. Polynomial-Time Algorithms CSCE 310J Data Structures & Algorithms P, NP, and NP-Complete Dr. Steve Goddard goddard@cse.unl.edu CSCE 310J Data Structures & Algorithms Giving credit where credit is due:» Most of the lecture notes

More information

Lecture 17 : Equivalence and Order Relations DRAFT

Lecture 17 : Equivalence and Order Relations DRAFT CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion

More information

WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS. Christopher Heil Georgia Institute of Technology WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

All trees contain a large induced subgraph having all degrees 1 (mod k)

All trees contain a large induced subgraph having all degrees 1 (mod k) All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New

More information

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set

More information

OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION

OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION Sérgio Pequito, Stephen Kruzick, Soummya Kar, José M. F. Moura, A. Pedro Aguiar Department of Electrical and Computer Engineering

More information

Even Faster Algorithm for Set Splitting!

Even Faster Algorithm for Set Splitting! Even Faster Algorithm for Set Splitting! Daniel Lokshtanov Saket Saurabh Abstract In the p-set Splitting problem we are given a universe U, a family F of subsets of U and a positive integer k and the objective

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information

The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge,

The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints

More information

Connected Identifying Codes for Sensor Network Monitoring

Connected Identifying Codes for Sensor Network Monitoring Connected Identifying Codes for Sensor Network Monitoring Niloofar Fazlollahi, David Starobinski and Ari Trachtenberg Dept. of Electrical and Computer Engineering Boston University, Boston, MA 02215 Email:

More information

Kenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract

Kenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract Kenken For Teachers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 7, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic skills.

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

CMSC 858T: Randomized Algorithms Spring 2003 Handout 8: The Local Lemma

CMSC 858T: Randomized Algorithms Spring 2003 Handout 8: The Local Lemma CMSC 858T: Randomized Algorithms Spring 2003 Handout 8: The Local Lemma Please Note: The references at the end are given for extra reading if you are interested in exploring these ideas further. You are

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Minimizing Probing Cost and Achieving Identifiability in Probe Based Network Link Monitoring

Minimizing Probing Cost and Achieving Identifiability in Probe Based Network Link Monitoring Minimizing Probing Cost and Achieving Identifiability in Probe Based Network Link Monitoring Qiang Zheng, Student Member, IEEE, and Guohong Cao, Fellow, IEEE Department of Computer Science and Engineering

More information

6.852: Distributed Algorithms Fall, 2009. Class 2

6.852: Distributed Algorithms Fall, 2009. Class 2 .8: Distributed Algorithms Fall, 009 Class Today s plan Leader election in a synchronous ring: Lower bound for comparison-based algorithms. Basic computation in general synchronous networks: Leader election

More information

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

Linear Programming. March 14, 2014

Linear Programming. March 14, 2014 Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

More information

CSC2420 Spring 2015: Lecture 3

CSC2420 Spring 2015: Lecture 3 CSC2420 Spring 2015: Lecture 3 Allan Borodin January 22, 2015 1 / 1 Announcements and todays agenda Assignment 1 due next Thursday. I may add one or two additional questions today or tomorrow. Todays agenda

More information

Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

More information

Large induced subgraphs with all degrees odd

Large induced subgraphs with all degrees odd Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

More information

Analysis of Algorithms I: Optimal Binary Search Trees

Analysis of Algorithms I: Optimal Binary Search Trees Analysis of Algorithms I: Optimal Binary Search Trees Xi Chen Columbia University Given a set of n keys K = {k 1,..., k n } in sorted order: k 1 < k 2 < < k n we wish to build an optimal binary search

More information

A Note on Maximum Independent Sets in Rectangle Intersection Graphs

A Note on Maximum Independent Sets in Rectangle Intersection Graphs A Note on Maximum Independent Sets in Rectangle Intersection Graphs Timothy M. Chan School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1, Canada tmchan@uwaterloo.ca September 12,

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 3, Issue 7, July 23 ISSN: 2277 28X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Greedy Algorithm:

More information

Scheduling a sequence of tasks with general completion costs

Scheduling a sequence of tasks with general completion costs Scheduling a sequence of tasks with general completion costs Francis Sourd CNRS-LIP6 4, place Jussieu 75252 Paris Cedex 05, France Francis.Sourd@lip6.fr Abstract Scheduling a sequence of tasks in the acceptation

More information

CMPSCI611: Approximating MAX-CUT Lecture 20

CMPSCI611: Approximating MAX-CUT Lecture 20 CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm. Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

More information

Mathematical Induction. Lecture 10-11

Mathematical Induction. Lecture 10-11 Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach

More information

CSE 135: Introduction to Theory of Computation Decidability and Recognizability

CSE 135: Introduction to Theory of Computation Decidability and Recognizability CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing

More information

Lecture 22: November 10

Lecture 22: November 10 CS271 Randomness & Computation Fall 2011 Lecture 22: November 10 Lecturer: Alistair Sinclair Based on scribe notes by Rafael Frongillo Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

Distributed Computing over Communication Networks: Maximal Independent Set

Distributed Computing over Communication Networks: Maximal Independent Set Distributed Computing over Communication Networks: Maximal Independent Set What is a MIS? MIS An independent set (IS) of an undirected graph is a subset U of nodes such that no two nodes in U are adjacent.

