# A Note on Maximum Independent Sets in Rectangle Intersection Graphs

Save this PDF as:

Size: px
Start display at page:

Download "A Note on Maximum Independent Sets in Rectangle Intersection Graphs"

## Transcription

1 A Note on Maximum Independent Sets in Rectangle Intersection Graphs Timothy M. Chan School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1, Canada September 12, 2003 Abstract Finding the maximum independent set in the intersection graph of n axis-parallel rectangles is NP-hard. We re-examine two known approximation results for this problem. For the case of rectangles of unit height, Agarwal, van Kreveld, and Suri (1997) gave a (1 + 1/k)-factor algorithm with an O(n log n + n 2k 1 ) time bound for any integer constant k 1; we describe a similar algorithm running in only O(n log n + n k 1 ) time, where n denotes the maximum number of rectangles a point can be in. For the general case, Berman, DasGupta, Muthukrishnan, and Ramaswami (2001) gave a log k n -factor algorithm with an O(n k+1 ) time bound for any integer constant k 2; we describe similar algorithms running in O(n log n + n k 2 O(k/ log k) ) and n time. Keywords: Approximation algorithm; Computational geometry; Dynamic programming 1 Introduction The subject of this note is the following (henceforth, the problem ): given a collection C of n axisparallel rectangles in the plane, find a largest subcollection S of disjoint rectangles, or equivalently, find a maximum independent set in the intersection graph of the rectangles. The problem has interested several groups of researchers [1, 2, 3, 5, 7, 9], due to applications ranging from map labeling to data mining. As the problem is NP-hard [6, 8], attention is focused on finding efficient approximation algorithms. See [3] for a more comprehensive discussion of past results. The earliest result was perhaps the shifting -based polynomial-time approximation scheme by Hochbaum and Maass [7] for the special case of unit squares. Originally, the scheme required n O(k2) time to guarantee an approximation factor of 1 + 1/k. Subsequent improvements have reduced the running time somewhat. Notably, Agarwal, van Kreveld, and Suri [1] described a refinement with a time and space bound of O(n 2k 1 ) for any constant integer k 2. This algorithm worked more generally for unit-height rectangles, This work was supported in part by an NSERC Research Grant. 1

2 which arise in the application to map labeling for a fixed font size. For k = 1 (factor 2), the algorithm is almost trivial and runs in O(n log n) time. Generalizing in another direction, Erlebach, Jansen, and Seidel [5] and the author [3] have recently obtained polynomial-time approximation schemes for arbitrary squares. To get factor 1 + 1/k, the required running time is n O(k2) and n O(k), respectively. For arbitrary rectangles, the problem is open. As several researchers have independently observed [1, 9, 10], a logarithmic approximation factor is certainly possible. For example, Agarwal, van Kreveld, and Suri [1] described a straightforward O(n log n)-time algorithm with factor at most log 2 n (in fact, log 2 S see [10]). Currently, no polynomial-time algorithm is known with o(log n) approximation factor, although Berman et al. [2] have recently observed that the log n bound can be reduced by an arbitrary constant multiple. Specifically, factor log k n can be achieved in O(n k S ) time. Our new results involve a few modest improvements: For unit-height rectangles, we simplify and speed up Agarwal et al. s dynamic programming algorithm [1] to run in O(n k ) worst-case time, for the same approximation factor 1 + 1/k. The time bound is actually O(n log n + n k 1 ), where denotes the maximum depth. Here, the depth of a point is the number of rectangles containing the point. In map labeling applications, the value of is small (close to a constant), so our result suggests that the dynamic programming approach may not be as impractical as previously thought. (For example, factor 3/2 requires only O(n log n + n ) time, not cubic.) The space usage is bounded by O(n + n k 1 ), where n is the maximum number of rectangles a horizontal line can intersect; in practice, n is likely to be much smaller than n. For arbitrary rectangles, we show that a modification of Agarwal et al. s log 2 n divide-andconquer algorithm that incorporates the dynamic programming subroutine can find a factor- log k n solution in O(n log n + n k 2 ) time. The resulting algorithm is simpler and faster (and thus more practical) than Berman et al. s [2]. The space usage is O(n + n k 2 ). On the theoretical side, we also derive a better worst-case time bound in terms of n. We show that factor near log k n requires O(n f(k) ) time for some function f(k) = O(k/ log k). For small k, the time bound is actually quite reasonable (for example, f(3) < 1.369, f(4) = 1.5, f(5) < 1.635, and f(8) = 2). The techniques we use are hardly original; the basic dynamic programming strategy, as well as the divide-and-conquer idea, can be found (independently and in different forms) in the papers of Agarwal et al. [1] and Berman et al. [2]. The improvements come mostly from a more careful usage of these techniques and, at the same time, an attempt to keep things simple. 2 A Dynamic Programming Subroutine Lemma 2.1 Fix an integer constant k 1. If all the rectangles can be stabbed by k horizontal lines, then we can solve the problem exactly in O(n log n + n k 1 ) time. Proof: Let R 1,..., R n be the given rectangles. Let a i and b i be the left and right x-coordinate of R i. By sorting, assume that a 1 a n a n+1 =. Let next[j] denote the smallest index i 2

