Kepler s 3 Planetary Laws

Size: px
Start display at page:

Download "Kepler s 3 Planetary Laws"

Transcription

1 Mr. Gord Astronomy Kepler s 3 Planetary Laws PURPOSE: To demonstrate Kepler's 3 Laws of Planetary Motion. Total Possible Points = 20 BACKGROUND One of the greatest scientific achievements of all time was Kepler's 1609 discovery of the true shape of the planets' paths around the sun, stated as Kepler's first law: A planet orbits the sun in the an ellipse, with the sun located at one focus. Kepler's second law, also called the "law of equal areas", states that A line drawn from the Sun to a planet sweeps out equal areas of space in equal amounts of time. Kepler's third law of planetary motion states: A planet s orbital period is proportional to its average distance from the sun. For example, Mercury, the closest planet to the sun at an average distance of 0.4 AUs, takes only 88 earth days to travel once around the sun. Pluto, previously the farthest (former) planet from the sun at an average distance of 40 AUs, takes 248 earth years to travel once around the sun! Kepler's laws are obeyed throughout the universe. They are obeyed by each of the planets, comets, and asteroids that revolve around the Sun. Kepler's laws are also obeyed by the moon and man-made satellites orbiting the Earth. By discovering that orbiting bodies move in an ellipse, and further discovering the ideas represented by his 2nd and 3rd laws, Kepler, in the early 1600s, both built on Copernicus' radical introduction of a sun-centered solar system and laid the foundation on which Isaac Newton formed his historic laws of gravitation. Kepler was, in a scientific historical sense, Da Man! MATERIALS: ruler, calculator, string??? PROCEDURE 1. The accompanying diagram (last page) shows the path of an asteroid (irregular shaped rock, less than 600 miles across) in its orbit around the sun. The numbers, increasing counter-clockwise show the asteroid's position in one-year time intervals. The asteroid, therefore, completes one orbit around the sun every 12 Earth years. 2. Measure the distance between the sun and the asteroid at each numbered position, accurately, to the nearest 0.1 cm. Record these sun-to-asteroid distances in Table 1 in the DATA section. 3. To convert the distance on paper in centimeters to actual distances in space in astronomical units (AU s), multiply the sun-to-asteroid distances in centimeters by 0.7. Record these values in Table The Sun-to-asteroid distance is the line drawn from the Sun to the asteroid. This line sweeps out a certain area of space in a given amount of time. Look on the orbit diagram. The shaded area represents the area swept out during the first earth-year (Year 0 to Year 1). A simple way of estimating this area is to simply count the number of squares that are covered by one year's sweep. If the square is 1/2 or more, then count it, if it is less than 1/2 then do not include it your count total. To ease this burden and share the counting, the class will be divided into six groups, each being responsible for two sections. Record the results in Table Using a curved object such as a piece of paper, piece of string, etc. measure as accurately as possible the distance on paper that the asteroid travels during each one-year interval. Record these distances, to the nearest 0.1 cm, in Table Convert your lengths from cm on paper to miles in space, by multiplying your length in cm by 65,100,000. This Answer is the number of miles the asteroid actually travels in space in a one-year period. Record these values in Table To find the average speed of the asteroid during each 1-year period, divide the distance (results from step 6) by the number of hours in a year. Record these average speeds, in miles/hour, in Table 2.

2 DATA & CALCULATIONS Table 1 PART A Astrophysicist: or Asteroid Position Sun-to-Asteroid Distance (cm on paper) Sun-to-Asteroid Distance (AU s in space) Table 2 Asteroid Moved From Area Swept out (# squares) Distance Asteroid Travels (cm on paper) Distance Asteroid Travels in 1 year (miles in space) Average Speed of Asteroid (miles per hour) (12) 1

3 Area Swept ( # of Squares) Sun-Asteroid Distance (AU's) GRAPHS 1. On Graph 1, plot the Asteroid-to-Sun distances (from Table 1 in AUs) vs. the or Asteroid Position (0, 1, 2, 3,...). Make sure you draw the dots dark enough to be easily visible. Smoothly connect the dots with a line or curve. 12 Graph 1: Sun-to-Asteroid Distance On Graph 2, plot the area swept out by the line connecting the Sun and asteroid (in squares) vs. the Year Number (0-1, 1-2, 2-3,...). Smoothly connect the dots with a line or curve. Note how the value of area changes (or better yet, doesn't change) throughout each one-year time intervals. 600 Graph 2: Area Swept

