Physics 30. Unit 3 Circular Motion Lesson 3.4 Outline Astronomical Applications Newton's Law of Universal Gravitation Examples

Size: px
Start display at page:

Download "Physics 30. Unit 3 Circular Motion Lesson 3.4 Outline Astronomical Applications Newton's Law of Universal Gravitation Examples"

Transcription

1 Physics 30 Unit 3 Circular Motion Lesson 3.4 Outline Astronomical Applications Newton's Law of Universal Gravitation Examples You will be able to: solve problems involving gravitational force between objects explain how centripetal force and gravitational force are related Isaac Newton's three laws of motion revolutionized the study of modern physics when they were first published. However, he discovered another law that governs the motion of celestial bodies and provides an excellent approximation to calculate the force on objects due to gravity. This law is now known as Newton's Law of Universal Gravitation and became crucial to understanding the motion of the planets. Today, Einstein's theory of relativity is now generally used to calculate the force of gravity as it is more accurate but Newton's Law still provides an excellent approximation of the force of gravity between two bodies. The math involved in Einstein's theory is also more complicated than the math in Newton's Law.

2 Newton's Law of Universal Gravitation Newton stated that every mass attracts every other mass with a force that acts along the straight line distance between the centers of the objects. These forces are equal and opposite in direction. This force depends on the masses of the objects and the distance between them. In other words, anything that has mass will gravitationally attract anything else that has mass with a force. This happens between all objects that have mass and all other objects that have mass. So if you are sitting at a computer, you are gravitationally attracted to the screen and the keyboard and the mouse and they are all gravitationally attracted to you and each other and everything else around you. So why don't we collide with other things? Remember that the net force is what causes objects to move. So if you are only considering the force between two small objects, you can find the gravitational force. But normally the force of friction (which always opposes motion from starting or continuing) is bigger than the gravitational force so no motion can happen as a result of it. When the masses are small compared the to Gravitation constant, the force generated due to gravity is extremely small. This is why you and I wouldn't collide when we are sitting in the same room.

3 Major Implications Since Newton's equation accurately predicted the motion of most known celestial bodies at that time, it was accepted in the realm of science. However, this implied that gravity was an "instantaneous, action at a distance force" that did not have a direct cause. Up to this point the forces we have discussed require some contact or substance to transmit the force, so this was an absurd prediction (especially for the time period). Absurd, but yet it accurately predicted observable events. Newton was very uncomfortable with this and refused to speculate on what could be causing this action at a distance force as he thought it a serious problem with his theory. Later, Einstein was able to resolve this "action at a distance" problem with the theory of general relativity. Newton's Law of Universal Gravitation F g = Force of Gravity between the masses G = Gravitational Constant m 1 = mass of object 1 m 2 = mass of object 2 r = distance between the centers of the objects F g = Gm 1m 2 r 2 Nm2 G = x kg 2 An extremely common mistake is to forget to square the r in the bottom term.

4 The value of the gravitational constant was not determined by Newton. He knew that the forces between objects were related and so could only compare the gravitational attractive force between multiple objects. G = x Nm2 kg 2 The value of the gravitational constant was determined during the Cavendish experiment. This experiment was carried out 71 years after Newton's death and 111 years after the publication of the Law of Universal Gravitation. What does this look like? F g F g r m 1 For two different masses of m 1 and m 2. Note that the F g is equal in magnitude, but opposite in direction. Remember that r is measured from the centers of the masses. m 2

5 A coffee cup with a mass of 0.75 kg gravitationally attracts a textbook with a mass of 2.0 kg. If the distance between the centers of these objects is 2.0 m, what is the force of gravity between the two objects? Determine the force of gravitational attraction between the earth (m = 5.98 x kg) and a 70.0 kg physics student if the student is standing at sea level, a distance of 6.38 x 10 6 m from earth's center. Compare this with the weight of the student.

