# LATITUDE AND LONGITUDE DRAWING THE EARTH GRID

Size: px
Start display at page:

## Transcription

1 LATITUDE AND LONGITUDE A system of lines is used to find the location of any place on the surface of the Earth. Commonly called a grid system, it is made up of two sets of lines that cross each other. One set lines of latitude runs in an east-west direction. The other set lines of longitude runs in a north-south direction. Although these are only imaginary lines encircling the Earth, they can be drawn on globes and maps as if they actually existed. DRAWING THE EARTH GRID To draw the lines of the grid system on a globe or map, it is necessary to have starting points, or points of reference. There are two such points of reference on the Earth. These are the North Pole and the South Pole. The poles are the points at which the Earth's axis meets the Earth's surface. Halfway between the poles is an east-west line called the equator. It encircles the Earth and divides it into two equal parts, or hemispheres. The North Pole is in the hemisphere north of the equator the Northern Hemisphere. The South Pole is in the hemisphere south of the equator the Southern Hemisphere. One set of lines in the Earth's grid system is drawn around the globe parallel to the equator. These are east-west lines, or lines of latitude. In the basic grid there are 89 such equally spaced lines to the north of the equator, 89 to the south. Where the 90th east-west lines would be are two points the North and South poles. Each east-west line is a circle. The farther it is from the equator the shorter its length. The 60th east-west line, for example, is only half as long as the equator. East-west lines are numbered from 0 at the equator the east-west base line to 89 near the poles. The east-west lines between the equator and the North Pole are north of the equator; those between the equator and the South Pole, south of the equator. The city of New Orleans, La., is located on the 30th east-west line north of the equator. But many other places in the world are also situated on this line. That is why a second set of lines is needed to locate the exact position of New

2 Orleans or of any other place. The second set of lines in the Earth's grid system is drawn from pole to pole. These are north-south lines, or lines of longitude. One north-south line has been chosen by international agreement as the zero, or base line. It passes through Greenwich, England, a borough of London. In the basic grid there are 180 such equally spaced lines to the east of the Greenwich base line, 180 to the west. Unlike east-west lines, all north-south lines have the same length. North-south lines are numbered from 0 at the north-south base line both east and west to the 180th north-south line. The zero line and the 180th line together form a complete circle that like the equator, cuts the Earth into two hemispheres. The half west of the zero line can be called the Western Hemisphere; the half east of the zero line, the Eastern Hemisphere. The north-south lines and the east-west lines together form the global grid system used to find the exact location of any place on Earth. New Orleans, on the 30th east-west line north of the equator, is also on the 90th north-south line west of the north-south base line. Many places in the world among them, Memphis, Tenn.; East St. Louis, Ill.; and the Galapagos Islands of Ecuador are on or near the same north-south line as New Orleans. Many other places for example, Port Arthur, Tex.; St. Augustine, Fla.; and Cairo, Egypt are on or near the same east-west line as New Orleans. But only New Orleans is situated on both lines exactly where they cross each other. Likewise, each place in the world and only that place is situated at the intersection of a given east-west line and a given north-south line. PARALLELS AND MERIDIANS All east-west lines are equidistant from each other. This means that they are all parallel to the equator and to each other. Every point on a given east-west line, therefore, is the same distance from the equator, the same distance from the North Pole, and the same distance from the South Pole. For this reason east-west lines, or lines of latitude, are commonly referred to as parallels of latitude, or simply parallels. The north-south lines, or lines of longitude, also have another name. They are commonly referred to as meridians of longitude, or simply meridians. The zero meridian, or base line for numbering the north-south lines, is called the prime meridian. Each meridian goes only halfway around the Earth from pole to pole. Each has a twin on