3 with a i > b j. For a set S of rectangles, let S i denote the subset of rectangles in S intersecting the vertical line x = a i. A subproblem is created for each index i and each subset S of disjoint rectangles intersecting x = a i with S k 1: define A[i, S] to be the maximum number of disjoint rectangles among R i,..., R n that do not intersect the rectangles in S. These numbers can be computed from i = n + 1 to 1 by the following rules. 1. For the base case, A[n + 1, ] = If R i intersects some rectangle in S, then A[i, S] = A[i + 1, S i+1 ], because R i cannot be used in the solution to the subproblem. 3. Otherwise, if S < k 1, then { } A[i, S] = max A[i + 1, S i+1 ], 1 + A[i + 1, (S {R i }) i+1 ], because the first term corresponds to the case where R i is not used in the solution, and the second term corresponds to the case where R i is used. 4. Otherwise, S = k 1. Let t be the smallest next[j] value over all rectangles R j S {R i }. Then { } A[i, S] = max A[i + 1, S i+1 ], 1 + A[t, (S {R i }) t ], because if R i is used in the solution, then all other rectangles in the solution must be to the right of some rectangle in S {R i }, and thus t (otherwise, we would have k + 1 disjoint rectangles intersecting a vertical line, contradicting the assumption of the lemma). Note that (S {R i }) t k 1 by the choice of t. The maximum number of disjoint rectangles is A[1, ]. The actual collection of disjoint rectangles can be retrieved in the usual way. By the assumption of the lemma, there are O(n k 1 ) subproblems. So, excluding sorting of x-coordinates (needed to initialize the next entries), this dynamic programming algorithm runs in O(n k 1 ) time. One implementation issue remains to be addressed: to use O(n k 1 ) space instead of O(n k ) for the array A, we need to first map tuples (i, S) to indices. This can be done by sorting (lexicographically) all tuples occurring in both sides of the above equations, and assigning a common index to identical tuples. By radix sort, the additional running time is O(n k 1 ). 3 The Unit-Height Case Theorem 3.1 Fix an integer constant k 1. If all rectangles have unit height, then we can solve the problem approximately to within a factor of 1 + 1/k in O(n log n + n k 1 ) time. Proof: We use a shifting idea. 3

4 1. For each i = 0,..., k, let C (i) be the subcollection of all rectangles that do not intersect any grid horizontal line y = l with l i mod (k + 1). Now, C (i) is a union of groups of rectangles, where each group can be stabbed by k horizontal lines (because the rectangles have unit height) and no two rectangles from different groups intersect. We can thus solve the problem for each group by Lemma 2.1, and take the union to obtain the solution S (i) to C (i). 2. Return the largest set S among S (0),..., S (k). The running time sums to O(n log n + n k 1 ). Since each unit-height rectangle belongs to exactly k of the k + 1 subcollections C (0),..., C (k), k S = k S C (i) i=0 k S (i) (k + 1) S, i=0 implying that S (1 + 1/k) S. 4 The General Case Theorem 4.1 Fix an integer constant k 2. If we are given H > 1 horizontal lines that stab all rectangles, then we can solve the problem approximately to within a factor of log k H in O(n log n + n k 2 ) time. Proof: We use divide-and-conquer. 1. The base case, H k, can be handled directly by Lemma Let l 1,..., l k 1 be the H/k -th, 2 H/k -th,..., (k 1) H/k -th lowest horizontal lines (with l 0 at y = and l k at y = ). 3. Let C (0) be the subcollection of all rectangles stabbed by these k 1 lines. We can compute the exact solution S (0) to C (0) by Lemma For each i = 1,..., k, let C (i) be the subcollection of all rectangles that lie entirely between l i 1 and l i. Now, C (i) is stabbed by H/k horizontal lines. We can compute an approximate solution S (i) to C (i) recursively. 5. Return the larger of the two sets S (0) and S (1) S (k). The running time is dominated by step 3 and sums to O(n log n + n k 2 ). To analyze the approximation factor, let S be the final returned solution. Consider the recursion tree generated and let C v (0) and S v (0) be sets corresponding to node v of the tree. Then v S C v (0) v S v (0) S, where the sums are over all nodes at any fixed level of the tree. Summing over all levels yield S S log k H. 4