6 Connection to Circular Motion When high mass objects (like planets) are travelling in circular paths and friction is negligible (like in space), the centripetal force causing the circular path results from the force of gravity between the two objects. This situation accurately describe the motion of planets in the solar system, as the masses of planets and stars are extremely large and there are very few particles in space so friction is not an issue. We will use this to study orbits in the next lesson. A 5400 kg satellite is rotating around the earth at 3050 m/s. If it is 6.38 x 10 6 m to the center of the earth and the satellite is orbiting at km. Determine the approximate mass of the earth.

ConcepTest 12.1a Earth and Moon I

ConcepTest 12.1a Earth and Moon I ConcepTest 12.1a Earth and Moon I Which is stronger, Earth s pull on the Moon, or the Moon s pull on Earth? 1) the Earth pulls harder on the Moon 2) the Moon pulls harder on the Earth 3) they pull on each

More information

Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation Newton s Law of Universal Gravitation Gravitational Field Strength Uniform Circular Motion Centripetal Force and Acceleration Vertical Circular Motion Horizontal Circular Motion Kepler s Laws Planetary

More information

Forces. Isaac Newton was the first to discover that the laws that govern motions on the Earth also applied to celestial bodies.

Forces. Isaac Newton was the first to discover that the laws that govern motions on the Earth also applied to celestial bodies. Forces Now we will discuss the part of mechanics known as dynamics. We will introduce Newton s three laws of motion which are at the heart of classical mechanics. We must note that Newton s laws describe

More information

Gravity: The Law of Attraction

Gravity: The Law of Attraction Gravity: The Law of Attraction 2009, Copyright@2008 Lecture 1, Oct. 1 2009 Oct. 1, 2009 #1 Questions of the day: How are Force, acceleration, and mass related? Why is gravity the most important force for

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

G = N m 2 /kg 2

G = N m 2 /kg 2 PH2213 : Examples from Chapter 6 : Gravitation Key Concepts Two point-mass objects of masses m 1 and m 2 separated by a distance of r will attract each other with a gravitational force of magnitude F =

More information

The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35

The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35 The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35 Summary Newton s law of gravity describes the gravitational force between A. the earth and the

More information

GRAVITATIONAL FORCE. How did Newton deduced the gravitation force law?

GRAVITATIONAL FORCE. How did Newton deduced the gravitation force law? GRAVITATIONAL FORCE Gravitation determines star formation, planetary systems, galaxies, and the universe as a whole was the first of the four fundamental forces to be described quantitatively. Its effects

More information

Circular Motion and Gravitation

Circular Motion and Gravitation Nicholas J. Giordano www.cengage.com/physics/giordano Circular Motion and Gravitation Introduction Circular motion Acceleration is not constant Cannot be reduced to a one-dimensional problem Examples Car

More information

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2 Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

More information

Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.

More information

Chapter 6 Gravitation and Newton s Synthesis. Copyright 2009 Pearson Education, Inc.

Chapter 6 Gravitation and Newton s Synthesis. Copyright 2009 Pearson Education, Inc. Chapter 6 Gravitation and Newton s Synthesis Units of Chapter 6 Newton s Law of Universal Gravitation Vector Form of Newton s Law of Universal Gravitation Gravity Near the Earth s Surface; Geophysical

More information

SPACE THE EARTH S GRAVITATIONAL FIELD

SPACE THE EARTH S GRAVITATIONAL FIELD SPACE CONTEXTUAL OUTLINE (As written in the HSC Physics Syllabus Board of Studies, NSW.) Scientists have drawn on advances in areas such as aeronautics, material science, robotics, electronics, medicine

More information

7.2 Calculate force of gravity at a given distance given the force of gravity at another distance (making use of the inverse square relationship).