3 the other side of the Earth. Like the prime meridian and the 180th meridian, all such pairs of meridians form circles that cut the Earth into hemispheres. These circles are known as great circles. Only one parallel, the equator, is a great circle. MEASUREMENTS OF ANGULAR DISTANCE A cutaway drawing of the Earth demonstrates how latitude is determined. It makes clear that latitude is a measure of the angle between the plane of the equator and lines projected from the center of the Earth. For example, the angle between a line drawn from New Orleans on the 30th line of latitude to the center of the Earth and a line drawn on the plane of the equator is 30 degrees (30 ). In each hemisphere the 30th line of latitude connects all points whose projections to the center of the Earth form a 30 angle with the plane of the equator. The latitude of the equator is zero degrees (0 ). Lines of latitude north and south of the equator are numbered to 90 because the angular distance from the equator to each pole is one fourth of a circle, or one fourth of 360. There is no latitude higher than 90. The North Pole is situated at 90 north latitude, or simply 90 N. The South Pole is at 90 south latitude, or 90 S. The cutaway drawing of the Earth also shows how longitude is determined. Longitude is seen to be a measure of the angle between the planes of two meridian circles, one of which is the prime meridian. For example, the plane of the 90th line of longitude, on which New Orleans is located, forms a 90 angle with the plane of the prime meridian. All places on the 90th line of longitude west of the prime meridian, therefore, are at 90 west longitude. The prime meridian is designated zero degrees (0 ) longitude. Lines of longitude are numbered east of the prime meridian from 0 to 180 east longitude and west from 0 to 180 west longitude. There is no longitude higher than 180, and the 180th meridian east and the 180th meridian west are identical. Degrees of latitude and longitude can be divided into sixtieths, or minutes ('). Any location on Earth can be described as lying at a certain number of degrees and minutes of latitude either north or south of the equator and at a certain number of degrees and minutes of longitude either east or west of the prime meridian. For example, the United States Capitol in Washington, D.C., is at 38 degrees 53 minutes north latitude (38 53' N.) and 77 degrees 0 minutes west longitude (077 00' W.). Minutes of latitude and longitude can be divided into sixtieths, or seconds ("), when more precise information on the location of a place is needed, for example, by navigators, surveyors, pilots, or map makers. A degree of latitude can easily be changed into miles. Since the circumference of the Earth is roughly 25,000 miles, the length of each degree of latitude is about 69 miles

4 (1/360 of 25,000 miles). Degrees of latitude vary a little in length the variation between the shortest and the longest is less than a mile because the Earth is not a perfect sphere but is flattened slightly toward the poles and bulges slightly around the equator. The length of a degree of longitude, however, varies from about 69 miles at the equator to zero at the poles, where the meridians come together. FINDING LATITUDE AND LONGITUDE The navigator of a ship or an airplane can determine the latitude of his position by using an instrument called a sextant. With it he measures the altitude (angle above the horizon) of the sun as the sun transits, or crosses, his meridian (longitude). He then calculates his latitude by combining the observed altitude with information from an almanac a book of data about the movement of the sun and stars. In the evening, latitude may similarly be found by observing stars. Longitude is more difficult to determine than latitude because the sextant and the almanac together do not yield enough information. To calculate his longitude, a navigator must also know the exact time at which he is making his observations. The time is needed because the sun and stars, as they appear to move across the sky, look the same at all places in a given latitude at some time during each day. The invention of clocks during the Renaissance was the first step toward the reliable calculation of longitude. The clocks of that era, however, were too inaccurate for use in navigation. In 1714 the British Board of Longitude offered a large cash prize to anyone who could build a clock that would meet certain standards of accuracy throughout long ocean voyages. By 1735 John Harrison, a British clockmaker, had submitted the first of several clocks, the last of which won the prize for him. They were called chronometers. In 1766 Pierre Le Roy, a Frenchman, built a chronometer more accurate than Harrison's. From that time on, sailors have been able to determine longitude accurately by comparing local time with Greenwich mean time (GMT). Shipboard chronometers are set to show GMT. Because of the speed and direction of the Earth's rotation, local time at a given place will be one hour behind GMT for every 15 degrees west of the prime meridian and one hour ahead of GMT for every 15 degrees east of the prime meridian. For example, if a ship's chronometer reads 0300 (3:00 AM) and the ship's local time is 0800 (8:00 AM), the ship is 75 degrees east of Greenwich, or at 75 E. Special radio time signals allow navigators to check the accuracy of their chronometers. HOW THE PRIME MERIDIAN WAS SELECTED Before a prime meridian was agreed upon, map makers usually began numbering the lines of longitude on their maps at whichever meridian passed through the site of their

