Arithmetic Coding: Introduction
|
|
|
- Magdalen Malone
- 10 years ago
- Views:
Transcription
1 Data Compression Arithmetic coding Arithmetic Coding: Introduction Allows using fractional parts of bits!! Used in PPM, JPEG/MPEG (as option), Bzip More time costly than Huffman, but integer implementation is not too bad.
2 Arithmetic Coding (message intervals) Assign each symbol to an interval range from 0 (inclusive) to 1 (exclusive). e.g. 1.0 i 1 f ( i) p( j) = j= 1 f(a) =.0, f(b) =.2, f(c) =.7 The interval for a particular symbol will be called the symbol interval (e.g for b it is [.2,.7)) Arithmetic Coding: Encoding Example Coding the message sequence: bac The final sequence interval is [.27,.3)
3 Arithmetic Coding To code a sequence of symbols c with probabilities p[c] use the following: l 0 s 0 = 0 = 1 l i s i = l = i 1 i 1 * p i 1 * [ c ] [ c ] f[c] is the cumulative prob. up to symbol c (not included) Final interval size is n s n c i i= 1 The interval for a message sequence will be called the sequence interval s = + s p i f [ ] i Uniquely defining an interval Important property: The intervals for distinct messages of length n will never overlap Therefore by specifying any number in the final interval uniquely determines the msg. Decoding is similar to encoding, but on each step need to determine what the message value is and then reduce interval
4 Arithmetic Coding: Decoding Example Decoding the number.49, knowing the message is of length 3: The message is bbc. Representing a real number Binary fractional representation:.75 1/ 3 11/16 =.11 Algorithm =.0101 = x = 2 *x 2. If x < 1 output 0 3. else x = x - 1; output 1 So how about just using the shortest binary fractional representation in the sequence interval. e.g. [0,.33) =.01 [.33,.66) =.1 [.66,1) =.11
5 Representing a code interval Can view binary fractional numbers as intervals by considering all completions. min max interval [. 75, 10. ) [. 625,. 75) We will call this the code interval. Selecting the code interval To find a prefix code, find a binary fractional number whose code interval is contained in the sequence interval (dyadic number). Sequence Interval Code Interval (.101) Can use L + s/2 truncated to 1 + log (1/s) bits
6 Bound on Arithmetic length Note that log s +1 = log (2/s) Bound on Length Theorem: For a text of length n, the Arithmetic encoder generates at most 1 + log (1/s) = = 1 + log (1/p i ) 2 + j=1,n log (1/p i ) = 2 + k=1, Σ np k log (1/p k ) = 2 + n H 0 bits nh n bits in practice because of rounding
7 Integer Arithmetic Coding Problem is that operations on arbitrary precision real numbers is expensive. Key Ideas of integer version: Keep integers in range [0..R) where R=2 k Use rounding to generate integer interval Whenever sequence intervals falls into top, bottom or middle half, expand the interval by a factor 2 Integer Arithmetic is an approximation Integer Arithmetic (scaling) If l R/2 then (top half) Output 1 followed by m 0s m = 0 Message interval is expanded by 2 If u < R/2 then (bottom half) Output 0 followed by m 1s m = 0 Message interval is expanded by 2 All other cases, just continue... If l R/4 and u < 3R/4 then (middle half) Increment m Message interval is expanded by 2
8 You find this at Arithmetic ToolBox As a state machine L+s c s L (p 1,...,p Σ ) c ATB (L,s) L ATB (L,s ) Therefore, even the distribution can change over time
9 K-th order models: PPM Use previous k characters as the context. Makes use of conditional probabilities This is the changing distribution Base probabilities on counts: e.g. if seen th 12 times followed by e 7 times, then the conditional probability p(e th) = 7/12. Need to keep k small so that dictionary does not get too large (typically less than 8). PPM: Partial Matching Problem: What do we do if we have not seen context followed by character before? Cannot code 0 probabilities! The key idea of PPM is to reduce context size if previous match has not been seen. If character has not been seen before with current context of size 3, send an escape-msg and then try context of size 2, and then again an escape-msg and context of size 1,. Keep statistics for each context size < k The escape is a special character with some probability. Different variants of PPM use different heuristics for the probability.