7.2 Calculate force of gravity at a given distance given the force of gravity at another distance (making use of the inverse square relationship). Chapter 7 Circular Motion and Gravitation 7.1 Calculate force of gravity using Newton s Law of Universal Gravitation. 5. What is the gravitational force between the Earth and the Sun? (Mass of Earth: 5.98

More information

Inertia. Inertia. A body continues in a state of rest or uniform motion in a straight line unless made to change that state by forces acting on it

Inertia. Inertia. A body continues in a state of rest or uniform motion in a straight line unless made to change that state by forces acting on it Isaac Newton formulated three laws to describe the fundamental properties of physical reality. NEWTON S THREE LAWS OF MOTION LAW #1: A body remains at rest or moves in a straight line at constant speed

More information

356 CHAPTER 12 Bob Daemmrich

356 CHAPTER 12 Bob Daemmrich Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

Study Questions/Problems Week 9

Study Questions/Problems Week 9 Study Questions/Problems Week 9 Chapter 12. The concept of Universal gravitation was formulated by Newton in the latter half of the 17 th century. It is still THE theory of gravity for describing the motion

More information

Chapter 3: Force and Motion

Chapter 3: Force and Motion Force and Motion Cause and Effect Chapter 3 Chapter 3: Force and Motion Homework: All questions on the Multiple- Choice and the odd-numbered questions on Exercises sections at the end of the chapter. In

More information

Let s say you were able to build a tunnel through the center of the Earth to the opposite side. If you were to jump in, you would accelerate toward

Let s say you were able to build a tunnel through the center of the Earth to the opposite side. If you were to jump in, you would accelerate toward Let s say you were able to build a tunnel through the center of the Earth to the opposite side. If you were to jump in, you would accelerate toward the center. However your acceleration decrease as your

More information

b. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.

b. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time. I. What is Motion? a. Motion - is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far

More information

Chapter 13 Newton s Theory of Gravity

Chapter 13 Newton s Theory of Gravity Chapter 13 Newton s Theory of Gravity Chapter Goal: To use Newton s theory of gravity to understand the motion of satellites and planets. Slide 13-2 Chapter 13 Preview Slide 13-3 Chapter 13 Preview Slide

More information

Homework 4. problems: 5.61, 5.67, 6.63, 13.21

Homework 4. problems: 5.61, 5.67, 6.63, 13.21 Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find

More information

Quest Chapter 13. Where is the event happening? What does the no atmosphere phrase mean in the problem? What is the ball doing during the event?

Quest Chapter 13. Where is the event happening? What does the no atmosphere phrase mean in the problem? What is the ball doing during the event? 1 (part 1 of 2) A ball is tossed straight up from the surface of a small, spherical asteroid with no atmosphere. The ball rises to a height equal to the asteroid s radius and then falls straight down toward

More information

History of Gravity. Name: Date: Period:

History of Gravity. Name: Date: Period: History of Gravity Name: Date: Period: I. ANCIENT ASTRONOMY Imagine what it was like for the first humans to look up at the night sky. This is well before the invention of modern technology. There were

More information

THE NATURE OF FORCES Forces can be divided into two categories: contact forces and non-contact forces.

THE NATURE OF FORCES Forces can be divided into two categories: contact forces and non-contact forces. SESSION 2: NEWTON S LAWS Key Concepts In this session we Examine different types of forces Review and apply Newton's Laws of motion Use Newton's Law of Universal Gravitation to solve problems X-planation

More information

12/3/10. Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

12/3/10. Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. The beautiful rings of Saturn consist of countless centimeter-sized ice crystals, all orbiting the planet under the influence of gravity. Chapter Goal: To use Newton s theory of gravity to understand the

More information

Chapter 6 Circular Motion, Orbits and Gravity

Chapter 6 Circular Motion, Orbits and Gravity Chapter 6 Circular Motion, Orbits and Gravity Topics: The kinematics of uniform circular motion The dynamics of uniform circular motion Circular orbits of satellites Newton s law of gravity Sample question:

More information

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning:! How do we describe motion?! How is mass different from weight? How do we

More information

Is velocity constant? A = πr 2

Is velocity constant? A = πr 2 Physics R Date: Circular Motion & Gravity Uniform Circular Motion What does uniform mean? Equations: (on reference table) Uniform circular motion means circular motion with C = 2πr = Is velocity constant?