4 Astronomer: 3. On Graph 3, plot the average speed of the asteroid (in miles/hour) vs. the Year (0-1, 1-2, 2-3,...). For this final graph you need to label the y-axis appropriately. Smoothly connect the dots with a line or curve. Note at what position the asteroid is at perihelion and where it is at aphelion. Identify perihelion and aphelion on graph!! Graph 3: Average Speed Get Mr. Gord s Signature: Do not go any further until you have it checked by Mr. Gord (this is worth 10 POINTS!) 3

5 PART B Astrophysicist: QUESTIONS Worth 10 More POINTS!! 1. What is the asteroid's maximum distance from the sun, in AU's? 2. At this point, the asteroid is said to be at. (this is the term that defines the farthest point an orbiting body is from the sun) 3. What is the asteroid's minimum distance from the sun, in AU's? 4. At this point, the asteroid is said to be at. (this is the term that describes defines the closest point an orbiting body is to the sun) 5. Calculate the asteroid's average distance from the sun, by averaging the aphelion and perihelion values. Show work (equation you used): 6. Observe the graphs. State the relationship between the asteroid's distance from the sun and its speed (in other words, how does distance from sun affect the asteroid's speed)? 7. Observe the graphs. State the relationship that exists between the distance from the sun and the area swept by the sun-to-asteroid line? 8. Using Kepler's 3rd Law [ p 2 = d 3 ] calculate the orbit period of a planet whose average distance from the sun is the same as for this asteroid (your answer to question 5). 4

6 Asteroid s Path Orbiting the Sun Astronomer: 5

Astronomy 101 Lab The Orbit of Mars Name

Astronomy 101 Lab The Orbit of Mars Name Astronomy 101 Lab The Orbit of Mars Name Materials: protractor, compass, centimeter ruler, graph paper Object: To reconstruct the approximate orbit of Mars by using some of Tycho's data Tycho Brahe collected

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES In Section 10.5, we defined the parabola in terms of a focus and directrix. However, we defined the ellipse and hyperbola

More information

Astronomy Ranking Task: Kepler s Laws Orbital Motion

Astronomy Ranking Task: Kepler s Laws Orbital Motion Exercise #1 Description: The figure below shows a comet traveling in an elliptical orbit around the Sun. The comet is shown as it moves through four different segments of its orbit (labeled A, B, C, and

More information

1 Kepler s Laws of Planetary Motion

1 Kepler s Laws of Planetary Motion Name: 1 Kepler s Laws of Planetary Motion 1.1 Introduction Johannes Kepler published three laws of planetary motion, the first two in 1609 and the third in 1619. The laws were made possible by planetary

More information

INSIDE LAB 3: KEPLER S LAWS

INSIDE LAB 3: KEPLER S LAWS INSIDE LAB 3: KEPLER S LAWS OBJECTIVE: To become familiar with the properties of the orbits of the Moon and planets. DISCUSSION: As seen from the Earth the motions of the Sun, Moon and planets are rather

More information

Chapter 5. Kepler s Laws. 5.1 Purpose. 5.2 Introduction

Chapter 5. Kepler s Laws. 5.1 Purpose. 5.2 Introduction Chapter 5 Kepler s Laws 5.1 Purpose In this lab, we will investigate the properties of planetary orbits. The motion of the planets had intrigued people throughout history. Johannes Kepler found three empirical

More information

1 Kepler s Laws of Planetary Motion

1 Kepler s Laws of Planetary Motion 1 Kepler s Laws of Planetary Motion 1.1 Introduction Johannes Kepler published three laws of planetary motion, the first two in 1609 and the third in 1619. The laws were made possible by planetary data

More information

PHYS-1000 Chapter 3 Homework Solutions Due: September 9, 2012

PHYS-1000 Chapter 3 Homework Solutions Due: September 9, 2012 1. In the Greek geocentric model, the retrograde motion of a planet occurs when A. Earth is about to pass the planet in its orbit around the Sun. B. the planet actually goes backward in its orbit around

More information

Planetary Orbit Simulator Student Guide

Planetary Orbit Simulator Student Guide Name: Planetary Orbit Simulator Student Guide Background Material Answer the following questions after reviewing the Kepler's Laws and Planetary Motion and Newton and Planetary Motion background pages.

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

The Planets. Saturn. Venus. Jupiter Mercury.

