# Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order to dramatically narrow down the search space. NP-completeness is a form of bad news. Evidence that many important problems can't be solved quickly. 1

2 Computational Complexity Theory This subject is dedicated to classifying problems by how hard they are. Yes-or-no problems We care more about Does a certain structure exist rather than how do I find the structure. We will discuss the classification defined in terms of yes-or-no problems. Classification of Problems P : Problems that can be solved in polynomial time. T(n) = O(n c ) Example: sorting, minimum spanning tree E : Problems that can be solved in exponential time if no polynomial-time algorithm can be developed for it. T(n) = O(n u(n) ) 2

3 Classification of Problems NP : Nondeterministic polynomial time. Nondeterministic is guessing a solution. A problem is in NP if you can quickly (in polynomial time) test whether a solution is correct (without worrying about how hard it might be to find the solution). Problems in NP are still relatively easy: if only we could guess the right solution, we could then quickly test it. Classification of Problems Undecidable: For some problems, we can prove that there is no algorithm that always solves them, no matter how much time is allowed. There are as many problems as there are real numbers, and only as many programs as there are integers, so there are not enough programs to solve all the problems. 3

4 Long Simple Paths A simple path in a graph is just one without any repeated edges or vertices. Problem of finding long simple path: Given a graph G, vertices s and t, and a number k, does there exist a simple path from s to t with at least k edges? We do not know whether it is in P. So far, no algorithm running in polynomial time that solves this problem. It is in NP: Testing whether the answer is correct could be done in linear time. Examination Scheduling A school has n courses and m days in which to schedule examinations. An optimal schedule would be one where no student has to take two examinations on the same day. There are O(m n ) possible different schedules. It is in NP: it is difficult to find a good one, it is easy to check a schedule to see how near perfect it is. 4

5 Knapsack Given n items, each with a weight and a value, is there a collection of items with total weight less than W, which has a total value greater than g? A dynamic programming scheme for KNAPSACK with running time O(nW), which is exponential in the input size since it involves W rather than logw. And we have the usual exhaustive algorithm as well, which looks at all subsets of items - all 2 n of them. It is in NP : it is easy to test whether a solution is correct. Hamiltonian Cycle Does a given graph G have a cycle visiting each vertex exactly once? It is in NP : Perform an exhaustive search for all possible path ( not polynomial time) Test whether one path is a Hamiltonian cycle (in polynomial time) 5

6 Traveling Salesman Problem In the traveling salesman problem (TSP) we are given n vertices and all n(n-1)/2 distances (cost) between them, as well as a budget b. We are asked to find a tour, a cycle that passes through n vertex exactly once, of total cost is b or less. It is in NP : In fact, n factorial different tours are possible. And, if we have a tour, we can easily check to see the cost of it. Problems of complexity theory The most famous open problem in theoretical science is whether P = NP. In other words, if it's always easy to check a solution, should it also be easy to find the solution? It's false. But we also don't have a proof... 6

7 Reduction One problem is easier than another. A is easier than B (A < B) if we have an algorithm for solving A that uses a small number of calls to a subroutine for B. Easier means if one problem can be solved in polynomial time, so can the other. It is possible for the algorithms for A to be slower than those for B, even though A < B. If A < B, and B is in P, so is A. Reduction Example Hamiltonian cycle vs. longest simple path Solution with longest simple path as subroutine for each edge (u,v) of G if there is a simple path of length n-1 from u to v return yes //path + edge from a cycle return no This solution does O(m) work outside m calls to the subroutine. Hamiltonian cycle < longest simple path 7

8 NP-completeness A problem A in NP is NP-complete when, for every other problem B in NP, B < A. Theorem: an NP-complete problem exists. if A < B and B < C, then A < C. if A is NP-complete, B is in NP, and A < B, B is NPcomplete. We start with one specific problem that we prove NP-complete, and we then prove that it's easier than lots of others which must therefore also be NP-complete. Hamiltonian cycle is known to be NP-complete. 8

9 What we should do? Use a heuristic : a solution to a reasonable fraction of the common cases. Solve the problem approximately instead of exactly. Use an exponential time solution anyway. If you really have to solve the problem exactly. 9

### Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

### CAD Algorithms. P and NP

CAD Algorithms The Classes P and NP Mohammad Tehranipoor ECE Department 6 September 2010 1 P and NP P and NP are two families of problems. P is a class which contains all of the problems we solve using

### NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University

NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with

### NP-complete? NP-hard? Some Foundations of Complexity. Prof. Sven Hartmann Clausthal University of Technology Department of Informatics

NP-complete? NP-hard? Some Foundations of Complexity Prof. Sven Hartmann Clausthal University of Technology Department of Informatics Tractability of Problems Some problems are undecidable: no computer

### Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NP-Complete. Polynomial-Time Algorithms

CSCE 310J Data Structures & Algorithms P, NP, and NP-Complete Dr. Steve Goddard goddard@cse.unl.edu CSCE 310J Data Structures & Algorithms Giving credit where credit is due:» Most of the lecture notes

### Tutorial 8. NP-Complete Problems

Tutorial 8 NP-Complete Problems Decision Problem Statement of a decision problem Part 1: instance description defining the input Part 2: question stating the actual yesor-no question A decision problem

### 2.3 Scheduling jobs on identical parallel machines

2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed

### SIMS 255 Foundations of Software Design. Complexity and NP-completeness

SIMS 255 Foundations of Software Design Complexity and NP-completeness Matt Welsh November 29, 2001 mdw@cs.berkeley.edu 1 Outline Complexity of algorithms Space and time complexity ``Big O'' notation Complexity

### Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar

Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples

### The Classes P and NP. mohamed@elwakil.net

Intractable Problems The Classes P and NP Mohamed M. El Wakil mohamed@elwakil.net 1 Agenda 1. What is a problem? 2. Decidable or not? 3. The P class 4. The NP Class 5. TheNP Complete class 2 What is a

### Lecture 19: Introduction to NP-Completeness Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY 11794 4400

Lecture 19: Introduction to NP-Completeness Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Reporting to the Boss Suppose

### Answers to some of the exercises.

Answers to some of the exercises. Chapter 2. Ex.2.1 (a) There are several ways to do this. Here is one possibility. The idea is to apply the k-center algorithm first to D and then for each center in D

### Complexity Classes P and NP

Complexity Classes P and NP MATH 3220 Supplemental Presentation by John Aleshunas The cure for boredom is curiosity. There is no cure for curiosity Dorothy Parker Computational Complexity Theory In computer

### Lecture 7: NP-Complete Problems

IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit

### Introduction to Algorithms Review information for Prelim 1 CS 4820, Spring 2010 Distributed Wednesday, February 24

Introduction to Algorithms Review information for Prelim 1 CS 4820, Spring 2010 Distributed Wednesday, February 24 The final exam will cover seven topics. 1. greedy algorithms 2. divide-and-conquer algorithms

### 2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]

Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)

### CMPSCI611: Approximating MAX-CUT Lecture 20

CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to

### NP-Completeness I. Lecture 19. 19.1 Overview. 19.2 Introduction: Reduction and Expressiveness

Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce

### Why? A central concept in Computer Science. Algorithms are ubiquitous.

Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online

### ! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

### Algorithm Design and Analysis

Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

### CSC 373: Algorithm Design and Analysis Lecture 16

CSC 373: Algorithm Design and Analysis Lecture 16 Allan Borodin February 25, 2013 Some materials are from Stephen Cook s IIT talk and Keven Wayne s slides. 1 / 17 Announcements and Outline Announcements

### Introduction to Algorithms. Part 3: P, NP Hard Problems

Introduction to Algorithms Part 3: P, NP Hard Problems 1) Polynomial Time: P and NP 2) NP-Completeness 3) Dealing with Hard Problems 4) Lower Bounds 5) Books c Wayne Goddard, Clemson University, 2004 Chapter

### A Working Knowledge of Computational Complexity for an Optimizer

A Working Knowledge of Computational Complexity for an Optimizer ORF 363/COS 323 Instructor: Amir Ali Ahmadi TAs: Y. Chen, G. Hall, J. Ye Fall 2014 1 Why computational complexity? What is computational

### One last point: we started off this book by introducing another famously hard search problem:

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 261 Factoring One last point: we started off this book by introducing another famously hard search problem: FACTORING, the task of finding all prime factors

### 1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification)

Some N P problems Computer scientists have studied many N P problems, that is, problems that can be solved nondeterministically in polynomial time. Traditionally complexity question are studied as languages:

Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

### 5.1 Bipartite Matching

CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

### On the Relationship between Classes P and NP

Journal of Computer Science 8 (7): 1036-1040, 2012 ISSN 1549-3636 2012 Science Publications On the Relationship between Classes P and NP Anatoly D. Plotnikov Department of Computer Systems and Networks,

### Discuss the size of the instance for the minimum spanning tree problem.

3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can

### Introduction to Logic in Computer Science: Autumn 2006

Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Now that we have a basic understanding

### Approximation Algorithms

Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

### P versus NP, and More

1 P versus NP, and More Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 If you have tried to solve a crossword puzzle, you know that it is much harder to solve it than to verify

### NP-completeness and the real world. NP completeness. NP-completeness and the real world (2) NP-completeness and the real world

-completeness and the real world completeness Course Discrete Biological Models (Modelli Biologici Discreti) Zsuzsanna Lipták Imagine you are working for a biotech company. One day your boss calls you

### Computational complexity theory

Computational complexity theory Goal: A general theory of the resources needed to solve computational problems What types of resources? Time What types of computational problems? decision problem Decision

### Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course

Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course Alex Angelopoulos, NTUA January 22, 2015 Outline Alex Angelopoulos (NTUA) FoCS: Reductions & NP-completeness-

### Quantum Monte Carlo and the negative sign problem

Quantum Monte Carlo and the negative sign problem or how to earn one million dollar Matthias Troyer, ETH Zürich Uwe-Jens Wiese, Universität Bern Complexity of many particle problems Classical 1 particle:

### Minimum Spanning Trees

Minimum Spanning Trees Algorithms and 18.304 Presentation Outline 1 Graph Terminology Minimum Spanning Trees 2 3 Outline Graph Terminology Minimum Spanning Trees 1 Graph Terminology Minimum Spanning Trees

### What s next? Reductions other than kernelization

What s next? Reductions other than kernelization Dániel Marx Humboldt-Universität zu Berlin (with help from Fedor Fomin, Daniel Lokshtanov and Saket Saurabh) WorKer 2010: Workshop on Kernelization Nov

### Informatique Fondamentale IMA S8

Informatique Fondamentale IMA S8 Cours 4 : graphs, problems and algorithms on graphs, (notions of) NP completeness Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université

### Theoretical Computer Science (Bridging Course) Complexity

Theoretical Computer Science (Bridging Course) Complexity Gian Diego Tipaldi A scenario You are a programmer working for a logistics company Your boss asks you to implement a program that optimizes the

### ! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

### The Classes P and NP

The Classes P and NP We now shift gears slightly and restrict our attention to the examination of two families of problems which are very important to computer scientists. These families constitute the

### OHJ-2306 Introduction to Theoretical Computer Science, Fall 2012 8.11.2012

276 The P vs. NP problem is a major unsolved problem in computer science It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a \$ 1,000,000 prize for the

### CoNP and Function Problems

CoNP and Function Problems conp By definition, conp is the class of problems whose complement is in NP. NP is the class of problems that have succinct certificates. conp is therefore the class of problems

### Near Optimal Solutions

Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.

### 11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

### Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU

Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU Birgit Vogtenhuber Institute for Software Technology email: bvogt@ist.tugraz.at office hour: Tuesday 10:30 11:30 slides: http://www.ist.tugraz.at/pact.html

### Notes on NP Completeness

Notes on NP Completeness Rich Schwartz November 10, 2013 1 Overview Here are some notes which I wrote to try to understand what NP completeness means. Most of these notes are taken from Appendix B in Douglas

### Tetris is Hard: An Introduction to P vs NP

Tetris is Hard: An Introduction to P vs NP Based on Tetris is Hard, Even to Approximate in COCOON 2003 by Erik D. Demaine (MIT) Susan Hohenberger (JHU) David Liben-Nowell (Carleton) What s Your Problem?

### Single machine parallel batch scheduling with unbounded capacity

Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University

### Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,

### JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004

Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February

### Introduction to computer science

Introduction to computer science Michael A. Nielsen University of Queensland Goals: 1. Introduce the notion of the computational complexity of a problem, and define the major computational complexity classes.