5 5 More on the General Case If is polylogarithmic, we can set k = Θ(log ε n) for a small constant ε > 0 in Theorem 4.1 to get a polynomial-time algorithm with factor O(log n/ log log n) (since the hidden constant in the time bound depends polynomially on k). For an arbitrary, however, we are unable to obtain an approximation factor of o(log n) in polynomial time; instead, we concentrate on improving the dependence on n in the running time. In the worst case, Theorem 4.1 yields factor log k n in O(n k 1 ) time (k 3). This worst-case bound can be improved, for example, by using larger branching factors (instead of k) at deeper levels of the tree (as n decreases). A still better bound can be obtained by a different approach which we describe now. This approach exploits the unweightedness of the problem (in contrast, all the algorithms we have given so far can be extended to solve the maximum-weight independent set problem for input rectangles with weights). Corollary 5.1 Fix an integer constant k 2. We can solve the problem approximately to within a factor of log k S in O(n log n + n k 2 ) time. Proof: Project the rectangles onto the y-axis. We can find the smallest set of points that stab the resulting (one-dimensional) y-intervals by the standard greedy algorithm, in linear time after sorting. As is well-known, in one dimension, the smallest number of stabbing points, H, is equal to the largest number of disjoint intervals. Thus, H S. The result follows from Theorem 4.1. Corollary 5.2 Fix an integer constant k 2. Given d, we can compute a solution S with S S log k S + n/d in O(n log n + nd k 2 ) time. Proof: We use a greedy strategy. Repeatedly find a point p of depth d and remove all rectangles stabbed by p, until the remaining collection of rectangles, C, have maximum depth < d. Then return the solution to C by Corollary 5.1. The number of iterations is at most n/d, since at least d rectangles are removed per iteration. Since C C can be stabbed by at most n/d points, there can be at most n/d disjoint rectangles in C C. Thus, S C n/d, and S C S log k S C. The approximation bound follows. To analyze the running time, observe that a standard sweep-line algorithm can compute the maximum depth in a collection of n axis-parallel rectangles in O(n log n) time; for example, see [4]. This algorithm stores the rectangles that intersect the sweep line in a tree structure supporting logarithmic-time insertions and deletions, and maintains the maximum depth at the sweep line, as we move from left to right. We can modify the algorithm so that as soon as a point p of depth d is discovered, we delete the rectangles stabbed by p from the data structure, and resume the sweep. As the total number of deletions is still bounded by n, the total time required to implement the greedy phase remains O(n log n). Corollary 5.3 Fix real constants b > 2 and ε > 0. We can solve the problem approximately to within a factor of (1 + ε) log b n in O(n f(b) ) time, where f(b) := 1 + max (i 1)(1 log b i) = O(b/ log b). i=1,..., b 1 5

6 Proof: Run the algorithm in Corollary 5.2 for each k = 2,..., b with d = Cn 1 log b (k 1) for a sufficiently large constant C, and return the largest solution S found. The time bound holds. To analyze the approximation factor, let k be such that n log b (k 1) S n log b k. Then S S log k S + n log b (k 1) /C S log b n + S /C, implying that S S log b n /(1 1/C). Note that since (x 1)(1 log b x) < x ln(b/x) ln b < b/ln b for all x b, we indeed have f(b) = O(b/ log b). References [1] P. K. Agarwal, M. van Kreveld, and S. Suri. Label placement by maximum independent set in rectangles. Comput. Geom. Theory Appl., 11: , [2] P. Berman, B. DasGupta, S. Muthukrishnan, and S. Ramaswami. Efficient approximation algorithms for tiling and packing problems with rectangles. J. Algorithms, 41: , [3] T. M. Chan. Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithms, 46: , [4] D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal polytopes. Discrete Comput. Geom., 11: , [5] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation schemes for geometric graphs. In Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pages , [6] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in the plane are NP-complete. Inform. Process. Lett., 12: , [7] D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM, 32: , [8] H. Imai and T. Asano. Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. J. Algorithms, 4: , [9] S. Khanna, S. Muthukrishnan, and M. Paterson. On approximating rectangle tiling and packing. In Proc. 9th ACM-SIAM Sympos. Discrete Algorithms, pages , [10] F. Nielsen. Fast stabbing of boxes in high dimensions. Theoret. Comput. Sci., 246:53 72,