10 PPM + Arithmetic ToolBox L+s σ s L L p[ σ context ] σ = c or esc ATB (L,s) ATB (L,s ) Encoder and Decoder must know the protocol for selecting the same conditional probability distribution (PPM-variant) PPM: Example Contexts Context Empty Counts A = 4 B = 2 C = 5 $ = 3 Context A B C Counts C = 3 $ = 1 A = 2 $ = 1 A = 1 B = 2 C = 2 $ = 3 Context String = ACCBACCACBA B k = 2 AC BA CA CB CC Counts B = 1 C = 2 $ = 2 C = 1 $ = 1 C = 1 $ = 1 A = 2 $ = 1 A = 1 B = 1 $ = 2
11 You find this at: compression.ru/ds/
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding
LZ77. Example 2.10: Let T = badadadabaab and assume d max and l max are large. phrase b a d adadab aa b
LZ77 The original LZ77 algorithm works as follows: A phrase T j starting at a position i is encoded as a triple of the form distance, length, symbol. A triple d, l, s means that: T j = T [i...i + l] =
Compression techniques
Compression techniques David Bařina February 22, 2013 David Bařina Compression techniques February 22, 2013 1 / 37 Contents 1 Terminology 2 Simple techniques 3 Entropy coding 4 Dictionary methods 5 Conclusion
Chapter 6: Episode discovery process
Chapter 6: Episode discovery process Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process 1 6. Episode discovery process The knowledge discovery process KDD process of analyzing
Lempel-Ziv Coding Adaptive Dictionary Compression Algorithm
Lempel-Ziv Coding Adaptive Dictionary Compression Algorithm 1. LZ77:Sliding Window Lempel-Ziv Algorithm [gzip, pkzip] Encode a string by finding the longest match anywhere within a window of past symbols
Bounded Cost Algorithms for Multivalued Consensus Using Binary Consensus Instances
Bounded Cost Algorithms for Multivalued Consensus Using Binary Consensus Instances Jialin Zhang Tsinghua University [email protected] Wei Chen Microsoft Research Asia [email protected] Abstract
CHAPTER 6. Shannon entropy
CHAPTER 6 Shannon entropy This chapter is a digression in information theory. This is a fascinating subject, which arose once the notion of information got precise and quantifyable. From a physical point
On the Use of Compression Algorithms for Network Traffic Classification
On the Use of for Network Traffic Classification Christian CALLEGARI Department of Information Ingeneering University of Pisa 23 September 2008 COST-TMA Meeting Samos, Greece Outline Outline 1 Introduction
Storage Optimization in Cloud Environment using Compression Algorithm
Storage Optimization in Cloud Environment using Compression Algorithm K.Govinda 1, Yuvaraj Kumar 2 1 School of Computing Science and Engineering, VIT University, Vellore, India [email protected] 2 School
Streaming Lossless Data Compression Algorithm (SLDC)
Standard ECMA-321 June 2001 Standardizing Information and Communication Systems Streaming Lossless Data Compression Algorithm (SLDC) Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch
Computer Science 281 Binary and Hexadecimal Review
Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two
Gambling and Data Compression
Gambling and Data Compression Gambling. Horse Race Definition The wealth relative S(X) = b(x)o(x) is the factor by which the gambler s wealth grows if horse X wins the race, where b(x) is the fraction
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
Reading.. IMAGE COMPRESSION- I IMAGE COMPRESSION. Image compression. Data Redundancy. Lossy vs Lossless Compression. Chapter 8.
Reading.. IMAGE COMPRESSION- I Week VIII Feb 25 Chapter 8 Sections 8.1, 8.2 8.3 (selected topics) 8.4 (Huffman, run-length, loss-less predictive) 8.5 (lossy predictive, transform coding basics) 8.6 Image
Static Program Transformations for Efficient Software Model Checking
Static Program Transformations for Efficient Software Model Checking Shobha Vasudevan Jacob Abraham The University of Texas at Austin Dependable Systems Large and complex systems Software faults are major
ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015
ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE STEINER FOREST PROBLEM An initially given graph G. s 1 s 2 A sequence of demands (s i, t i ) arriving
International Journal of Advanced Research in Computer Science and Software Engineering
Volume 3, Issue 7, July 23 ISSN: 2277 28X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Greedy Algorithm:
Algebraic Computation Models. Algebraic Computation Models
Algebraic Computation Models Ζυγομήτρος Ευάγγελος ΜΠΛΑ 201118 Φεβρουάριος, 2013 Reasons for using algebraic models of computation The Turing machine model captures computations on bits. Many algorithms
Useful Number Systems
Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2
Image Compression through DCT and Huffman Coding Technique
International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul
Information Theory and Coding SYLLABUS
SYLLABUS Subject Code : IA Marks : 25 No. of Lecture Hrs/Week : 04 Exam Hours : 03 Total no. of Lecture Hrs. : 52 Exam Marks : 00 PART - A Unit : Information Theory: Introduction, Measure of information,
A Catalogue of the Steiner Triple Systems of Order 19
A Catalogue of the Steiner Triple Systems of Order 19 Petteri Kaski 1, Patric R. J. Östergård 2, Olli Pottonen 2, and Lasse Kiviluoto 3 1 Helsinki Institute for Information Technology HIIT University of