More information

Answer, Key Homework 9 David McIntyre May 10,

Answer, Key Homework 9 David McIntyre May 10, Answer, Key Homework 9 David McIntyre 4513 May 10, 004 1 This print-out should have 16 questions. Multiple-choice questions may continue on the next column or page find all choices before making your selection.

More information

College Physics 140 Chapter 4: Force and Newton s Laws of Motion

College Physics 140 Chapter 4: Force and Newton s Laws of Motion College Physics 140 Chapter 4: Force and Newton s Laws of Motion We will be investigating what makes you move (forces) and how that accelerates objects. Chapter 4: Forces and Newton s Laws of Motion Forces

More information

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Gravity Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Newton s Law of Gravitation r m 2 m 1 There is a force of gravity between any pair of objects anywhere. The force

More information

Concept Review. Physics 1

Concept Review. Physics 1 Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or

More information

Making Sense of the Universe: Understanding Motion, Energy, and Gravity

Making Sense of the Universe: Understanding Motion, Energy, and Gravity Making Sense of the Universe: Understanding Motion, Energy, and Gravity 1. Newton s Laws 2. Conservation Laws Energy Angular momentum 3. Gravity Review from last time Ancient Greeks: Ptolemy; the geocentric

More information

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture Chapter 4 Lecture The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity Making Sense of the Universe: Understanding Motion, Energy, and Gravity

More information

13 Universal Gravitation. Everything pulls on everything else.

13 Universal Gravitation. Everything pulls on everything else. Everything pulls on everything else. Gravity was not discovered by Isaac Newton. What Newton discovered, prompted by a falling apple, was that gravity is a universal force that it is not unique to Earth,

More information

Gravity & Circular Motion

Gravity & Circular Motion Physics Name: KEY Date: Period: Gravity & Circular Motion (Unit Review) Gravity Circular Motion Centripetal force Periodic motion Rotation Revolution Axis of rotation Axis of revolution Tangential (linear)

More information

From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc.

From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. PreClass Notes: Chapter 8 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by Jason Harlow, University

More information

Chapter 13 - Gravity. David J. Starling Penn State Hazleton Fall Chapter 13 - Gravity. Objectives (Ch 13) Newton s Law of Gravitation

Chapter 13 - Gravity. David J. Starling Penn State Hazleton Fall Chapter 13 - Gravity. Objectives (Ch 13) Newton s Law of Gravitation The moon is essentially gray, no color. It looks like plaster of Paris, like dirty beach sand with lots of footprints in it. -James A. Lovell (from the Apollo 13 mission) David J. Starling Penn State Hazleton

More information

Gravity, Orbital Motion,& Relativity

Gravity, Orbital Motion,& Relativity Gravity, Orbital Motion,& Relativity Early Astronomy Early Times As far as we know, humans have always been interested in the motions of objects in the sky. Not only did early humans navigate by means

More information

Chapter 3: Force and Motion

Chapter 3: Force and Motion Chapter 3 Chapter 3: Force and Motion Homework: All questions on the Multiple- Choice and the odd-numbered questions on Exercises sections at the end of the chapter. Force and Motion Cause and Effect In

More information

"Everything should be made as simple as possible, but not simpler." - Albert Einstein

Everything should be made as simple as possible, but not simpler. - Albert Einstein Physics Schedule Chapter Five Centripetal Motion & Gravity October 20 th November 3 rd, 2015 Date Activity/Topic Assignment due next day Tuesday, Universal Law of Gravity Worksheet 1 October 20 Block,

More information

PHY1 Review for Exam 5

PHY1 Review for Exam 5 Topics 1. Uniform circular Motion a. Centripetal acceleration b. Centripetal force c. Horizontal motion d. ertical motion e. Circular motion with an angle 2. Universal gravitation a. Gravitational force

More information

Review Circular Motion, Gravitation, and Kepler s Laws. Answers will be on that page along with a link to a pdf showing how the problem was solved.