### Measuring Rationality with the Minimum Cost of Revealed Preference Violations. Mark Dean and Daniel Martin. Online Appendices - Not for Publication

Measuring Rationality with the Minimum Cost of Revealed Preference Violations Mark Dean and Daniel Martin Online Appendices - Not for Publication 1 1 Algorithm for Solving the MASP In this online appendix

### Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

### 8.1 Min Degree Spanning Tree

CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree

### CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 313]

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 313] File Structures A file is a collection of data stored on mass storage (e.g., disk or tape) Why on mass storage? too big to fit

V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer

### Why Study NP- hardness. NP Hardness/Completeness Overview. P and NP. Scaling 9/3/13. Ron Parr CPS 570. NP hardness is not an AI topic

Why Study NP- hardness NP Hardness/Completeness Overview Ron Parr CPS 570 NP hardness is not an AI topic It s important for all computer scienhsts Understanding it will deepen your understanding of AI

### / Approximation Algorithms Lecturer: Michael Dinitz Topic: Steiner Tree and TSP Date: 01/29/15 Scribe: Katie Henry

600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Steiner Tree and TSP Date: 01/29/15 Scribe: Katie Henry 2.1 Steiner Tree Definition 2.1.1 In the Steiner Tree problem the input

### ! X is a set of strings. ! Instance: string s. ! Algorithm A solves problem X: A(s) = yes iff s! X.

Decision Problems 8.2 Definition of NP Decision problem. X is a set of strings. Instance: string s. Algorithm A solves problem X: A(s) = yes iff s X. Polynomial time. Algorithm A runs in polytime if for

### CS5314 Randomized Algorithms. Lecture 16: Balls, Bins, Random Graphs (Random Graphs, Hamiltonian Cycles)

CS5314 Randomized Algorithms Lecture 16: Balls, Bins, Random Graphs (Random Graphs, Hamiltonian Cycles) 1 Objectives Introduce Random Graph Model used to define a probability space for all graphs with

### Chapter. NP-Completeness. Contents

Chapter 13 NP-Completeness Contents 13.1 P and NP......................... 593 13.1.1 Defining the Complexity Classes P and NP...594 13.1.2 Some Interesting Problems in NP.......... 597 13.2 NP-Completeness....................

### Two General Methods to Reduce Delay and Change of Enumeration Algorithms

ISSN 1346-5597 NII Technical Report Two General Methods to Reduce Delay and Change of Enumeration Algorithms Takeaki Uno NII-2003-004E Apr.2003 Two General Methods to Reduce Delay and Change of Enumeration

### Transportation Polytopes: a Twenty year Update

Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,

### Guessing Game: NP-Complete?

Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

### Problem Set 7 Solutions

8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in

### Ian Stewart on Minesweeper

Ian Stewart on Minesweeper It's not often you can win a million dollars by analysing a computer game, but by a curious conjunction of fate, there's a chance that you might. However, you'll only pick up

### Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )

1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the

### Steiner Tree NP-completeness Proof

Steiner Tree NP-completeness Proof Alessandro Santuari May 7, 2003 Abstract This document is an eercise for the Computational Compleity course taken at the University of Trento. We propose an NP-completeness

### Heuristic Methods. Part #1. João Luiz Kohl Moreira. Observatório Nacional - MCT COAA. Observatório Nacional - MCT 1 / 14

Heuristic Methods Part #1 João Luiz Kohl Moreira COAA Observatório Nacional - MCT Observatório Nacional - MCT 1 / Outline 1 Introduction Aims Course's target Adviced Bibliography 2 Problem Introduction

### 1. What s wrong with the following proofs by induction?

ArsDigita University Month : Discrete Mathematics - Professor Shai Simonson Problem Set 4 Induction and Recurrence Equations Thanks to Jeffrey Radcliffe and Joe Rizzo for many of the solutions. Pasted

### SAMPLES OF HIGHER RATED WRITING: LAB 5

SAMPLES OF HIGHER RATED WRITING: LAB 5 1. Task Description Lab report 5. (April 14) Graph Coloring. Following the guidelines, and keeping in mind the assessment criteria, using where appropriate experimental

### Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Week 9 Lecture Notes Graph Theory For completeness I have included the definitions from last week s lecture which we will be using in today s lecture along with

### Classification - Examples

Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking

### Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

### Existence of Simple Tours of Imprecise Points

Existence of Simple Tours of Imprecise Points Maarten Löffler Department of Information and Computing Sciences, Utrecht University Technical Report UU-CS-007-00 www.cs.uu.nl ISSN: 09-7 Existence of Simple

### CHOOSING THE BEST HEURISTIC FOR A NP-PROBLEM

CHOOSING THE BEST HEURISTIC FOR A NP-PROBLEM Thesis submitted in partial fulfillment of the requirements for the award of Degree of Master of Engineering in Computer Science and Engineering Thapar University,