2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal
2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base-2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal
COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
CSC4510 AUTOMATA 2.1 Finite Automata: Examples and D efinitions Definitions
CSC45 AUTOMATA 2. Finite Automata: Examples and Definitions Finite Automata: Examples and Definitions A finite automaton is a simple type of computer. Itsoutputislimitedto yes to or no. It has very primitive
FUNDAMENTALS of INFORMATION THEORY and CODING DESIGN
DISCRETE "ICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN FUNDAMENTALS of INFORMATION THEORY and CODING DESIGN Roberto Togneri Christopher J.S. desilva CHAPMAN & HALL/CRC A CRC Press Company Boca
Load Balancing. Load Balancing 1 / 24
Load Balancing Backtracking, branch & bound and alpha-beta pruning: how to assign work to idle processes without much communication? Additionally for alpha-beta pruning: implementing the young-brothers-wait
Numerical Matrix Analysis
Numerical Matrix Analysis Lecture Notes #10 Conditioning and / Peter Blomgren, [email protected] Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research
Classification - Examples
Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking
Base Conversion written by Cathy Saxton
Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,
Introduction to image coding
Introduction to image coding Image coding aims at reducing amount of data required for image representation, storage or transmission. This is achieved by removing redundant data from an image, i.e. by
Binary Trees and Huffman Encoding Binary Search Trees
Binary Trees and Huffman Encoding Binary Search Trees Computer Science E119 Harvard Extension School Fall 2012 David G. Sullivan, Ph.D. Motivation: Maintaining a Sorted Collection of Data A data dictionary
Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve
Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve Outline Selection methods Replacement methods Variation operators Selection Methods
Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1
Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1
Quantum Computing Lecture 7. Quantum Factoring. Anuj Dawar
Quantum Computing Lecture 7 Quantum Factoring Anuj Dawar Quantum Factoring A polynomial time quantum algorithm for factoring numbers was published by Peter Shor in 1994. polynomial time here means that
Information, Entropy, and Coding
Chapter 8 Information, Entropy, and Coding 8. The Need for Data Compression To motivate the material in this chapter, we first consider various data sources and some estimates for the amount of data associated
The enhancement of the operating speed of the algorithm of adaptive compression of binary bitmap images
The enhancement of the operating speed of the algorithm of adaptive compression of binary bitmap images Borusyak A.V. Research Institute of Applied Mathematics and Cybernetics Lobachevsky Nizhni Novgorod
28 Simply Confirming Onsite
28 Simply Confirming Onsite Status 28.1 This chapter describes available monitoring tools....28-2 28.2 Monitoring Operational Status...28-5 28.3 Monitoring Device Values... 28-11 28.4 Monitoring Symbol
Sheet 7 (Chapter 10)
King Saud University College of Computer and Information Sciences Department of Information Technology CAP240 First semester 1430/1431 Multiple-choice Questions Sheet 7 (Chapter 10) 1. Which error detection
The Halting Problem is Undecidable
185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine
Fast Arithmetic Coding (FastAC) Implementations
Fast Arithmetic Coding (FastAC) Implementations Amir Said 1 Introduction This document describes our fast implementations of arithmetic coding, which achieve optimal compression and higher throughput by
Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering
Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques
Cloud and Big Data Summer School, Stockholm, Aug. 2015 Jeffrey D. Ullman
Cloud and Big Data Summer School, Stockholm, Aug. 2015 Jeffrey D. Ullman 2 In a DBMS, input is under the control of the programming staff. SQL INSERT commands or bulk loaders. Stream management is important
Local periods and binary partial words: An algorithm
Local periods and binary partial words: An algorithm F. Blanchet-Sadri and Ajay Chriscoe Department of Mathematical Sciences University of North Carolina P.O. Box 26170 Greensboro, NC 27402 6170, USA E-mail:
HIGH DENSITY DATA STORAGE IN DNA USING AN EFFICIENT MESSAGE ENCODING SCHEME Rahul Vishwakarma 1 and Newsha Amiri 2
HIGH DENSITY DATA STORAGE IN DNA USING AN EFFICIENT MESSAGE ENCODING SCHEME Rahul Vishwakarma 1 and Newsha Amiri 2 1 Tata Consultancy Services, India [email protected] 2 Bangalore University, India ABSTRACT
Entropy and Mutual Information
ENCYCLOPEDIA OF COGNITIVE SCIENCE 2000 Macmillan Reference Ltd Information Theory information, entropy, communication, coding, bit, learning Ghahramani, Zoubin Zoubin Ghahramani University College London
Measures of Error: for exact x and approximation x Absolute error e = x x. Relative error r = (x x )/x.