Review Circular Motion, Gravitation, and Kepler s Laws. Answers will be on that page along with a link to a pdf showing how the problem was solved. CP Physics Review Circular Motion, Gravitation, and Kepler s Laws Name Date Answers will be posted on Ms. Mac s website. To find the answers go to: West Orange High School Home Page Select Teachers from

More information

A2 Physics Unit 4 4 Gravitational Fields. Mr D Powell

A2 Physics Unit 4 4 Gravitational Fields. Mr D Powell A2 Physics Unit 4 4 Gravitational Fields Mr D Powell Chapter Map http://hyperphysics.phy-astr.gsu.edu/hbase/grav.html Starter activity... HSW Image you are sat under a tree and your name was Issac Newton.

More information

~ SCIENCE SAMPLER ~ Unit 2 of 5

~ SCIENCE SAMPLER ~ Unit 2 of 5 College Guild PO Box 6448, Brunswick ME 04011 ~ SCIENCE SAMPLER ~ Unit 2 of 5 1 Physics *********************************************************************************************************************************************

More information

Turn in both the exam and the scantron sheets at the end of the exam.

Turn in both the exam and the scantron sheets at the end of the exam. Physics 161 NAME ANSWERS Final Exam Section # Dr. Dennis Drew May 17, 2004 Turn in both the exam and the scantron sheets at the end of the exam. Part I : 3 Partial credit questions each worth 11 pts. Show

More information

Newton s Law of Gravity

Newton s Law of Gravity Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

More information

Q: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight

Q: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight Q: Who established the law of universal gravitation? A: Newton Q: What is a spring scale used for? A: To measure weight Q: What is the Law of Universal Gravitation? A: Everything in the universe has gravity.

More information

Lesson 29: Newton's Law of Universal Gravitation

Lesson 29: Newton's Law of Universal Gravitation Lesson 29: Newton's Law of Universal Gravitation Let's say we start with the classic apple on the head version of Newton's work. Newton started with the idea that since the Earth is pulling on the apple,

More information

AP1 Gravity. at an altitude equal to twice the radius (R) of the planet. What is the satellite s speed assuming a perfectly circular orbit?

AP1 Gravity. at an altitude equal to twice the radius (R) of the planet. What is the satellite s speed assuming a perfectly circular orbit? 1. A satellite of mass m S orbits a planet of mass m P at an altitude equal to twice the radius (R) of the planet. What is the satellite s speed assuming a perfectly circular orbit? (A) v = Gm P R (C)

More information

Center of Mass/Momentum

Center of Mass/Momentum Center of Mass/Momentum 1. 2. An L-shaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the L-shaped

More information

Chapter 13: Universal Gravitation

Chapter 13: Universal Gravitation Chapter 13: Universal Gravitation I. The Falling Apple (13.1) A. Isaac Newton (1642-1727) 1. Formulated ideas based on earlier work by Galileo (concept of inertia) 2. Concept if object undergoes change

More information

Chapter 5 Gravitation Chapter 6 Work and Energy

Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 (5.6) Newton s Law of Universal Gravitation (5.7) Gravity Near the Earth s Surface Chapter 6 (today) Work Done by a Constant Force Kinetic Energy,

More information

Name Date Class. Directions: On the line before each statement, write T if the statement is true or F if the statement is false.

Name Date Class. Directions: On the line before each statement, write T if the statement is true or F if the statement is false. Lesson Quiz A LESSON 2 Newton s First Law True or False Directions: On the line before each statement, write T if the statement is true or F if the statement is false. 1. To find net force, you must specify

More information

Forces, Momentum, & Gravity. Force and Motion Cause and Effect. Student Learning Objectives 2/16/2016

Forces, Momentum, & Gravity. Force and Motion Cause and Effect. Student Learning Objectives 2/16/2016 Forces, Momentum, & Gravity (Chapter 3) Force and Motion Cause and Effect In chapter 2 we studied motion but not its cause. In this chapter we will look at both force and motion the cause and effect. We