The Planets. Saturn. Venus. Jupiter Mercury. Kepler s Laws Learning Objectives Do the planets move east or west over the course of one night? Over the course of several nights? How do true motion and retrograde motion differ? What are geocentric

More information

5. How did Copernicus s model solve the problem of some planets moving backwards?

5. How did Copernicus s model solve the problem of some planets moving backwards? PACKET #5 - MODELS OF THE SOLAR SYSTEM Reading Guide: Chapter 27.2 (read text pages 691-694) 1k. Recognize the cumulative nature of scientific evidence. 1n. Know that when an observation does not agree

More information

Newton s Law of Universal Gravitation (Ch 13) Law of Gravitation, cont. Notation. More About Forces. This is an example of an inverse square law

Newton s Law of Universal Gravitation (Ch 13) Law of Gravitation, cont. Notation. More About Forces. This is an example of an inverse square law Newton s Law of Universal Gravitation (Ch 13) Every particle in the Universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely proportional

More information

The Main Point. The Scientific Method. Laws of Planetary Motion. Lecture #3: Orbits and Gravity. Laws of Planetary Motion:

The Main Point. The Scientific Method. Laws of Planetary Motion. Lecture #3: Orbits and Gravity. Laws of Planetary Motion: Lecture #3: Orbits and Gravity Laws of Planetary Motion: Kepler's Laws. Newton's Laws. Gravity. Planetary Orbits. Spacecraft Orbits. The Main Point Motions of planets, moons, and asteroids can be very

More information

The Orbit of Mars Materials: protractor, compass, centimeter ruler, engineering paper

The Orbit of Mars Materials: protractor, compass, centimeter ruler, engineering paper The Orbit of Mars Materials: protractor, compass, centimeter ruler, engineering paper Object: To reconstruct the approximate orbit of Mars by using some of Tycho Brahe's data. During the latter part of

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

More information

Unit 8 Lesson 2 Gravity and the Solar System

Unit 8 Lesson 2 Gravity and the Solar System Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe

More information

Constructing. Ellipses BEGIN

Constructing. Ellipses BEGIN Constructing Ellipses BEGIN In 1609, astronomer Johannes Kepler theorized that planets orbit the Sun along elliptical paths, rather than circular paths. But what exactly is an ellipse? But what exactly

More information

Kepler, Newton, and laws of motion

Kepler, Newton, and laws of motion Kepler, Newton, and laws of motion !! " The only history in this course:!!!geocentric vs. heliocentric model (sec. 2.2-2.4)" The important historical progression is the following:!! Ptolemy (~140 AD) Copernicus

More information

Name: x 2 + 4x + 4 = -6y p = -6 (opens down) p = -3/2 = (x + 2) 2 = -6y + 6. (x + 2) 2 = -6(y - 1) standard form: (-2, 1) Vertex:

Name: x 2 + 4x + 4 = -6y p = -6 (opens down) p = -3/2 = (x + 2) 2 = -6y + 6. (x + 2) 2 = -6(y - 1) standard form: (-2, 1) Vertex: Write the equation of the parabola in standard form and sketch the graph of the parabola, labeling all points, and using the focal width as a guide for the width of the parabola. Find the vertex, focus,

More information

Section 1 Astronomy Test-Practice

Section 1 Astronomy Test-Practice Section 1 Astronomy Test-Practice Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of these would be shorter if Earth rotated faster?

More information

Gravitation and the Motion of the Planets

Gravitation and the Motion of the Planets Gravitation and the Motion of the Planets 1 Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets go around

More information

Patterns in the Solar System (Chapter 18)

Patterns in the Solar System (Chapter 18) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Patterns in the Solar System (Chapter 18) For this assignment you will require: a calculator, colored pencils, a metric ruler, and meter stick.

More information

28B Astronomy and Light

28B Astronomy and Light 28B Astronomy and Light How do we measure the distance to stars and galaxies? Astronomy and Light Investigation 28B The brightness of a star depends on both the star s distance and on how much light the

More information

TAKEN FROM HORIZONS 7TH EDITION CHAPTER 4 TUTORIAL QUIZ

TAKEN FROM HORIZONS 7TH EDITION CHAPTER 4 TUTORIAL QUIZ TAKEN FROM HORIZONS 7TH EDITION CHAPTER 4 TUTORIAL QUIZ 1. The Greek astronomer Hipparchus is noted for a. naming all of the stars. b. developing the concept of the light-year. c. recognizing and recording

More information

Patterns in the Solar System (Chapter 18)

Patterns in the Solar System (Chapter 18) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Patterns in the Solar System (Chapter 18) For this assignment you will require: a calculator, colored pencils, a metric ruler, and meter stick.