5 national observatory. In the United States, for example, this was the Naval Observatory at Washington, D.C.; in France, the Paris Observatory; and in Great Britain, the Royal Greenwich Observatory, at Greenwich. Since Britain was a world leader in exploration and map making, navigators of other nations often used British maps. As a result, in 1884 the meridian of Greenwich was adoped throughout most of the world as the prime meridian. In the 1950s the royal Greenwich Observatory was moved about 60 miles southeast of Greenwich. The Greenwich meridian, however, remained the prime meridian. There was still another reason for the selection of the Greenwich meridian as 0 longitude. Travelers must change time by an entire day when they cross the 180th meridian. If this meridian crossed a large country, timekeeping and the establishment of calendar dates would be difficult. But with the Greenwich meridian set at zero, the 180th meridian is near the middle of the Pacific Ocean. It crosses only a small land area in northeastern Asia and divides some island groups in the Pacific. To avoid differing dates in those areas, the nations of the world established a special line across which dates change. It swerves from the 180th meridian whenever convenient. This line is called the International Date Line. SPECIAL LINES OF LATITUDE AND LONGITUDE Several lines of latitude have special significance. One of these is the equator. Two other special lines of latitude are the 30th parallels. The area between them, straddling the equator, is commonly referred to as the low latitudes. The low latitudes are generally warm lands. The two 60th parallels are also special lines of latitude. The areas north and south of the 60th parallels, which center on the North and South poles, are commonly referred to as the high latitudes. The high latitudes are generally cold lands. The areas between the 30th and 60th parallels in both hemispheres are commonly referred to as the middle latitudes. Generally, middle-latitude lands have four seasons fall, winter, spring, and summer. The latitude of a place, accordingly, is a clue of its climate. The yearly average of insolation, or heat energy received from the sun, depends in large measure on the angle or slant of the sun's rays. This angle varies with distance from the equator (latitude). Regions in high latitudes, both north and south, get less insolation and are therefore usually colder than regions in low latitudes. Four other special lines of latitude are the Tropic of Cancer (23 30'' N.), the Tropic of Capricorn (23 30'' S.), the Arctic Circle (66 30'' N.), and the Antarctic Circle (66 30'' S.). These lines relate to the tilt of the Earth's axis as the Earth revolves around the sun. The

6 Tropics of Cancer and Capricorn mark the limits of the zone astride the equator in which the sun appears directly overhead at some time during the year. The Arctic and Antarctic circles mark the limits of the areas around each pole in which the sun at some time during the year does not rise or set for a period of 24 hours or more. The only special line of longitude is the prime meridian. Time zone boundaries and the international date line are based on certain lines of longitude but do not follow them exactly.

### Sun Earth Relationships

1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation

### Earth-Sun Relationships. The Reasons for the Seasons

Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide

### Tropical Horticulture: Lecture 2

Lecture 2 Theory of the Tropics Earth & Solar Geometry, Celestial Mechanics The geometrical relationship between the earth and sun is responsible for the earth s climates. The two principal movements of

### Pre and post-visit activities - Navigating by the stars

Pre and post-visit activities - Navigating by the stars Vocabulary List Adult Education at Scienceworks Pre-visit Activity 1: What is longitude and latitude? Activity 2: Using the Southern Cross to find