### Complexity and Completeness of Finding Another Solution and Its Application to Puzzles

yato@is.s.u-tokyo.ac.jp seta@is.s.u-tokyo.ac.jp Π (ASP) Π x s x s ASP Ueda Nagao n n-asp parsimonious ASP ASP NP Complexity and Completeness of Finding Another Solution and Its Application to Puzzles Takayuki

### Can linear programs solve NP-hard problems?

Can linear programs solve NP-hard problems? p. 1/9 Can linear programs solve NP-hard problems? Ronald de Wolf Linear programs Can linear programs solve NP-hard problems? p. 2/9 Can linear programs solve

### Counting spanning trees

Counting spanning trees Question Given a graph G, howmanyspanningtreesdoesg have? (G) =numberofdistinctspanningtreesofg Definition If G =(V,E) isamultigraphwithe 2 E, theng e (said G contract e ) is the

### Euler Paths and Euler Circuits

Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and

### Chapter 4: Trees. 2. Theorem: Let T be a graph with n vertices. Then the following statements are equivalent:

9 Properties of Trees. Definitions: Chapter 4: Trees forest - a graph that contains no cycles tree - a connected forest. Theorem: Let T be a graph with n vertices. Then the following statements are equivalent:

### 1 Definitions. Supplementary Material for: Digraphs. Concept graphs

Supplementary Material for: van Rooij, I., Evans, P., Müller, M., Gedge, J. & Wareham, T. (2008). Identifying Sources of Intractability in Cognitive Models: An Illustration using Analogical Structure Mapping.

### Solutions to Exercises 8

Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 8 (1) Suppose that G is a graph in which every vertex has degree at least k, where k 1, and in which every cycle contains at least 4 vertices.

### COMS4236: Introduction to Computational Complexity. Summer 2014

COMS4236: Introduction to Computational Complexity Summer 2014 Mihalis Yannakakis Lecture 17 Outline conp NP conp Factoring Total NP Search Problems Class conp Definition of NP is nonsymmetric with respect

### A tree can be defined in a variety of ways as is shown in the following theorem: 2. There exists a unique path between every two vertices of G.

7 Basic Properties 24 TREES 7 Basic Properties Definition 7.1: A connected graph G is called a tree if the removal of any of its edges makes G disconnected. A tree can be defined in a variety of ways as

### princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora Scribe: One of the running themes in this course is the notion of

### Memoization/Dynamic Programming. The String reconstruction problem. CS125 Lecture 5 Fall 2016

CS125 Lecture 5 Fall 2016 Memoization/Dynamic Programming Today s lecture discusses memoization, which is a method for speeding up algorithms based on recursion, by using additional memory to remember

### ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 5-3.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 6-4.2 Solving Equations by

### 582670 Algorithms for Bioinformatics

Adapted from slides by Veli Mäkinen / Algorithms for Bioinformatics 011 which are partly from http://bix.ucsd.edu/bioalgorithms/slides.php 58670 Algorithms for Bioinformatics Lecture 5: Graph Algorithms

### Automated SEO. A Market Brew White Paper

Automated SEO A Market Brew White Paper Abstract In this paper, we use the term Reach to suggest the forecasted traffic to a particular webpage or website. Reach is a traffic metric that describes an expected

### Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

### On the k-path cover problem for cacti

On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China zeminjin@eyou.com, x.li@eyou.com Abstract In this paper we

### ON THE COMPLEXITY OF THE GAME OF SET. {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu

ON THE COMPLEXITY OF THE GAME OF SET KAMALIKA CHAUDHURI, BRIGHTEN GODFREY, DAVID RATAJCZAK, AND HOETECK WEE {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu ABSTRACT. Set R is a card game played with a

### Theoretical Computer Science Bridging Course - Introduction / General Info. Summer Term 2016 Fabian Kuhn

Theoretical Computer Science Bridging Course - Introduction / General Info Summer Term 2016 Fabian Kuhn About the Course Topics Foundations of theoretical computer science Introduction to logic No lectures

### Quantum and Non-deterministic computers facing NP-completeness

Quantum and Non-deterministic computers facing NP-completeness Thibaut University of Vienna Dept. of Business Administration Austria Vienna January 29th, 2013 Some pictures come from Wikipedia Introduction