More information

6. CIRCULAR MOTION; GRAVITATION.

6. CIRCULAR MOTION; GRAVITATION. 6. CIRCULAR MOTION; GRAVITATION. Key words: Uniform Circular Motion, Period of rotation, Frequency, Centripetal Acceleration, Centripetal Force, Kepler s Laws of Planetary Motion, Gravitation, Newton s

More information

Newton s Universal Law of Gravitation The Apple and the Moon Video

Newton s Universal Law of Gravitation The Apple and the Moon Video Name Date Pd Newton s Universal Law of Gravitation The Apple and the Moon Video Objectives Recognize that a gravitational force exists between any two objects and that the force is directly proportional

More information

Gravity. Gravity notes - VCE Physics.com

Gravity. Gravity notes - VCE Physics.com Gravity 2 Newton s law of gravitation The force of attraction between any two objects: depends on the mass of the two objects. (More mass = more attraction) depends on the square of the separation. (Further

More information

Lesson 5 Rotational and Projectile Motion

Lesson 5 Rotational and Projectile Motion Lesson 5 Rotational and Projectile Motion Introduction: Connecting Your Learning The previous lesson discussed momentum and energy. This lesson explores rotational and circular motion as well as the particular

More information

Question on Class IX» Science» Gravitation» The Universal Law Of Gravitation.

Question on Class IX» Science» Gravitation» The Universal Law Of Gravitation. Question on Class IX» Science» Gravitation» The Universal Law Of Gravitation. Q.1. When we move from the poles to the equator. Hence, the value of g decreases. Why Ans: The shape of earth is an ellipse

More information

Newton s Laws Name: Per: Teacher: What is a force? Newton s First Law (Law of Inertial) What do forces cause?

Newton s Laws Name: Per: Teacher: What is a force? Newton s First Law (Law of Inertial) What do forces cause? Physics B Newton s Laws Name: Per: Teacher: What is a force? Newton s First Law (Law of Inertial) What do forces cause? What is the relationship between mass and inertia? Draw a force diagram on the book.

More information

Student Exploration: Uniform Circular Motion

Student Exploration: Uniform Circular Motion Name: Date: Student Exploration: Uniform Circular Motion Vocabulary: acceleration, centripetal acceleration, centripetal force, Newton s first law, Newton s second law, uniform circular motion, vector,

More information

Apparent Weightlessness and Artificial Gravity

Apparent Weightlessness and Artificial Gravity Apparent Weightlessness and Artificial Gravity In order to simulate weightlessness it is necessary to eliminate the effect of air resistance. To accomplish this a plane it used to fly passengers first

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied

More information

Gravitation. Gravitation

Gravitation. Gravitation 1 Gravitation Newton s observations A constant center seeking force is required to keep an object moving along a circular path. You know that the moon orbits the earth and hence there should be a force

More information

Gravitation. Physics 1425 Lecture 11. Michael Fowler, UVa

Gravitation. Physics 1425 Lecture 11. Michael Fowler, UVa Gravitation Physics 1425 Lecture 11 Michael Fowler, UVa The Inverse Square Law Newton s idea: the centripetal force keeping the Moon circling the Earth is the same gravitational force that pulls us to

More information

Newton s Law of Universal Gravitation (Ch 13) Law of Gravitation, cont. Notation. More About Forces. This is an example of an inverse square law

Newton s Law of Universal Gravitation (Ch 13) Law of Gravitation, cont. Notation. More About Forces. This is an example of an inverse square law Newton s Law of Universal Gravitation (Ch 13) Every particle in the Universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely proportional

More information

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1. IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

More information

Gravity. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Gravity. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Gravity Physics 6A GRAVITY Any pair of objects, anywhere in the universe, feel a mutual attraction due to gravity. There are no exceptions if you have mass, every other mass is attracted to you, and you