### Solar energy and the Earth s seasons

Solar energy and the Earth s seasons Name: Tilt of the Earth s axis and the seasons We now understand that the tilt of Earth s axis makes it possible for different parts of the Earth to experience different

### Stellarium a valuable resource for teaching astronomy in the classroom and beyond

Stellarium 1 Stellarium a valuable resource for teaching astronomy in the classroom and beyond Stephen Hughes Department of Physical and Chemical Sciences, Queensland University of Technology, Gardens

### Stage 4. Geography. Blackline Masters. By Karen Devine

1 Devine Educational Consultancy Services Stage 4 Geography Blackline Masters By Karen Devine Updated January 2010 2 This book is intended for the exclusive use in NSW Secondary Schools. It is meant to

### Where on Earth are the daily solar altitudes higher and lower than Endicott?

Where on Earth are the daily solar altitudes higher and lower than Endicott? In your notebooks, write RELATIONSHIPS between variables we tested CAUSE FIRST EFFECT SECOND EVIDENCE As you increase the time

### Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...

### Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction

Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.

### An Introduction to Coordinate Systems in South Africa

An Introduction to Coordinate Systems in South Africa Centuries ago people believed that the earth was flat and notwithstanding that if this had been true it would have produced serious problems for mariners

### Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Purpose To help students understand how solar radiation varies (duration and intensity) during

### PHSC 3033: Meteorology Seasons

PHSC 3033: Meteorology Seasons Changing Aspect Angle Direct Sunlight is more intense and concentrated. Solar Incidence Angle is Latitude and Time/Date Dependent Daily and Seasonal Variation Zenith There

APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working

### Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

Today FIRST HOMEWORK DUE NEXT TIME Seasons/Precession Recap Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy How do we mark the progression of the seasons? We define four special points: summer

### The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

The Four Seasons A Warm Up Exercise What fraction of the Moon s surface is illuminated by the Sun (except during a lunar eclipse)? a) Between zero and one-half b) The whole surface c) Always half d) Depends

### Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity

Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure

### Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)

### Renewable Energy. Solar Power. Courseware Sample 86352-F0

Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this

### Local Sidereal Time is the hour angle of the First Point of Aries, and is equal to the hour angle plus right ascension of any star.

1 CHAPTER 7 TIME In this chapter we briefly discuss the several time scales that are in use in astronomy, such as Universal Time, Mean Solar Time, Ephemeris Time, Terrestrial Dynamical Time, and the several

### Sunlight and its Properties. EE 495/695 Y. Baghzouz

Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to

### CHAPTER 3. The sun and the seasons. Locating the position of the sun

zenith 90 summer solstice 75 equinox 52 winter solstice 29 altitude angles observer Figure 3.1: Solar noon altitude angles for Melbourne SOUTH winter midday shadow WEST summer midday shadow summer EAST

Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents

### Chapter 3 Earth - Sun Relations

3.1 Introduction We saw in the last chapter that the short wave radiation from the sun passes through the atmosphere and heats the earth, which in turn radiates energy in the infrared portion of the electromagnetic

### Solar Energy Systems. Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University

Solar Energy Solar Energy Systems Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University 1 SOLAR ENERGY OVERVIEW 1) Types of Solar Power Plants 2) Describing the Solar

### CHAPTER 18 TIME TIME IN NAVIGATION

CHAPTER 18 TIME TIME IN NAVIGATION 1800. Solar Time The Earth s rotation on its axis causes the Sun and other celestial bodies to appear to move across the sky from east to west each day. If a person located

### Douglas Adams The Hitchhikers Guide to the Galaxy

There is a theory which states that if ever anybody discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable.