More information

Lecture 5 Galileo and Brahe September 21, 2015

Lecture 5 Galileo and Brahe September 21, 2015 Lecture 5 Galileo and Brahe September 21, 2015 1 2 Galileo Galilei (1564-1642) Supported Copernican model. Used telescope to observe sky (1610). Mountains on the moon Rings of Saturn Sunspots Milky Way

More information

Astronomy 1020 Stellar Astronomy Sample Questions for Exam 1

Astronomy 1020 Stellar Astronomy Sample Questions for Exam 1 Astronomy 1020 Stellar Astronomy Sample Questions for Exam 1 Chapter 1 1. A scientific hypothesis is a) a wild, baseless guess about how something works. b) a collection of ideas that seems to explain

More information

Newton s Laws and Gravity 1/29/2013

Newton s Laws and Gravity 1/29/2013 Newton s Laws and Gravity 1/29/2013 Announcements Today: Homework Collection: The Seasons & Kepler s Laws Rules for Lecture Tutorials Work with a partner!! this is the whole point. it is NOT acceptable

More information

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Gravity Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Newton s Law of Gravitation r m 2 m 1 There is a force of gravity between any pair of objects anywhere. The force

More information

Lecture Outlines. Chapter 2. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 2. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 2 Astronomy Today 7th Edition Chaisson/McMillan Chapter 2 The Copernican Revolution Units of Chapter 2 2.1 Ancient Astronomy 2.2 The Geocentric Universe 2.3 The Heliocentric Model

More information

Motion and Gravity in Space

Motion and Gravity in Space Motion and Gravity in Space Each planet spins on its axis. The spinning of a body, such a planet, on its axis is called rotation. The orbit is the path that a body follows as it travels around another

More information

Calculating the Sun s Mass using Kepler s Laws of Planetary Motion. Anthony Enea. COSMOS UC Davis Cluster 9. July 28,2009

Calculating the Sun s Mass using Kepler s Laws of Planetary Motion. Anthony Enea. COSMOS UC Davis Cluster 9. July 28,2009 Calculating Mass Using Orbital Computations 1 Calculating the Sun s Mass using Kepler s Laws of Planetary Motion Anthony Enea COSMOS UC Davis Cluster 9 July 28,2009 Calculating Mass Using Orbital Computations

More information

1 Derivation of Kepler s 3rd Law

1 Derivation of Kepler s 3rd Law General Astronomy (9:61) Fall 01 Lecture 9 Notes, September 14, 01 1 Derivation of Kepler s 3rd Law 1.1 Derivation Using Kepler s nd Law We want to derive the relationship between the semimajor axis and

More information

Chapter 13 Newton s Theory of Gravity

Chapter 13 Newton s Theory of Gravity Chapter 13 Newton s Theory of Gravity Chapter Goal: To use Newton s theory of gravity to understand the motion of satellites and planets. Slide 13-2 Chapter 13 Preview Slide 13-3 Chapter 13 Preview Slide

More information

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION Ian Cooper School of Physics The University of Sydney i.cooper@physics.usyd.edu.au Introduction The numerical calculations performed by scientists and engineers

More information

Chapter 4: Renaissance Astronomy

Chapter 4: Renaissance Astronomy Chapter 4: Renaissance Astronomy Astronomy after Ptolemy [http://www.thenagain.info/webchron/westciv/westciv.html] Decline of Western Civilization (extended) knowledge of ancient astronomy lost Islamic

More information

Vocabulary - Understanding Revolution in. our Solar System

Vocabulary - Understanding Revolution in. our Solar System Vocabulary - Understanding Revolution in Universe Galaxy Solar system Planet Moon Comet Asteroid Meteor(ite) Heliocentric Geocentric Satellite Terrestrial planets Jovian (gas) planets Gravity our Solar

More information

Totally Elliptical. Perihelion. Aphelion

Totally Elliptical. Perihelion. Aphelion BRSP - 9 Page 1 Totally Elliptical Did you know that Earth s orbit around the Sun is not a perfect circle? Although it is close to being circular, the actual shape of Earth s orbit is described by an ellipse

More information

Names of Group Members:

Names of Group Members: Names of Group Members: Using telescopes and spacecraft, astronomers can collect information from objects too big or too far away to test and study in a lab. This is fortunate, because it turns out that

More information

APAS Laboratory 1 Parallax of Pluto PARALLAX OF PLUTO. Great shot kid! That was one in 10 6! - H. Solo

APAS Laboratory 1 Parallax of Pluto PARALLAX OF PLUTO. Great shot kid! That was one in 10 6! - H. Solo APAS Laboratory Parallax of Pluto PARALLAX O PLUTO Great shot kid! That was one in 0! - H. Solo SYNOPSIS: The apparent shift in the position of a celestial object against the sky as a result of the orbital

More information

A.5 The Shape of the Earth s Orbit

A.5 The Shape of the Earth s Orbit CHAPTER A. LABORATORY EXPERIMENTS 31 Name: Section: Date: A.5 The Shape of the Earth s Orbit I. Introduction Does the distance between the Sun and Earth stay constant throughout the year? If so, the Earth