More information

Chapter 2 Notes Motion

Chapter 2 Notes Motion Chapter 2 Notes Motion Homework: Ch2 Exersizes: 1, 3, 4, 6-10, 12, 13, 15-18 Questions: 1, 4-6, 9, 13, 17, 23, 25 Problems:1, 3, 5 (need infor from question 4), 11, 16,17, 19, 24 (answered in study guide),

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

More information

Lecture 5: Newton s Laws. Astronomy 111

Lecture 5: Newton s Laws. Astronomy 111 Lecture 5: Newton s Laws Astronomy 111 Isaac Newton (1643-1727): English Discovered: three laws of motion, one law of universal gravitation. Newton s great book: Newton s laws are universal in scope,

More information

The Motions of Celestial Bodies, and Newton s Laws of Motion

The Motions of Celestial Bodies, and Newton s Laws of Motion The Motions of Celestial Bodies, and Newton s Laws of Motion Announcements The results of Quiz 1 are posted in OWL Looking ahead: Homework 1 is on-going, and is due on Thu, Sept. 29 th ; Homework 2 will

More information

Review Questions #1. Physics Fall 2007

Review Questions #1. Physics Fall 2007 Review Questions #1 Physics 102.002 Fall 2007 Which of these is an accurate statement of Newton's first law? When there is no net force, an object a. at rest remains at rest. b. in motion remains in motion.

More information

Physics General Physics

Physics General Physics Physics 1403-001 General Physics Lecture 16 Chapter 5 & 6 Feb 4, 014 Announcements Course webpage: http://highenergy.phys.ttu.edu/~slee/1403 Syllabus, lecture note, etc Online homework: http://webassign.net/login.html

More information

Chapter 8-9. Rotation. Rotational Motion and The Law of Gravity

Chapter 8-9. Rotation. Rotational Motion and The Law of Gravity Chapter 8-9 Rotational Motion and The Law of Gravity There are two kinds of speeds During time t, the reference line moves through angle θ. Angular velocity w is the rate of rotation. (e.g 33 rpm) The

More information

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION 1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding

More information

M OTION. Chapter2 OUTLINE GOALS

M OTION. Chapter2 OUTLINE GOALS Chapter2 M OTION OUTLINE Describing Motion 2.1 Speed 2.2 Vectors 2.3 Acceleration 2.4 Distance, Time, and Acceleration Acceleration of Gravity 2.5 Free Fall 2.6 Air Resistence Force and Motion 2.7 First

More information

GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:

GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: GRAVITATIONAL FIELDS Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: Formula Description This is the formula for force due to gravity or as we call it, weight. Relevant

More information

Applications of Newton s Laws

Applications of Newton s Laws Chapter 5 Applications of Newton s Laws We shall apply Newton s laws of motion to a variety of situations in which several types of forces are involved: Gravitational force Tension Contact Forces (including

More information

Chapter 6. Circular Motion, Orbits, and Gravity. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition

Chapter 6. Circular Motion, Orbits, and Gravity. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Chapter 6 Circular Motion, Orbits, and Gravity PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 6 Circular Motion, Orbits, and Gravity Slide 6-2 Slide 6-3 Slide 6-4 Slide 6-5

More information

Section 5: Solving Circular Motion Problems the Vertical Circle

Section 5: Solving Circular Motion Problems the Vertical Circle Section 5: Solving Circular Motion Problems the Vertical Circle In the last section, we worked with objects moving in a circle in a horizontal plane. In these situations, the weight of the moving object

More information

1 Newton s Laws of Motion

1 Newton s Laws of Motion Exam 1 Ast 4 - Chapter 2 - Newton s Laws Exam 1 is scheduled for the week of Feb 19th Bring Pencil Scantron 882-E (available in the Bookstore) A scientific calculator (you will not be allowed to use you

More information

Gravity and Friction Worksheet A

Gravity and Friction Worksheet A Gravity and Friction Worksheet A Completion Directions: On each line, write the term that correctly completes each sentence. 1. Gravity and magnetism are examples of forces. 2. is the measure of gravitational

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves sp e e d = d ista

More information

HOW DO YOU GET SOMETHING TO MOVE IN A CIRCLE?