### COASTLINING THE ZODIAC

COASTLINING THE ZODIAC Astronomy books and skywatching guides offer a wide variety of charts for naked-eye observation of the skies. What works best for each person will depend on various factors such

### Seasonal Temperature Variations

Seasonal and Daily Temperatures Fig. 3-CO, p. 54 Seasonal Temperature Variations What causes the seasons What governs the seasons is the amount of solar radiation reaching the ground What two primary factors

### Ok, so if the Earth weren't tilted, we'd have a picture like the one shown below: 12 hours of daylight at all latitudes more insolation in the

Ok, so if the Earth weren't tilted, we'd have a picture like the one shown below: 12 hours of daylight at all latitudes more insolation in the tropics, less at higher latitudes Ok, so if the Earth weren't

### The Mathematics of the Longitude

The Mathematics of the Longitude Wong Lee Nah An academic exercise presented in partial fulfilment for the degree of Bachelor of Science with Honours in Mathematics. Supervisor : Associate Professor Helmer

### Moon Phases and Tides in the Planning the D-Day Invasion Part I: The Phases of the Moon

The Science and Technology of WWII Moon Phases and Tides in the Planning the D-Day Invasion Part I: The Phases of the Moon Objectives: 1. Students will determine what causes the moon to go through a cycle

### STONEHENGE AS A SOLSTICE INDICATOR

STONEHENGE AS A SOLSTICE INDICATOR One of the most impressive megalithic structures in the world is Stonehenge just north of Salisbury, England. I first visited the monument during my post-doctorate year

### Optimum Orientation of Solar Panels

Optimum Orientation of Solar Panels To get the most from solar panels, point them in the direction that captures the most sun. But there are a number of variables in figuring out the best direction. This

### STUDY GUIDE: Earth Sun Moon

The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

### Ch.1. Name: Class: Date: Matching

Name: Class: Date: Ch.1 Matching Match each item with the correct statement below. a. technology e. democracy b. diffusion f. extended family c. exports g. interdependence d. climate 1. goods sent to markets

### SOLAR CALCULATIONS (2)

OLAR CALCULATON The orbit of the Earth is an ellise not a circle, hence the distance between the Earth and un varies over the year, leading to aarent solar irradiation values throughout the year aroximated

### Where in the World is the arctic?

Where in the World is the arctic? Summary: Students map the arctic in relation to their home in order to learn the location and countries of the arctic. Grade Level: 3-4; 5-8; K-2 Time one class period.

3. Shading The effects of shading by one building upon another can be either positive or negative depending upon the site-specific circumstances of the properties involved. A potential benefit of shading

### PROPOSAL Stalker Hall Sunwork and Garden A large outdoor sculpture and garden space

PROPOSAL Stalker Hall Sunwork and Garden A large outdoor sculpture and garden space FOR: Indiana State University, Terre Haute, College of Arts and Sciences North entrance - newly renovated Stalker Hall

### ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING

ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING 5-1 Introduction Weather is the state of the atmosphere at a particular place for a short period of time. The condition of the atmosphere

Discover Your World With NOAA Follow That Hurricane! What You Will Do Devastating damage expected A most Track a hurricane on the same powerful hurricane with unprecedented type of chart used at the strength

### ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

### DETERMINING SOLAR ALTITUDE USING THE GNOMON. How does the altitude change during the day or from day to day?

Name Partner(s) Section Date DETERMINING SOLAR ALTITUDE USING THE GNOMON Does the Sun ever occur directly overhead in Maryland? If it does, how would you determine or know it was directly overhead? How

### Heat Transfer. Energy from the Sun. Introduction

Introduction The sun rises in the east and sets in the west, but its exact path changes over the course of the year, which causes the seasons. In order to use the sun s energy in a building, we need to

### ELEMENTS OF SURVEYING FOR CADASTRAL MAPPING

ELEMENTS OF SURVEYING FOR CADASTRAL MAPPING Chapter 4 2015 Cadastral Mapping Manual 4-0 Elements of Surveying and Mapping Utah's system of land surveying is the rectangular survey system as set forth on

### Designing with the Pilkington Sun Angle Calculator

Designing with the Pilkington Sun Angle Calculator 1 In 1951, Libbey-Owens-Ford introduced the first Sun Angle Calculator, to provide a relatively simple method of determining solar geometry variables