More information

Universal Law of Gravitation Honors Physics

Universal Law of Gravitation Honors Physics Universal Law of Gravitation Honors Physics Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just

More information

Lesson 35: Kepler's Three Laws of Planetary Motion

Lesson 35: Kepler's Three Laws of Planetary Motion Lesson 5: Kepler's Three Laws of Planetary Motion Kepler took the data that Brahe had spent his life collecting and used it (especially the information on Mars) to create three laws that apply to any object

More information

Astronomy Ch. 2 The Copernican Revolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 2 The Copernican Revolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 2 The Copernican Revolution MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The principal culture that transferred

More information

Lab 6: Kepler's Laws. Introduction. Section 1: First Law

Lab 6: Kepler's Laws. Introduction. Section 1: First Law Lab 6: Kepler's Laws Purpose: to learn that orbit shapes are ellipses, gravity and orbital velocity are related, and force of gravity and orbital period are related. Materials: 2 thumbtacks, 1 pencil,

More information

The orbit of Halley s Comet

The orbit of Halley s Comet The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What

More information

8.1 Kepler's. Laws. Purpose. Concept and Skill Check. Materials. Procedure EXPERIMENT. T/ ra 3 Tb 2 'rb3'

8.1 Kepler's. Laws. Purpose. Concept and Skill Check. Materials. Procedure EXPERIMENT. T/ ra 3 Tb 2 'rb3' DATE---- PERIOD--ṈAME-------~----------- EXPERIMENT 8.1 Kepler's Laws Purpose Plot a planetary orbit and apply Kepler's Laws. Concept and Skill Check The motion of the planets has intrigued astronomers

More information

Lecture Outlines PowerPoint. Chapter 21 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 21 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 21 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Mathematics of Motion III The Motion of Planets

Mathematics of Motion III The Motion of Planets Champ+ Fall 2001 Dan Stump 1 Mathematics of Motion III The Motion of Planets History of science Copernicus... The planets revolve around the sun. Galileo... Observations by telescope prove that the Copernican

More information

5 Kepler s Laws. 5.1 Introduction. Name: Date:

5 Kepler s Laws. 5.1 Introduction. Name: Date: Name: Date: 5 Kepler s Laws 5.1 Introduction Throughout human history, the motion of the planets in the sky was a mystery: why did some planets move quickly across the sky, while other planets moved very

More information

Aphelion. Perihelion. How to Draw an Ellipse

Aphelion. Perihelion. How to Draw an Ellipse BRSP-9 Page 1 Did you know that Earth s orbit around the sun is not a perfect circle? Although it is close to being circular, the actual shape of Earth s orbit is described by an ellipse (similar to an

More information

Astro Lecture 8 The Copernican Revolution (Cont d)

Astro Lecture 8 The Copernican Revolution (Cont d) Astro110-01 Lecture 8 The Copernican Revolution (Cont d) or the revolutionaries: Nicolas Copernicus (1473-1543) Tycho Brahe (1546-1601) Johannes Kepler (1571-1630) Galileo Galilei (1564-1642) Isaac Newton

More information

A Little History. PHYS-1408-H01 Lecture 21. Chapter 13. Universal Gravitation. April. 8, Announcement

A Little History. PHYS-1408-H01 Lecture 21. Chapter 13. Universal Gravitation. April. 8, Announcement Announcement PHYS-1408-H01 Lecture 1 April. 8, 013 Course webpage http://highenergy.phys.ttu.edu/~slee/1408/ Homework.9 HW due 4/3 (next-to-next Tuesday) Ch.1 3, 9, 13, 3, 7, 3 Ch. 13 7, 1, 14, 17,, 7,

More information

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

More information

Exercise: Estimating the Mass of Jupiter Difficulty: Medium

Exercise: Estimating the Mass of Jupiter Difficulty: Medium Exercise: Estimating the Mass of Jupiter Difficulty: Medium OBJECTIVE The July / August observing notes for 010 state that Jupiter rises at dusk. The great planet is now starting its grand showing for

More information

Ellipses and Eccentricity**

Ellipses and Eccentricity** Regents Earth Science Name: Unit 6: Astronomy Section: Date: Lab # Ellipses and Eccentricity** ** - you will see this on the Lab Practical in JUNE! Objective: To compare the shape of the earth s orbit

More information

Kepler s Laws & Satellite Motion

Kepler s Laws & Satellite Motion Kepler s Laws & Satellite Motion Johannes Kepler (1571-1630) Tycho Brahe (1546 1601) built the first modern astronomical observatories. His instruments like the mural quandrant enabled him to measure the