More information

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

More information

CSCE 310J Data Structures & Algorithms. Dynamic programming 0-1 Knapsack problem. Dynamic programming. Dynamic Programming. Knapsack problem (Review)

CSCE 310J Data Structures & Algorithms. Dynamic programming 0-1 Knapsack problem. Dynamic programming. Dynamic Programming. Knapsack problem (Review) CSCE J Data Structures & Algorithms Dynamic programming - Knapsac problem Dr. Steve Goddard goddard@cse.unl.edu CSCE J Data Structures & Algorithms Giving credit where credit is due:» Most of slides for

More information

8 Divisibility and prime numbers

8 Divisibility and prime numbers 8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

More information

Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li

Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order

More information

1.2 Solving a System of Linear Equations

1.2 Solving a System of Linear Equations 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

More information

Chapter 3. Social Surplus and Tractability

Chapter 3. Social Surplus and Tractability Chapter 3 Social Surplus and Tractability In this chapter we discuss the objective of social surplus. As we will see, ignoring computational tractability, the economics of designing mechanisms to maximize

More information

Tree-representation of set families and applications to combinatorial decompositions

Tree-representation of set families and applications to combinatorial decompositions Tree-representation of set families and applications to combinatorial decompositions Binh-Minh Bui-Xuan a, Michel Habib b Michaël Rao c a Department of Informatics, University of Bergen, Norway. buixuan@ii.uib.no

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

More information

On the k-path cover problem for cacti

On the k-path cover problem for cacti On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China zeminjin@eyou.com, x.li@eyou.com Abstract In this paper we

More information

SCORE SETS IN ORIENTED GRAPHS

SCORE SETS IN ORIENTED GRAPHS Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information

Arithmetic Coding: Introduction

Arithmetic Coding: Introduction Data Compression Arithmetic coding Arithmetic Coding: Introduction Allows using fractional parts of bits!! Used in PPM, JPEG/MPEG (as option), Bzip More time costly than Huffman, but integer implementation

More information

Dynamic Programming Problem Set Partial Solution CMPSC 465

Dynamic Programming Problem Set Partial Solution CMPSC 465 Dynamic Programming Problem Set Partial Solution CMPSC 465 I ve annotated this document with partial solutions to problems written more like a test solution. (I remind you again, though, that a formal

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Distributed Load Balancing for Machines Fully Heterogeneous

Distributed Load Balancing for Machines Fully Heterogeneous Internship Report 2 nd of June - 22 th of August 2014 Distributed Load Balancing for Machines Fully Heterogeneous Nathanaël Cheriere nathanael.cheriere@ens-rennes.fr ENS Rennes Academic Year 2013-2014

More information

Towards Optimal Firewall Rule Ordering Utilizing Directed Acyclical Graphs

Towards Optimal Firewall Rule Ordering Utilizing Directed Acyclical Graphs Towards Optimal Firewall Rule Ordering Utilizing Directed Acyclical Graphs Ashish Tapdiya and Errin W. Fulp Department of Computer Science Wake Forest University Winston Salem, NC, USA nsg.cs.wfu.edu Email:

More information

Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

More information

The Minimum Consistent Subset Cover Problem and its Applications in Data Mining

The Minimum Consistent Subset Cover Problem and its Applications in Data Mining The Minimum Consistent Subset Cover Problem and its Applications in Data Mining Byron J Gao 1,2, Martin Ester 1, Jin-Yi Cai 2, Oliver Schulte 1, and Hui Xiong 3 1 School of Computing Science, Simon Fraser

More information

A Non-Linear Schema Theorem for Genetic Algorithms

A Non-Linear Schema Theorem for Genetic Algorithms A Non-Linear Schema Theorem for Genetic Algorithms William A Greene Computer Science Department University of New Orleans New Orleans, LA 70148 bill@csunoedu 504-280-6755 Abstract We generalize Holland

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the

More information

MINIMAL BOOKS OF RATIONALES

MINIMAL BOOKS OF RATIONALES MINIMAL BOOKS OF RATIONALES José Apesteguía Miguel A. Ballester D.T.2005/01 MINIMAL BOOKS OF RATIONALES JOSE APESTEGUIA AND MIGUEL A. BALLESTER Abstract. Kalai, Rubinstein, and Spiegler (2002) propose

More information

Analysis of Algorithms, I

Analysis of Algorithms, I Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications

More information

Scheduling Single Machine Scheduling. Tim Nieberg

Scheduling Single Machine Scheduling. Tim Nieberg Scheduling Single Machine Scheduling Tim Nieberg Single machine models Observation: for non-preemptive problems and regular objectives, a sequence in which the jobs are processed is sufficient to describe

More information

THE DIMENSION OF A VECTOR SPACE

THE DIMENSION OF A VECTOR SPACE THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field

More information

TREE BASIC TERMINOLOGIES

TREE BASIC TERMINOLOGIES TREE Trees are very flexible, versatile and powerful non-liner data structure that can be used to represent data items possessing hierarchical relationship between the grand father and his children and

More information