### A student guide to the Global Positioning System

A student guide to the Global Positioning System T H E A E R O S P A C E C O R P O R A T I O N The Sky s the Limit The men and women who created the Global Positioning System, more commonly known as GPS,

### CHAPTER 8 - LAND DESCRIPTIONS

CHAPTER 8 - LAND DESCRIPTIONS Notes: While the location of land is commonly referred to by street number and city, it is necessary to use the legal description in the preparation of those instruments relating

### Maximising the sun 1. Introduction

Maximising the sun 1. Introduction South Africa is blessed with some of the best quality solar radiation in the world (Figure 1). In the light of this many exciting opportunities exist to utilize the sun

### The Atmosphere and Winds

Oceanography 10, T. James Noyes, El Camino College 8A-1 The Atmosphere and Winds We need to learn about the atmosphere, because the ocean and atmosphere are tightly interconnected with one another: you

### Solstice and Equinox ( Suntrack ) Season Model

Solstice and Equinox ( Suntrack ) Season Model Philip Scherrer & Deborah Scherrer, Stanford Solar Center Introduction This physical model simulates the Sun s tracks across the sky at summer solstice (longest

### The Balance of Power in the Earth-Sun System

NASA Facts National Aeronautics and Space Administration www.nasa.gov The Balance of Power in the Earth-Sun System The Sun is the major source of energy for Earth s oceans, atmosphere, land, and biosphere.

### Artificial Satellites Earth & Sky

Artificial Satellites Earth & Sky Name: Introduction In this lab, you will have the opportunity to find out when satellites may be visible from the RPI campus, and if any are visible during the activity,

CHAPTER 7 DEAD RECKONING DEFINITION AND PURPOSE 700. Definition and Use Dead reckoning is the process of determining one s present position by projecting course(s) and speed(s) from a known past position,

### 1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.

Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year X d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)

### Vessels reporting duties on the NSR

The Arctic 2030 Project: Feasibility and Reliability of Shipping on the Northern Sea Route and Modeling of an Arctic Marine Transportation & Logistics System 1-st Industry Seminar: NSR s Legislation, Tariff

### The solar towers of Chankillo

The solar towers of Chankillo Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, Italy An ancient solar observatory is composed

### Best Practices for Leap Second Event Occurring on 30 June 2015

Best Practices for Leap Second Event Occurring on 30 June 2015 26 May 2015 Sponsored by the National Cybersecurity and Communications Integration Center in coordination with the United States Naval Observatory,

### Public Land Survey System - Definition

Public Land Survey System - Definition The Public Land Survey System (PLSS) is a method used in the United States to locate and identify land, particularly for titles and deeds of farm or rural land. The

### Mobile Tracking Application

Mobile Tracking Application Radhika Kinage 1, Jyotshna Kumari 2, Purva Zalke 3, Meenal Kulkarni 4 Student, Department of Computer Technology, Yeshwantrao Chavan College of Engineering, Nagpur, Maharashtra,

### Astronomical Clocks. ~ 1 day ~ 1 hour

Astronomical Clocks ~ 1 day ~ 1 hour Calendar A calendar is just a really slow clock ticks = days Assign some names/ patterns to days Allow predictions of future Question: How do you check the performance

### HEAVENLY MATHEMATICS GEK 1506 Sun and Architecture

HEAVENLY MATHEMATICS GEK 1506 Sun and Architecture Group 66 Lee Jin You, Roger Lee Ji Hao, Theophilus Lim Guang Yong Lim Ghim Hui Lim ShuEn Adele Lim Wee Kee U024711R U024730X U024732W U024718X U024757W

### Scale of the Solar System. Sizes and Distances: How Big is Big? Sizes and Distances: How Big is Big? (Cont.)

Scale of the Solar System Scale of the Universe How big is Earth compared to our solar system? How far away are the stars? How big is the Milky Way Galaxy? How big is the Universe? How do our lifetimes