HOW DO YOU GET SOMETHING TO MOVE IN A CIRCLE? CIRCULAR MOTION HOW DO YOU GET SOMETHING TO MOVE IN A CIRCLE? Name one thing that travels in a circular path. (not something that spins) What are some things we could measure about its motion? Consider

More information

Complete each of the following sentences by choosing the correct term from the word bank.

Complete each of the following sentences by choosing the correct term from the word bank. Skills Worksheet Chapter Review USING VOCABULARY 1. Academic Vocabulary In the sentence Gravity has an important role in maintaining the shape of the solar system, what does the word role mean? a. a part

More information

PSI AP Physics 1 Gravitation

PSI AP Physics 1 Gravitation PSI AP Physics 1 Gravitation Multiple Choice 1. Two objects attract each other gravitationally. If the distance between their centers is cut in half, the gravitational force A) is cut to one fourth. B)

More information

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name: Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Gravity operates by the inverse square law (source Hyperphysics)

Gravity operates by the inverse square law (source Hyperphysics) Gravity operates by the inverse square law (source Hyperphysics) A main objective in this lesson is that you understand the basic notion of inverse square relationships. There are a small number (perhaps

More information

Inertial frame of reference: The frame of reference in which Newton`s first law is valid is called inertial frame of reference.

Inertial frame of reference: The frame of reference in which Newton`s first law is valid is called inertial frame of reference. Dynamics Newton`s first law: If no net force acts on a body, it will move on a straight line at constant velocity or will stay at rest if it stays initially at rest. Inertial frame of reference: The frame

More information

Chapter 6 - Dynamics of Uniform Circular Motion w./ QuickCheck Questions

Chapter 6 - Dynamics of Uniform Circular Motion w./ QuickCheck Questions Chapter 6 - Dynamics of Uniform Circular Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico September 24, 2015 Review

More information

Chapter 13. Newton s Theory of Gravity

Chapter 13. Newton s Theory of Gravity Chapter 13. Newton s Theory of Gravity The beautiful rings of Saturn consist of countless centimeter-sized ice crystals, all orbiting the planet under the influence of gravity. Chapter Goal: To use Newton

More information

The Main Point. The Scientific Method. Laws of Planetary Motion. Lecture #3: Orbits and Gravity. Laws of Planetary Motion:

The Main Point. The Scientific Method. Laws of Planetary Motion. Lecture #3: Orbits and Gravity. Laws of Planetary Motion: Lecture #3: Orbits and Gravity Laws of Planetary Motion: Kepler's Laws. Newton's Laws. Gravity. Planetary Orbits. Spacecraft Orbits. The Main Point Motions of planets, moons, and asteroids can be very

More information

Two new stars with masses 3M and 2M form another star system with a distance d between their centers.

Two new stars with masses 3M and 2M form another star system with a distance d between their centers. AP Physics C Gravity Free Response Problems 1. Two identical stars from a binary star system move in the same circular orbit of radius R. Each star has a mass M. The universal gravitational constant is

More information

Physics Principles of Physics

Physics Principles of Physics Physics 1408-00 Principles of Physics Lecture 10 Chapter 6 September 19, 008 Sung-Won Lee Sungwon.Lee@ttu.edu Announcement Lecture note is on the web handout (4 slides/page) http://highenergy.phys.ttu.edu/~slee/1408/

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION chapter DYNAMICS OF UNIFORM CIRCULAR MOTION Section 5.1 Uniform Circular Motion Section 5.2 Centripetal Acceleration 1. A ball moves with a constant speed of 4 m/s around a circle of radius 0.25 m. What

More information

Mechanics before Newton

Mechanics before Newton Chapter 5: Gravity and Motion Mechanics before Newton Impetus Theory: motion requires force, an objects natural state is to be at rest. Galileo, the experimenter motion as a natural state, force is required

More information