### I/O-Efficient Spatial Data Structures for Range Queries

I/O-Efficient Spatial Data Structures for Range Queries Lars Arge Kasper Green Larsen MADALGO, Department of Computer Science, Aarhus University, Denmark E-mail: large@madalgo.au.dk,larsen@madalgo.au.dk

### arxiv: v1 [cs.cg] 25 Jul 2016

Unique Set Cover on Unit Disks and Unit Squares Saeed Mehrabi arxiv:1607.07378v1 [cs.cg] 25 Jul 2016 Abstract We study the Unique Set Cover problem on unit disks and unit squares. For a given set P of

### Binary Space Partitions for Axis-Parallel Line Segments: Size-Height Tradeoffs

Binary Space Partitions for Axis-Parallel Line Segments: Size-Height Tradeoffs Sunil Arya Department of Computer Science The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong

### Binary Space Partitions

Title: Binary Space Partitions Name: Adrian Dumitrescu 1, Csaba D. Tóth 2,3 Affil./Addr. 1: Computer Science, Univ. of Wisconsin Milwaukee, Milwaukee, WI, USA Affil./Addr. 2: Mathematics, California State

### INTERSECTION OF LINE-SEGMENTS

INTERSECTION OF LINE-SEGMENTS Vera Sacristán Discrete and Algorithmic Geometry Facultat de Matemàtiques i Estadística Universitat Politècnica de Catalunya Problem Input: n line-segments in the plane,

### Two General Methods to Reduce Delay and Change of Enumeration Algorithms

ISSN 1346-5597 NII Technical Report Two General Methods to Reduce Delay and Change of Enumeration Algorithms Takeaki Uno NII-2003-004E Apr.2003 Two General Methods to Reduce Delay and Change of Enumeration

### INTERSECTION OF LINE-SEGMENTS

INTERSECTION OF LINE-SEGMENTS Vera Sacristán Computational Geometry Facultat d Informàtica de Barcelona Universitat Politècnica de Catalunya Problem Input: n line-segments in the plane, s i = (p i, q

### Closest Pair Problem

Closest Pair Problem Given n points in d-dimensions, find two whose mutual distance is smallest. Fundamental problem in many applications as well as a key step in many algorithms. p q A naive algorithm

### 2.3 Scheduling jobs on identical parallel machines

2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed

### MATHEMATICAL ENGINEERING TECHNICAL REPORTS. The Best-fit Heuristic for the Rectangular Strip Packing Problem: An Efficient Implementation

MATHEMATICAL ENGINEERING TECHNICAL REPORTS The Best-fit Heuristic for the Rectangular Strip Packing Problem: An Efficient Implementation Shinji IMAHORI, Mutsunori YAGIURA METR 2007 53 September 2007 DEPARTMENT

### Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

### Definition 11.1. Given a graph G on n vertices, we define the following quantities:

Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define

### On the k-path cover problem for cacti

On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China zeminjin@eyou.com, x.li@eyou.com Abstract In this paper we

### Approximation Algorithms

Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

### CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992

CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992 Original Lecture #6: 28 January 1991 Topics: Triangulating Simple Polygons

### Internet Packet Filter Management and Rectangle Geometry

Internet Packet Filter Management and Rectangle Geometry David Eppstein S. Muthukrishnan Abstract We consider rule sets for internet packet routing and filtering, where each rule consists of a range of

### Fairness in Routing and Load Balancing

Fairness in Routing and Load Balancing Jon Kleinberg Yuval Rabani Éva Tardos Abstract We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria

### Existence of Simple Tours of Imprecise Points

Existence of Simple Tours of Imprecise Points Maarten Löffler Department of Information and Computing Sciences, Utrecht University Technical Report UU-CS-007-00 www.cs.uu.nl ISSN: 09-7 Existence of Simple

### Planar Tree Transformation: Results and Counterexample

Planar Tree Transformation: Results and Counterexample Selim G Akl, Kamrul Islam, and Henk Meijer School of Computing, Queen s University Kingston, Ontario, Canada K7L 3N6 Abstract We consider the problem

### Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs

Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs Stavros Athanassopoulos, Ioannis Caragiannis, and Christos Kaklamanis Research Academic Computer Technology Institute

### Homework Exam 1, Geometric Algorithms, 2016

Homework Exam 1, Geometric Algorithms, 2016 1. (3 points) Let P be a convex polyhedron in 3-dimensional space. The boundary of P is represented as a DCEL, storing the incidence relationships between the

### 4.4 The recursion-tree method

4.4 The recursion-tree method Let us see how a recursion tree would provide a good guess for the recurrence = 3 4 ) Start by nding an upper bound Floors and ceilings usually do not matter when solving

### Resource Allocation with Time Intervals

Resource Allocation with Time Intervals Andreas Darmann Ulrich Pferschy Joachim Schauer Abstract We study a resource allocation problem where jobs have the following characteristics: Each job consumes

### Guessing Game: NP-Complete?

Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

### Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

### Scheduling. Open shop, job shop, flow shop scheduling. Related problems. Open shop, job shop, flow shop scheduling

Scheduling Basic scheduling problems: open shop, job shop, flow job The disjunctive graph representation Algorithms for solving the job shop problem Computational complexity of the job shop problem Open

### Finding and counting given length cycles

Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected

### A. V. Gerbessiotis CS Spring 2014 PS 3 Mar 24, 2014 No points

A. V. Gerbessiotis CS 610-102 Spring 2014 PS 3 Mar 24, 2014 No points Problem 1. Suppose that we insert n keys into a hash table of size m using open addressing and uniform hashing. Let p(n, m) be the

### Intro. to the Divide-and-Conquer Strategy via Merge Sort CMPSC 465 CLRS Sections 2.3, Intro. to and various parts of Chapter 4

Intro. to the Divide-and-Conquer Strategy via Merge Sort CMPSC 465 CLRS Sections 2.3, Intro. to and various parts of Chapter 4 I. Algorithm Design and Divide-and-Conquer There are various strategies we

### 8.1 Makespan Scheduling

600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Dynamic Programing: Min-Makespan and Bin Packing Date: 2/19/15 Scribe: Gabriel Kaptchuk 8.1 Makespan Scheduling Consider an instance

### Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally

Recurrence Relations Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally modeled by recurrence relations. A recurrence relation is an equation which

### The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

### Institut für Informatik Lehrstuhl Theoretische Informatik I / Komplexitätstheorie. An Iterative Compression Algorithm for Vertex Cover

Friedrich-Schiller-Universität Jena Institut für Informatik Lehrstuhl Theoretische Informatik I / Komplexitätstheorie Studienarbeit An Iterative Compression Algorithm for Vertex Cover von Thomas Peiselt

### Offline sorting buffers on Line

Offline sorting buffers on Line Rohit Khandekar 1 and Vinayaka Pandit 2 1 University of Waterloo, ON, Canada. email: rkhandekar@gmail.com 2 IBM India Research Lab, New Delhi. email: pvinayak@in.ibm.com

### Online and Offline Selling in Limit Order Markets

Online and Offline Selling in Limit Order Markets Kevin L. Chang 1 and Aaron Johnson 2 1 Yahoo Inc. klchang@yahoo-inc.com 2 Yale University ajohnson@cs.yale.edu Abstract. Completely automated electronic

### The Container Selection Problem

The Container Selection Problem Viswanath Nagarajan 1, Kanthi K. Sarpatwar 2, Baruch Schieber 2, Hadas Shachnai 3, and Joel L. Wolf 2 1 University of Michigan, Ann Arbor, MI, USA viswa@umich.edu 2 IBM

### The Selection Problem

The Selection Problem The selection problem: given an integer k and a list x 1,..., x n of n elements find the k-th smallest element in the list Example: the 3rd smallest element of the following list

### Monotone Partitioning. Polygon Partitioning. Monotone polygons. Monotone polygons. Monotone Partitioning. ! Define monotonicity

Monotone Partitioning! Define monotonicity Polygon Partitioning Monotone Partitioning! Triangulate monotone polygons in linear time! Partition a polygon into monotone pieces Monotone polygons! Definition

### GENERATING LOW-DEGREE 2-SPANNERS

SIAM J. COMPUT. c 1998 Society for Industrial and Applied Mathematics Vol. 27, No. 5, pp. 1438 1456, October 1998 013 GENERATING LOW-DEGREE 2-SPANNERS GUY KORTSARZ AND DAVID PELEG Abstract. A k-spanner