### CHAPTER 4 LEGAL DESCRIPTION OF LAND DESCRIBING LAND METHODS OF DESCRIBING REAL ESTATE

r CHAPTER 4 LEGAL DESCRIPTION OF LAND DESCRIBING LAND A legal description is a detailed way of describing a parcel of land for documents such as deeds and mortgages that will be accepted in a court of

### Solar Geometry P L A N E O F S U N

1 Slar Gemetry The Earth s daily rtatin abut the axis thrugh its tw celestial ples (Nrth and Suth) is perpendicular t the equatr, but it is nt perpendicular t the plane f the Earth s rbit. In fact, the

Shadows and Solar Zenith Name Lab Partner Section Introduction: The solar zenith angle is defined to be the angle between the sun and a line that goes straight up (to the zenith) In reality the sun is

### CONTENTS PAGE: 1. EU-UNAWE Mission Statement 3 2. CAPS Life Skills Programme of Assessment 4 5-6

CONTENTS PAGE: 1. EU-UNAWE Mission Statement 3 2. CAPS Life Skills Programme of Assessment 4 5-6 3. Core Knowledge & Content - CAPS Curriculum Life Skills Foundation Phase 4. Learning Outcomes & Definition

### Solar Heating Basics. 2007 Page 1. a lot on the shape, colour, and texture of the surrounding

2007 Page 1 Solar Heating Basics Reflected radiation is solar energy received by collectorsfrom adjacent surfaces of the building or ground. It depends a lot on the shape, colour, and texture of the surrounding

### Orbital-Scale Climate Change

Orbital-Scale Climate Change Climate Needed for Ice Age Warm winter and non-frozen oceans so lots of evaporation and snowfall Cool summer so that ice does not melt Ice Age Model When ice growing ocean

### Siting of Active Solar Collectors and Photovoltaic Modules

SOLAR CENTER INFORMATION NCSU Box 7401 Raleigh, NC 27695 (919) 515-3480 Toll Free 1-800-33-NC SUN Siting of Active Solar Collectors and Photovoltaic Modules To install a solar energy system properly, it

### Global Seasonal Phase Lag between Solar Heating and Surface Temperature

Global Seasonal Phase Lag between Solar Heating and Surface Temperature Summer REU Program Professor Tom Witten By Abstract There is a seasonal phase lag between solar heating from the sun and the surface

### Solar Shading Android Application v6.0. User s Manual

Solar Shading Android Application v6.0 User s Manual Comoving Magnetics Revision: April 21, 2014 2014 Comoving Magnetics. All rights reserved. Preface... 3 Part 1: Shading Analysis... 4 How to Start a

### A guide to coordinate systems in Great Britain

A guide to coordinate systems in Great Britain An introduction to mapping coordinate systems and the use of GPS datasets with Ordnance Survey mapping D00659 v2.3 Mar 2015 Crown copyright Page 1 of 43 Contents

### 50.07 Uranus at Equinox: Cloud morphology and dynamics

50.07 Uranus at Equinox: Cloud morphology and dynamics 14 October 2008 DPS Meeting, Ithaca, NY Lawrence A. Sromovsky 1, P. M. Fry 1, W. M. Ahue 1, H. B. Hammel 2, I. de Pater 3, K. A. Rages 4, M. R. Showalter

### Geomatics Guidance Note 3

Geomatics Guidance Note 3 Contract area description Revision history Version Date Amendments 5.1 December 2014 Revised to improve clarity. Heading changed to Geomatics. 4 April 2006 References to EPSG

### Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

### Weather stations: Providing business critical information

Weather stations: Providing business critical information As a nation, the U.S. consumes seven percent of the globe s energy, making it the largest energy user in the world by a considerable margin. Weather