ERRORS and COMPUTER ARITHMETIC Types of Error in Numerical Calculations Initial Data Errors: from experiment, modeling, computer representation; problem dependent but need to know at beginning of calculation.
Low Complexity Text and Image Compression for Wireless Devices and Sensors
Low Complexity Text and Image Compression for Wireless Devices and Sensors vorgelegt von Dipl.-Ing. Stephan Rein aus Bergisch Gladbach Von der Fakultät IV Elektrotechnik und Informatik der Technischen
1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since
9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1
9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1 Seffi Naor Computer Science Dept. Technion Haifa, Israel Introduction
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya ([email protected]) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper
Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
Subject knowledge requirements for entry into computer science teacher training. Expert group s recommendations
Subject knowledge requirements for entry into computer science teacher training Expert group s recommendations Introduction To start a postgraduate primary specialist or secondary ITE course specialising
PROG0101 Fundamentals of Programming PROG0101 FUNDAMENTALS OF PROGRAMMING. Chapter 3 Algorithms
PROG0101 FUNDAMENTALS OF PROGRAMMING Chapter 3 1 Introduction to A sequence of instructions. A procedure or formula for solving a problem. It was created mathematician, Mohammed ibn-musa al-khwarizmi.
Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
Specimen 2015 am/pm Time allowed: 1hr 30mins
SPECIMEN MATERIAL GCSE COMPUTER SCIENCE 8520/1 Paper 1 Specimen 2015 am/pm Time allowed: 1hr 30mins Materials There are no additional materials required for this paper. Instructions Use black ink or black
Factoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
Approximability of Two-Machine No-Wait Flowshop Scheduling with Availability Constraints
Approximability of Two-Machine No-Wait Flowshop Scheduling with Availability Constraints T.C. Edwin Cheng 1, and Zhaohui Liu 1,2 1 Department of Management, The Hong Kong Polytechnic University Kowloon,
URL encoding uses hex code prefixed by %. Quoted Printable encoding uses hex code prefixed by =.
ASCII = American National Standard Code for Information Interchange ANSI X3.4 1986 (R1997) (PDF), ANSI INCITS 4 1986 (R1997) (Printed Edition) Coded Character Set 7 Bit American National Standard Code
arxiv:1112.0829v1 [math.pr] 5 Dec 2011
How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly
Section 1.4 Place Value Systems of Numeration in Other Bases
Section.4 Place Value Systems of Numeration in Other Bases Other Bases The Hindu-Arabic system that is used in most of the world today is a positional value system with a base of ten. The simplest reason
CS101 Lecture 11: Number Systems and Binary Numbers. Aaron Stevens 14 February 2011
CS101 Lecture 11: Number Systems and Binary Numbers Aaron Stevens 14 February 2011 1 2 1 3!!! MATH WARNING!!! TODAY S LECTURE CONTAINS TRACE AMOUNTS OF ARITHMETIC AND ALGEBRA PLEASE BE ADVISED THAT CALCULTORS
Notes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
Analysis of Compression Algorithms for Program Data
Analysis of Compression Algorithms for Program Data Matthew Simpson, Clemson University with Dr. Rajeev Barua and Surupa Biswas, University of Maryland 12 August 3 Abstract Insufficient available memory
Chapter One Introduction to Programming
Chapter One Introduction to Programming 1-1 Algorithm and Flowchart Algorithm is a step-by-step procedure for calculation. More precisely, algorithm is an effective method expressed as a finite list of
INTERNATIONAL TELECOMMUNICATION UNION
INTERNATIONAL TELECOMMUNICATION UNION ITU-T X.691 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (07/2002) SERIES X: DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS OSI networking and system aspects Abstract
Near Optimal Solutions
Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of
A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc
Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc
Appendix C: Keyboard Scan Codes
Thi d t t d ith F M k 4 0 2 Appendix C: Keyboard Scan Codes Table 90: PC Keyboard Scan Codes (in hex) Key Down Up Key Down Up Key Down Up Key Down Up Esc 1 81 [ { 1A 9A, < 33 B3 center 4C CC 1! 2 82 ]
DNA Sequencing Data Compression. Michael Chung
DNA Sequencing Data Compression Michael Chung Problem DNA sequencing per dollar is increasing faster than storage capacity per dollar. Stein (2010) Data 3 billion base pairs in human genome Genomes are
G. N. N. Martin Presented in March 1979 to the Video & Data Recording Conference, IBM UK Scientific Center held in Southampton July 24-27 1979.