### Dynamic 3-sided Planar Range Queries with Expected Doubly Logarithmic Time

Dynamic 3-sided Planar Range Queries with Expected Doubly Logarithmic Time Gerth Stølting Brodal 1, Alexis C. Kaporis 2, Spyros Sioutas 3, Konstantinos Tsakalidis 1, Kostas Tsichlas 4 1 MADALGO, Department

### Optimal Binary Space Partitions in the Plane

Optimal Binary Space Partitions in the Plane Mark de Berg and Amirali Khosravi TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, the Netherlands Abstract. An optimal bsp for a set S of disjoint line segments

### Scheduling Shop Scheduling. Tim Nieberg

Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations

### Distributed Computing over Communication Networks: Maximal Independent Set

Distributed Computing over Communication Networks: Maximal Independent Set What is a MIS? MIS An independent set (IS) of an undirected graph is a subset U of nodes such that no two nodes in U are adjacent.

### Binary Space Partitions: Recent Developments

Combinatorial and Computational Geometry MSRI Publications Volume 52, 2005 Binary Space Partitions: Recent Developments CSABA D. TÓTH Abstract. A binary space partition tree is a data structure for the

### 2 Exercises and Solutions

2 Exercises and Solutions Most of the exercises below have solutions but you should try first to solve them. Each subsection with solutions is after the corresponding subsection with exercises. 2.1 Sorting

### Smaller Coresets for k-median and k-means Clustering

Smaller Coresets for k-median and k-means Clustering Sariel Har-Peled Akash Kushal UIUC, Urbana, IL Coresets for Clustering Clustering P: set of n points in IR d, compute a set C of k centers k-median:

### Introduction to Algorithms Review information for Prelim 1 CS 4820, Spring 2010 Distributed Wednesday, February 24

Introduction to Algorithms Review information for Prelim 1 CS 4820, Spring 2010 Distributed Wednesday, February 24 The final exam will cover seven topics. 1. greedy algorithms 2. divide-and-conquer algorithms

### The Greedy Method. Fundamental Techniques. The Greedy Method. Fractional Knapsack Problem

Fundamental Techniques There are some algorithmic tools that are quite specialised. They are good for problems they are intended to solve, but they are not very versatile. There are also more fundamental

### ON THE COMPLEXITY OF THE GAME OF SET. {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu

ON THE COMPLEXITY OF THE GAME OF SET KAMALIKA CHAUDHURI, BRIGHTEN GODFREY, DAVID RATAJCZAK, AND HOETECK WEE {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu ABSTRACT. Set R is a card game played with a

### Cycle transversals in bounded degree graphs

Electronic Notes in Discrete Mathematics 35 (2009) 189 195 www.elsevier.com/locate/endm Cycle transversals in bounded degree graphs M. Groshaus a,2,3 P. Hell b,3 S. Klein c,1,3 L. T. Nogueira d,1,3 F.

### Minimum Bisection is NP-hard on Unit Disk Graphs

Minimum Bisection is NP-hard on Unit Disk Graphs Josep Díaz 1 and George B. Mertzios 2 1 Departament de Llenguatges i Sistemes Informátics, Universitat Politécnica de Catalunya, Spain. 2 School of Engineering

### Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

### 8.1 Min Degree Spanning Tree

CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree

### Divide-and-Conquer. Three main steps : 1. divide; 2. conquer; 3. merge.

Divide-and-Conquer Three main steps : 1. divide; 2. conquer; 3. merge. 1 Let I denote the (sub)problem instance and S be its solution. The divide-and-conquer strategy can be described as follows. Procedure

### Steven Skiena. skiena

Lecture 3: Recurrence Relations (1997) Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Argue the solution to T(n) =

### Binary Search. Search for x in a sorted array A.

Divide and Conquer A general paradigm for algorithm design; inspired by emperors and colonizers. Three-step process: 1. Divide the problem into smaller problems. 2. Conquer by solving these problems. 3.