More information

AST 301 Introduction to Astronomy

AST 301 Introduction to Astronomy AST 301 Introduction to Astronomy John Lacy RLM 16.332 471-1469 lacy@astro.as.utexas.edu Myoungwon Jeon RLM 16.216 471-0445 myjeon@astro.as.utexas.edu Bohua Li RLM 16.212 471-8443 bohuali@astro.as.utexas.edu

More information

Student Exploration: Orbital Motion Kepler s Laws

Student Exploration: Orbital Motion Kepler s Laws Name: Date: Student Exploration: Orbital Motion Kepler s Laws Vocabulary: astronomical unit, eccentricity, ellipse, force, gravity, Kepler s first law, Kepler s second law, Kepler s third law, orbit, orbital

More information

Introduction to Gravity and Orbits. Isaac Newton. Newton s Laws of Motion

Introduction to Gravity and Orbits. Isaac Newton. Newton s Laws of Motion Introduction to Gravity and Orbits Isaac Newton Born in England in 1642 Invented calculus in early twenties Finally published work in gravity in 1687 The Principia Newton s Laws of Motion 1: An object

More information

ASTR 1010 Astronomy of the Solar System Professor Caillault Fall 2009 Semester Exam 1 Answers

ASTR 1010 Astronomy of the Solar System Professor Caillault Fall 2009 Semester Exam 1 Answers ASTR 1010 Astronomy of the Solar System Professor Caillault Fall 2009 Semester Exam 1 Answers 1. The number of degrees in a full circle is (c) 360 2. An arcsecond is a measure of (d) angle. 3. How many

More information

Let s say you were able to build a tunnel through the center of the Earth to the opposite side. If you were to jump in, you would accelerate toward

Let s say you were able to build a tunnel through the center of the Earth to the opposite side. If you were to jump in, you would accelerate toward Let s say you were able to build a tunnel through the center of the Earth to the opposite side. If you were to jump in, you would accelerate toward the center. However your acceleration decrease as your

More information

Chapter 25.1: Models of our Solar System

Chapter 25.1: Models of our Solar System Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets

More information

Astron 104 Laboratory #6 Orbital Motion of a Planet

Astron 104 Laboratory #6 Orbital Motion of a Planet Name: Date: Section: Astron 104 Laboratory #6 Orbital Motion of a Planet Introduction The nature of the Solar System was first derived from careful measurements of the positions of the planets in the night

More information

Astronomy Summary of Objectives Test #1

Astronomy Summary of Objectives Test #1 Astronomy Summary of Objectives Test #1 OBJECTIVES: Define moon, planet, star, solar system, galaxy and universe. List the 3 hallmarks of science. Distinguish science from non-science. Start to develop

More information

Exploring Orbits. Introduction

Exploring Orbits. Introduction Exploring Orbits Introduction In 1609, the German mathematician and astronomer Johannes Kepler deciphered a major puzzle of the solar system. The strange back-andforth motions of the planets in the sky

More information

Survey of Astronomy. The Universe, and all that

Survey of Astronomy. The Universe, and all that Survey of Astronomy The Universe, and all that Public Service Announcement #1: Your Rocket ID The reason you should use your rocket id instead of your SSN: IDENTIFY THEFT. It can happen. Don t let it happen

More information

Assignments. Do Online Exercise 04 (inlcuding "Orbits and Kepler's Laws" tutorial)

Assignments. Do Online Exercise 04 (inlcuding Orbits and Kepler's Laws tutorial) Assignments Do Online Exercise 04 (inlcuding "Orbits and Kepler's Laws" tutorial) Begin reading Ch. 4, Making Sense of the Universe: Understanding Motion, Energy & Gravity Clicker poll (not for credit)

More information

What If Kepler Had a Graphing Calculator?

What If Kepler Had a Graphing Calculator? GRACE Education Curriculum Satellites Teachers Grades 9-12 Physics, Pre-Calculus & Calculus What If Kepler Had a Graphing Calculator? Background Information: At the time of Johannes Kepler (1571-1630),

More information

Astronomy Review. Use the following four pictures to answer questions 1-4.

Astronomy Review. Use the following four pictures to answer questions 1-4. Astronomy Review Use the following four pictures to answer questions 1-4. 1. Put an X through the pictures that are NOT possible. 2. Circle the picture that could be a lunar eclipse. 3. Triangle the picture

More information

14 Satellite Motion. The path of an Earth satellite follows the curvature of the Earth.

14 Satellite Motion. The path of an Earth satellite follows the curvature of the Earth. The path of an Earth satellite follows the curvature of the Earth. 14.1 Earth Satellites A stone thrown fast enough to go a horizontal distance of 8 kilometers during the time (1 second) it takes to fall

More information

Physics General Physics

Physics General Physics Physics 1403-001 General Physics Lecture 16 Chapter 5 & 6 Feb 4, 014 Announcements Course webpage: http://highenergy.phys.ttu.edu/~slee/1403 Syllabus, lecture note, etc Online homework: http://webassign.net/login.html

More information

PRELAB FOR EXTRASOLAR PLANETS. 1. Explain the Doppler effect. Is a redshifted object moving toward or away from us? What about a blueshifted object?

PRELAB FOR EXTRASOLAR PLANETS. 1. Explain the Doppler effect. Is a redshifted object moving toward or away from us? What about a blueshifted object? PRELAB FOR EXTRASOLAR PLANETS 1. Explain the Doppler effect. Is a redshifted object moving toward or away from us? What about a blueshifted object? 2. What is a light curve? 3. Approximately how many extrasolar

More information

Glossary. Altitude: The distance a heavenly body appears above the horizon as measured in degrees. Asteroid Belt :

Glossary. Altitude: The distance a heavenly body appears above the horizon as measured in degrees. Asteroid Belt : Glossary Altitude: Annual Motion : Aphelion : Asteroid Belt : Asteroids : Asterism: Astronomy: Atmosphere: Axis: Binary Stars : Black Hole: Blue Moon : Calibrate: Celestial Equator: Celestial Hemisphere:

More information

The Mass of Jupiter Student Guide

The Mass of Jupiter Student Guide The Mass of Jupiter Student Guide Introduction: In this lab, you will use astronomical observations of Jupiter and its satellites to measure the mass of Jupiter. We will use the program Stellarium to simulate

More information

Part 2: Astronomy. Name: Answer Key. ANSWER KEY Page 11

Part 2: Astronomy. Name: Answer Key. ANSWER KEY Page 11 Name: Answer Key Earth Science Date: Period: ANSWER KEY Page 11 Earth s Rotation From west to east 1. In which direction does Earth rotate? 15 /hour 2. What is Earth s hourly rate of rotation? One time

More information

AREAL VELOCITY AND THE ORBIT OF MERCURY

AREAL VELOCITY AND THE ORBIT OF MERCURY Apparatus Competition 00 AAPT Summer Meeting Ann Arbor, MI AREAL VELOCITY AND THE ORBIT OF MERCURY Walter L. Triksoko Department of Physics and Astronomy Stephen F. Austin State University Nacogdoches,

More information

Astronomy 101 Lab: Lunar Phases and Eclipses

Astronomy 101 Lab: Lunar Phases and Eclipses Name: Lecture Instructor: Astronomy 101 Lab: Lunar Phases and Eclipses Pre-Lab Assignment: In this week's lab, you will be using a lamp, a globe, and a ball to simulate the Sun, Earth, and the Moon. You

More information

8 th Grade SOL Review Packet Name: Block:

8 th Grade SOL Review Packet Name: Block: 8 th Grade SOL Review Packet Name: Block: Directions: Begin by completing the answers to the packet and checking to be sure that the answers are correct. Then, pair up with a partner and use the questions

More information

Building Planetary Orbits (the Feynman way)

Building Planetary Orbits (the Feynman way) Building Planetary Orbits (the Feynman way) Using a method of computing known as finite differences we can quickly calculate the geometry of any planetary orbit. All we need are a starting position and

More information

Astron 100 Sample Exam 1 1. Solar eclipses occur only at (A) New moon (B) 1 st quarter moon (C) Full moon (D) 3 rd quarter moon (E) The equinoxes 2.

Astron 100 Sample Exam 1 1. Solar eclipses occur only at (A) New moon (B) 1 st quarter moon (C) Full moon (D) 3 rd quarter moon (E) The equinoxes 2. Astron 100 Sample Exam 1 1. Solar eclipses occur only at (A) New moon (B) 1 st quarter moon (C) Full moon (D) 3 rd quarter moon (E) The equinoxes 2. If the Moon is at first quarter tonight in Amherst,

More information

Chapter 5 Circular Motion, the Planets, and Gravity

Chapter 5 Circular Motion, the Planets, and Gravity Chapter 5 Circular Motion, the Planets, and Gravity Does the circular motion of the moon around the Earth...... have anything in common with circular motion on Earth? A ball is whirled on the end of a

More information

Astron 104 Laboratory #3a A Step Toward A More Complicated Universe: The Motion of Mars

Astron 104 Laboratory #3a A Step Toward A More Complicated Universe: The Motion of Mars Lab #3a Name: Date: Section: Astron 104 Laboratory #3a A Step Toward A More Complicated Universe: The Motion of Mars This table contains Heliocentric Ecliptic longitudes of Earth and Mars at 20 day intervals,

More information

Introduction to Astronomy

Introduction to Astronomy What is Astronomy? Introduction to Astronomy What are celestial bodies? Constellations there are 88 officially recognized constellations Eg. Ursa Major, Cassiopeia Big Dipper Ursa Minor Little Dipper Polaris

More information

UC Irvine FOCUS! 5 E Lesson Plan

UC Irvine FOCUS! 5 E Lesson Plan UC Irvine FOCUS! 5 E Lesson Plan Title: Astronomical Units and The Solar System Grade Level and Course: 8th grade Physical Science Materials: Visual introduction for solar system (slides, video, posters,

More information

DeAnza College Fall First Midterm Exam MAKE ALL MARKS DARK AND COMPLETE.

DeAnza College Fall First Midterm Exam MAKE ALL MARKS DARK AND COMPLETE. FAMILY NAME : (Please PRINT!) GIVEN NAME : (Please PRINT!) Signature: ASTRONOMY 4 DeAnza College Fall 2016 First Midterm Exam MAKE ALL MARKS DARK AND COMPLETE. Instructions: 1. On your Parscore sheet (using

More information

1 Astronomy: The Original Science

1 Astronomy: The Original Science CHAPTER 1 1 Astronomy: The Original Science SECTION Studying Space BEFORE YOU READ After you read this section, you should be able to answer these questions: How do astronomers define a day, a month, and

More information

MATHEMATICAL MODELING: AN ALGEBRAIC TOOL FOR GUIDED-INQUIRY SCIENCE

MATHEMATICAL MODELING: AN ALGEBRAIC TOOL FOR GUIDED-INQUIRY SCIENCE MATHEMATICAL MODELING: AN ALGEBRAIC TOOL FOR GUIDED-INQUIRY SCIENCE Scott A. Sinex, Barbara A. Gage, and John L. McClure Department of Physical Sciences Prince George s Community College Largo, MD 20774-2199

More information

6 The Orbit of Mercury

6 The Orbit of Mercury 6 The Orbit of Mercury Name: Date: Of the five planets known since ancient times (Mercury, Venus, Mars, Jupiter, and Saturn), Mercury is the most difficult to see. In fact, of the 6 billion people on the

More information

The Solar System 1 KEPLER S LAWS OF PLANETARY MOTION

The Solar System 1 KEPLER S LAWS OF PLANETARY MOTION PHY 321 1 The Solar System VIDEO LECTURES: 6-1 6-2 6-3 1 KEPLER S LAWS OF PLANETARY MOTION Kepler s first law is that the planets travel on ellipses with the sun at one focal point. Newton deduced from

More information

Kepler s Laws and our Solar System

Kepler s Laws and our Solar System Kepler s Laws and our Solar System The Astronomical Unit, AU Kepler s Empirical Laws of Planetary mo=on The mass of the Sun, M O. A very brief tour of the solar system Major planets Dwarf planets (defini=on)

More information

Orbital Mechanics. Angular Momentum

Orbital Mechanics. Angular Momentum Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

More information

LESSON 3 THE SOLAR SYSTEM. Chapter 8, Astronomy

LESSON 3 THE SOLAR SYSTEM. Chapter 8, Astronomy LESSON 3 THE SOLAR SYSTEM Chapter 8, Astronomy OBJECTIVES Identify planets by observing their movement against background stars. Explain that the solar system consists of many bodies held together by gravity.

More information

Our Solar System. The Planets. Inner Planets vs. Outer Planets. Name Date

Our Solar System. The Planets. Inner Planets vs. Outer Planets. Name Date TEKS identify the planets in Earth s solar system and their position in relation to the Sun Our Solar System The Planets A solar system is made up of a star and everything that revolves around it. Our

More information

5th Grade Solar System

5th Grade Solar System Read and answer each question carefully. 1) The rotation of a planet A) creates the orbit around the Sun. B) determines if there will be water on the planet. C) changes the size of the planet. D) causes

More information

Section 7-6 Complex Numbers in Rectangular and Polar Forms

Section 7-6 Complex Numbers in Rectangular and Polar Forms 7-6 Complex Numbers in Rectangular and Polar Forms 553 65. Sailboat Racing. Referring to the figure, estimate to the nearest knot the speed of the sailboat sailing at the following angles to the wind:

More information

Kepler, Newton and Gravitation

Kepler, Newton and Gravitation Kepler, Newton and Gravitation Kepler, Newton and Gravity 1 Using the unit of distance 1 AU = Earth-Sun distance PLANETS COPERNICUS MODERN Mercury 0.38 0.387 Venus 0.72 0.723 Earth 1.00 1.00 Mars 1.52

More information