### Understanding Land Measurement and Legal Descriptions

Lesson A2 1 Understanding Land Measurement and Legal Descriptions Unit A. Mechanical Systems and Technology Problem Area 2. Soil and Environmental Technology Systems Lesson 1. Understanding Land Measurement

### Earth s Surface and Heat

Chapter 6 Earth s Surface and Heat How does Earth stay warm in cold, empty space? Most of Earth s heat energy comes from the Sun by the process of radiation. Energy from the Sun enters Earth s atmosphere

### Temperature and evolutionary novelty as forces behind the evolution of general intelligence

Available online at www.sciencedirect.com Intelligence 36 (2008) 99 108 Temperature and evolutionary novelty as forces behind the evolution of general intelligence Satoshi Kanazawa Interdisciplinary Institute

### SUPPLEMENT 2. ESTIMATING THE EPOCHS OF THE GCC AND GA

Crucifying the Earth on the Galactic Cross. upplement 2 1 UPPLEMENT 2. ETIMATING THE EPOCH OF THE GCC AND GA 2.1. OLAR YTEM AND GALACTIC PARAMETER Coordinate ystems. In the Equatorial and al coordinate

### Satellite technology

Satellite technology Overview What is a satellite? The key elements of orbital position Satellite manufacturers and design The components of a satellite: payload and bus Digital versus analogue How do

### Searching Land Records thru the BLM General Land Office Records.

Searching Land Records thru the BLM General Land Office Records. Land Records can be an exciting addition to your family history search. The United States Government transferred ownership of land to millions

### Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005

Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital

### 7 Scale Model of the Solar System

Name: Date: 7 Scale Model of the Solar System 7.1 Introduction The Solar System is large, at least when compared to distances we are familiar with on a day-to-day basis. Consider that for those of you

### LECTURE N 3. - Solar Energy and Solar Radiation- IDES-EDU

LECTURE N 3 - Solar Energy and Solar Radiation- Lecture contributions Coordinator & contributor of the lecture: Prof. Marco Perino, DENERG Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino,

### Outdoor Exploration Guide. A Journey Through Our Solar System. A Journey Through Our Solar System

Outdoor Exploration Guide A Journey Through Our Solar System A Journey Through Our Solar System The Solar System Imagine that you are an explorer investigating the solar system. It s a big job, but in

### Solar Tracking Application

Solar Tracking Application A Rockwell Automation White Paper Solar trackers are devices used to orient photovoltaic panels, reflectors, lenses or other optical devices toward the sun. Since the sun s position

### FACTSHEET Assessing the Feasibility of Using Solar-Thermal Systems for Your Agricultural or Agri-Food Operation

FACTSHEET Assessing the Feasibility of Using Solar-Thermal Systems for Your Agricultural or Agri-Food Operation Solar-thermal systems collect the sun's energy and convert it into heat. This energy can

### A Dialogue Box. dialogue box.

The Sky An introduction and review 1. Open TheSky (version 6, the blue icon). The screen should show the view of the sky looking due south. Even if the sun is above the horizon, the sky will look black

### UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name:

UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name: 1. When a wind turbine is positioned between radio, television or microwave transmitter and receiver it can sometime reflect some of the in

### 3.3 Glare Evaluation: 3D Geometric Analysis

Solar Sun System: The sun changes its east-west orientation throughout the day. It also changes its north-south position throughout the year. The sun reaches its highest position in the sky at noon during

### Try to answer all of these questions. Be prepared to share your answers with a partner, and with the rest of the class.

U1YESCO Module 21: Photovoltaic systems - 'Photovoltaic' (or PV for short) means turning light into electricity Solar PV systems provide electricity from sunlight They can provide power for a wide variety

### Thompson/Ocean 420/Winter 2005 Tide Dynamics 1

Thompson/Ocean 420/Winter 2005 Tide Dynamics 1 Tide Dynamics Dynamic Theory of Tides. In the equilibrium theory of tides, we assumed that the shape of the sea surface was always in equilibrium with the