### Best Monotone Degree Bounds for Various Graph Parameters

Best Monotone Degree Bounds for Various Graph Parameters D. Bauer Department of Mathematical Sciences Stevens Institute of Technology Hoboken, NJ 07030 S. L. Hakimi Department of Electrical and Computer

### Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs

Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs Leah Epstein Magnús M. Halldórsson Asaf Levin Hadas Shachnai Abstract Motivated by applications in batch scheduling of jobs in manufacturing

### Merge Sort. 2004 Goodrich, Tamassia. Merge Sort 1

Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Merge Sort 1 Divide-and-Conquer Divide-and conquer is a general algorithm design paradigm: Divide: divide the input data S in two disjoint subsets

### Data Warehousing und Data Mining

Data Warehousing und Data Mining Multidimensionale Indexstrukturen Ulf Leser Wissensmanagement in der Bioinformatik Content of this Lecture Multidimensional Indexing Grid-Files Kd-trees Ulf Leser: Data

### SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

### Michal Forišek: Early beta verzia skrípt z ADŠ

Časová zložitosť II Michal Forišek: Early beta verzia skrípt z ADŠ In this part of the article we will focus on estimating the time complexity for recursive programs. In essence, this will lead to finding

### Lecture 1: Course overview, circuits, and formulas

Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik

### CMSC 858T: Randomized Algorithms Spring 2003 Handout 8: The Local Lemma

CMSC 858T: Randomized Algorithms Spring 2003 Handout 8: The Local Lemma Please Note: The references at the end are given for extra reading if you are interested in exploring these ideas further. You are

### Why? A central concept in Computer Science. Algorithms are ubiquitous.

Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online

### SOLVING DATABASE QUERIES USING ORTHOGONAL RANGE SEARCHING

SOLVING DATABASE QUERIES USING ORTHOGONAL RANGE SEARCHING CPS234: Computational Geometry Prof. Pankaj Agarwal Prepared by: Khalid Al Issa (khalid@cs.duke.edu) Fall 2005 BACKGROUND : RANGE SEARCHING, a

### A Turán Type Problem Concerning the Powers of the Degrees of a Graph

A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of Haifa-ORANIM, Tivon 36006, Israel. AMS Subject Classification:

### CS420/520 Algorithm Analysis Spring 2010 Lecture 04

CS420/520 Algorithm Analysis Spring 2010 Lecture 04 I. Chapter 4 Recurrences A. Introduction 1. Three steps applied at each level of a recursion a) Divide into a number of subproblems that are smaller

### The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge,

The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints

### What s next? Reductions other than kernelization

What s next? Reductions other than kernelization Dániel Marx Humboldt-Universität zu Berlin (with help from Fedor Fomin, Daniel Lokshtanov and Saket Saurabh) WorKer 2010: Workshop on Kernelization Nov

### JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004

Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February

### CMPS 102 Solutions to Homework 1

CMPS 0 Solutions to Homework Lindsay Brown, lbrown@soe.ucsc.edu September 9, 005 Problem..- p. 3 For inputs of size n insertion sort runs in 8n steps, while merge sort runs in 64n lg n steps. For which

### Scheduling Single Machine Scheduling. Tim Nieberg

Scheduling Single Machine Scheduling Tim Nieberg Single machine models Observation: for non-preemptive problems and regular objectives, a sequence in which the jobs are processed is sufficient to describe

### Scheduling to Minimize Power Consumption using Submodular Functions

Scheduling to Minimize Power Consumption using Submodular Functions Erik D. Demaine MIT edemaine@mit.edu Morteza Zadimoghaddam MIT morteza@mit.edu ABSTRACT We develop logarithmic approximation algorithms

### A Clustering-Based Approach to Kinetic Closest Pair

A Clustering-Based Approach to Kinetic Closest Pair Timothy M. Chan 1 and Zahed Rahmati 2 1 Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada tmchan@uwaterloo.ca 2 School of

### CSC2420 Spring 2015: Lecture 3

CSC2420 Spring 2015: Lecture 3 Allan Borodin January 22, 2015 1 / 1 Announcements and todays agenda Assignment 1 due next Thursday. I may add one or two additional questions today or tomorrow. Todays agenda

### Answers to Homework 1

Answers to Homework 1 p. 13 1.2 3 What is the smallest value of n such that an algorithm whose running time is 100n 2 runs faster than an algorithm whose running time is 2 n on the same machine? Find the

### Diversity Coloring for Distributed Data Storage in Networks 1

Diversity Coloring for Distributed Data Storage in Networks 1 Anxiao (Andrew) Jiang and Jehoshua Bruck California Institute of Technology Pasadena, CA 9115, U.S.A. {jax, bruck}@paradise.caltech.edu Abstract

### Binary Search Trees CMPSC 122

Binary Search Trees CMPSC 122 Note: This notes packet has significant overlap with the first set of trees notes I do in CMPSC 360, but goes into much greater depth on turning BSTs into pseudocode than

### Algorithm Design and Analysis

Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

### Diameter and Treewidth in Minor-Closed Graph Families, Revisited

Algorithmica manuscript No. (will be inserted by the editor) Diameter and Treewidth in Minor-Closed Graph Families, Revisited Erik D. Demaine, MohammadTaghi Hajiaghayi MIT Computer Science and Artificial

### Geometric Algorithms. range search quad and kd trees intersection search VLSI rules check. References: Algorithms in C (2nd edition), Chapters 26-27

Geometric Algorithms range search quad and kd trees intersection search VLSI rules check References: Algorithms in C (2nd edition), Chapters 26-27 http://www.cs.princeton.edu/introalgsds/73range http://www.cs.princeton.edu/introalgsds/74intersection

### 9 On the Cover Time of Random Walks on Graphs

Journal of Theoretical Probability, Vol. 2, No. 1, 1989 9 On the Cover Time of Random Walks on Graphs Jeff D. Kahn, 1 Nathan Linial, 2'3 Noam Nisan, 4 and Michael E. Saks 1'5 Received June 28, 1988 This

### Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs

Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs Leah Epstein Magnús M. Halldórsson Asaf Levin Hadas Shachnai Abstract Motivated by applications in batch scheduling of jobs in manufacturing

### Binary Space Partitions of Orthogonal Subdivisions

Binary Space Partitions of Orthogonal Subdivisions John Hershberger Subhash Suri Csaba D. Tóth Abstract We consider the problem of constructing binary space partitions (BSPs) for orthogonal subdivisions

### Small Maximal Independent Sets and Faster Exact Graph Coloring

Small Maximal Independent Sets and Faster Exact Graph Coloring David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science The Exact Graph Coloring Problem: Given an undirected

### Combinatorial 5/6-approximation of Max Cut in graphs of maximum degree 3

Combinatorial 5/6-approximation of Max Cut in graphs of maximum degree 3 Cristina Bazgan a and Zsolt Tuza b,c,d a LAMSADE, Université Paris-Dauphine, Place du Marechal de Lattre de Tassigny, F-75775 Paris

### Analysis of Algorithms I: Binary Search Trees

Analysis of Algorithms I: Binary Search Trees Xi Chen Columbia University Hash table: A data structure that maintains a subset of keys from a universe set U = {0, 1,..., p 1} and supports all three dictionary

### Removing Local Extrema from Imprecise Terrains

Removing Local Extrema from Imprecise Terrains Chris Gray Frank Kammer Maarten Löffler Rodrigo I. Silveira Abstract In this paper we consider imprecise terrains, that is, triangulated terrains with a vertical

### 1 Definitions. Supplementary Material for: Digraphs. Concept graphs

Supplementary Material for: van Rooij, I., Evans, P., Müller, M., Gedge, J. & Wareham, T. (2008). Identifying Sources of Intractability in Cognitive Models: An Illustration using Analogical Structure Mapping.

### Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,

### Clustering Lines in High Dimensional Space: Classification of Incomplete Data

Clustering Lines in High Dimensional Space: Classification of Incomplete Data JIE GAO Stony Brook University MICHAEL LANGBERG The Open University of Israel LEONARD J. SCHULMAN California Institute of Technology

### Network File Storage with Graceful Performance Degradation

Network File Storage with Graceful Performance Degradation ANXIAO (ANDREW) JIANG California Institute of Technology and JEHOSHUA BRUCK California Institute of Technology A file storage scheme is proposed

### A Lower Bound for Area{Universal Graphs. K. Mehlhorn { Abstract. We establish a lower bound on the eciency of area{universal circuits.

A Lower Bound for Area{Universal Graphs Gianfranco Bilardi y Shiva Chaudhuri z Devdatt Dubhashi x K. Mehlhorn { Abstract We establish a lower bound on the eciency of area{universal circuits. The area A

### Bargaining Solutions in a Social Network

Bargaining Solutions in a Social Network Tanmoy Chakraborty and Michael Kearns Department of Computer and Information Science University of Pennsylvania Abstract. We study the concept of bargaining solutions,

### 1 Approximating Set Cover

CS 05: Algorithms (Grad) Feb 2-24, 2005 Approximating Set Cover. Definition An Instance (X, F ) of the set-covering problem consists of a finite set X and a family F of subset of X, such that every elemennt

### 11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

### Optimal Location of Transportation Devices

Optimal Location of Transportation Devices Jean Cardinal 1, Sébastien Collette 1, Ferran Hurtado 2, Stefan Langerman 1, and Belén Palop 3 1 Computer Science Department Université Libre de Bruxelles CP