* Range encoding: an algorithm for removing redundancy from a digitised message. G. N. N. Martin Presented in March 1979 to the Video & Data Recording Conference, IBM UK Scientific Center held in Southampton
Lecture 18: Applications of Dynamic Programming Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY 11794 4400
Lecture 18: Applications of Dynamic Programming Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Problem of the Day
RN-coding of Numbers: New Insights and Some Applications
RN-coding of Numbers: New Insights and Some Applications Peter Kornerup Dept. of Mathematics and Computer Science SDU, Odense, Denmark & Jean-Michel Muller LIP/Arénaire (CRNS-ENS Lyon-INRIA-UCBL) Lyon,
FCE: A Fast Content Expression for Server-based Computing
FCE: A Fast Content Expression for Server-based Computing Qiao Li Mentor Graphics Corporation 11 Ridder Park Drive San Jose, CA 95131, U.S.A. Email: qiao [email protected] Fei Li Department of Computer Science
LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology
LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (0-9) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 10-1 10-2 10-3
Number Representation
Number Representation CS10001: Programming & Data Structures Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Topics to be Discussed How are numeric data
Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:
Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how
Application Note RMF Magic 5.1.0: EMC Array Group and EMC SRDF/A Reporting. July 2009
Application Note RMF Magic 5.1.0: EMC Array Group and EMC SRDF/A Reporting July 2009 Summary: This Application Note describes the new functionality in RMF Magic 5.1 that enables more effective monitoring
2016 national curriculum tests. Key stage 2. Mathematics test mark schemes. Paper 1: arithmetic Paper 2: reasoning Paper 3: reasoning
2016 national curriculum tests Key stage 2 Mathematics test mark schemes Paper 1: arithmetic Paper 2: reasoning Paper 3: reasoning Contents 1. Introduction 3 2. Structure of the key stage 2 mathematics
College of information technology Department of software
University of Babylon Undergraduate: third class College of information technology Department of software Subj.: Application of AI lecture notes/2011-2012 ***************************************************************************
Field Properties Quick Reference
Field Properties Quick Reference Data types The following table provides a list of the available data types in Microsoft Office Access 2007, along with usage guidelines and storage capacities for each
Outline. hardware components programming environments. installing Python executing Python code. decimal and binary notations running Sage
Outline 1 Computer Architecture hardware components programming environments 2 Getting Started with Python installing Python executing Python code 3 Number Systems decimal and binary notations running
Sources: On the Web: Slides will be available on:
C programming Introduction The basics of algorithms Structure of a C code, compilation step Constant, variable type, variable scope Expression and operators: assignment, arithmetic operators, comparison,
EE 261 Introduction to Logic Circuits. Module #2 Number Systems
EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook
Today. Binary addition Representing negative numbers. Andrew H. Fagg: Embedded Real- Time Systems: Binary Arithmetic
Today Binary addition Representing negative numbers 2 Binary Addition Consider the following binary numbers: 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 How do we add these numbers? 3 Binary Addition 0 0 1 0 0 1 1
Chapter 4: Computer Codes
Slide 1/30 Learning Objectives In this chapter you will learn about: Computer data Computer codes: representation of data in binary Most commonly used computer codes Collating sequence 36 Slide 2/30 Data
Chapter 2: Elements of Java
Chapter 2: Elements of Java Basic components of a Java program Primitive data types Arithmetic expressions Type casting. The String type (introduction) Basic I/O statements Importing packages. 1 Introduction
Instruction Set Architecture (ISA)
Instruction Set Architecture (ISA) * Instruction set architecture of a machine fills the semantic gap between the user and the machine. * ISA serves as the starting point for the design of a new machine
The BBP Algorithm for Pi
The BBP Algorithm for Pi David H. Bailey September 17, 2006 1. Introduction The Bailey-Borwein-Plouffe (BBP) algorithm for π is based on the BBP formula for π, which was discovered in 1995 and published
Object Oriented Software Design
Object Oriented Software Design Introduction to Java - II Giuseppe Lipari http://retis.sssup.it/~lipari Scuola Superiore Sant Anna Pisa October 28, 2010 G. Lipari (Scuola Superiore Sant Anna) Introduction
RN-Codings: New Insights and Some Applications
RN-Codings: New Insights and Some Applications Abstract During any composite computation there is a constant need for rounding intermediate results before they can participate in further processing. Recently
Python Programming: An Introduction to Computer Science
Python Programming: An Introduction to Computer Science Sequences: Strings and Lists Python Programming, 2/e 1 Objectives To understand the string data type and how strings are represented in the computer.
Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.
Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet
