ESE403. Formula Sheets. Following is a list of the formulae that will be supplied to your during the final.

Size: px
Start display at page:

Download "ESE403. Formula Sheets. Following is a list of the formulae that will be supplied to your during the final."

Transcription

1 ESE403 Formula Sheets Following is a list of the formulae that will be supplied to your during the final. Chapter 5 Formula for Revised Simplex Method: x k = entering basic variable a ik = coefficient of x k in current Eq.(i), for I = 1, 2,, m (identified in step 2 of iteration) r = number of equation containing the leaving basic variable = 1 = In matrix form, the formula becomes: = Where matrix E is an identity matrix except that its rth column is replaced by the vector =,h = 1 = Formula for Matrix Form Simplex Method: Initial matrix 0 0 Final matrix = = Chapter 8 General Procedure for Constructing an Initial BF Solution. To begin, all source rows and destination columns of the transportation simplex tableau are initially under consideration for providing a basic variable (allocation).

2 1. From the rows and columns still under consideration, select the next basic variable (allocation) according to some criterion. 2. Make that allocation large enough to exactly use up the remaining supply in its row or the remaining demand in its column (whichever is smaller). 3. Eliminate that row or column (whichever had the smaller remaining supply or demand) from further consideration. (If the row and column have the same remaining supply and demand, then arbitrarily select the row as the one to be eliminated. The column will be used later to provide a degenerate basic variable, i.e., a circled allocation of zero.) 4. If only one row or only one column remains under consideration, then the procedure is completed by selecting every remaining variable (i.e., those variables that were neither previously selected to be basic nor eliminated from consideration by eliminating their row or column) associated with that row or column to be basic with the only feasible allocation. Otherwise, return to step 1. Northwest corner rule: Begin by selecting x 11 (that is, start in the northwest corner of the transportation simplex tableau). Thereafter, if x ij was the last basic variable selected, then next select x i,j+1 (that is, move one column to the right) if source i has any supply remaining. Otherwise, next select x i+1,j (that is, move one row down). Vogel s approximation method: For each row and column remaining under consideration, calculate its difference, which is defined as the arithmetic difference between the smallest and next-to-the-smallest unit cost c ij still remaining in that row or column. (If two unit costs tie for being the smallest remaining in a row or column, then the difference is 0.) In that row or column having the largest difference, select the variable having the smallest remaining unit cost. (Ties for the largest difference, or for the smallest remaining unit cost, may be broken arbitrarily). Russell s approximation method: For each source row ii remaining under consideration, determine its u i, which is the largest unit cost c ij still remaining in that row. For each destination column j remaining under consideration, determine its v j, which is the largest unit cost c ij still remaining in that column. For each variable x ij not previously selected in these rows and columns, calculate ij = c ij u i v j. Select the variable having the largest (in absolute terms) negative value of ij, (Tie may be broken arbitrarily.) Summary of the Transportation Simplex Method: Initialization: Construct an initial BF solution. Go to optimality test. Optimality test: Derive u i and v j by selecting the row having the largest number of allocations, setting its u i = 0, and then solving the set of equations c ij = u i + v j for each (i, j) such that x ij is basic. If c ij u i v j 0 for every (i, j) such that x ij is nonbasic, then the current solution is optimal, so stop. Otherwise, go to an iteration.

3 Iteration: 1. Determine the entering basic variable: Select the nonbasic variable x ij having the largest (in absolute terms) negative value of c ij -u i -v j. 2. Determine the leaving basic variable: Identify the chain reaction required to retain feasibility when the entering basic variable is increased. From the donor cells, select the basic variable having the smallest value. 3. Determine the new BF solution: Add the value of the leaving basic variable to the allocation for each recipient cell. Subtract this value form the allocation for each donor cell. Summary of the Hungarian Algorithm 1. Subtract the smallest number in each row from every number in the row. (This is called row reduction.) Enter the results in a new table. 2. Subtract the smallest number in each column of the new table from every number in the column. (This is called column reduction.) Enter the results in another table. 3. Test whether an optimal set of assignments can be made. You do this by determining the minimum number of lines needed to cover (i.e., cross out) all zeros. Since this minimum number of lines equals the maximum number of assignments that can be make to zero element positions, if the minimum number of lines equals the number of rows, an optimal set of assignment is possible. (If you find that a complete set of assignments to zero element positions is not possible, this means that you did not reduce the number of lines covering all zeros down to the minimum number.) In that case, go to step 6. Otherwise go on to step If the number of lines is less than the number of rows, modify the table in the following way: a. Subtract the smallest uncovered number from every uncovered number in the table. b. Add the smallest uncovered number to the numbers at intersections of covering lines. c. Numbers crossed out but not at the intersections of cross-out lines carry over unchanged to the next table. 5. Repeat steps 3 and 4 until an optimal set of assignments is possible 6. Make the assignments one at a time in positions that have zero elements. Begin with rows or columns that have only one zero. Since each row and each column needs to receive exactly one assignment, cross out both the row and the column involved after each assignment is made. Then move on to the rows and columns that are not yet crossed out to select the next assignment, with preference again given to any such row or column that has only one zero that is not crossed out. Continue until every row and every column has exactly one assignment and so has been crossed out. The complete set of assignments made in this way is an optimal solution for the problem.

4 Chapter 9 Algorithm for the Shortest-Path Problem Object of nth iteration: Find the nth nearest node to the origin (to be repeated for n = 1, 2, until the nth nearest node is the destination. Input for nth iteration: n-1 nearest nodes to the origin (solved for at the previous iterations), including their shortest path and distance from the origin. (These nodes, plus the origin, will be called solved nodes; the others are unsolved nodes.) Candidates for nth nearest node: Each solved node that is directly connected by a link to one or more unsolved node provides one candidate = the unsolved node with the shortest connecting link. (Ties provide additional candidates.) Calculation of nth nearest node: For each such solved node and its candidate, add the distance between them and the distance of the shortest path from the origin to this solved node. The candidate with the smallest such total distance is the nth nearest node (ties provide additional solved nodes), and its shortest path is the one generating this distance. Algorithm for the Minimum Spanning Tree Problem 1. Select any node arbitrarily, and then connect it (i.e., add a link) to the nearest distinct node. 2. Identify the unconnected node that is closest to a connected node, and then connect these two nodes (i.e., add a link between them). Repeat this step until all nodes have been connected. 3. Tie breaking: Ties for the nearest distinct node (step 1) or the closest unconnected node (step 2) may be broken arbitrarily, and the algorithm must still yield an optimal solution. However, such ties are a signal that there may be (but need not be) multiple optimal solutions. All such optimal solutions can be identified by pursuing all ways of breaking ties to their conclusion. The Augmenting Path Algorithm for the Maximum Flow Problem 1. Identify an augmenting path by finding some directed path from the source to the sink in the residual network such that every arc on this path has strictly positive residual capacity. (If no augmenting path exists, the net flows already assigned constitute an optimal flow pattern.)

5 2. Identify the residual capacity c* of this augmenting path by finding the minimum of the residual capacities of the arcs on this path. Increase the flow in this path by c* 3. Decrease by c* the residual capacity of each arc on this augmenting path. Increase by C* the residual capacity of each arc in the opposite direction on this augmenting path. Return to step 1. Chapter 11 Summary of the BIP Branch-and-Bound Algorithm Initialization: Set Z*= -. Apply the bounding step, fathoming step, and optimality test described below to the whole problem. If not fathomed, classify this problem as the one remaining subproblem for performing the first full iteration below. Steps for each iteration: 4. Branching: Among the remaining (unfathomed) subproblem, select the one that was created most recently. (Break ties according to which has the larger bound.) Branch from the node for this subproblem to create two new subproblems by fixing the next variable (the branching variable) at either 0 or Bounding: For each new subproblem, apply the simplex method to its LP relaxation to obtain an optimal solution, including the value of Z, for this LP relaxation. If this value of Z is not an integer, round it down to an integer. (If it was already an integer, no change is needed) This integer value of Z is the bound for the subproblem. 6. Fathoming: For each new subproblem, apply the three fathoming tests, and discard those subproblems that are fathomed by any of the tests. Optimality test: Stop when there are no remaining subproblems; the current incumbent is optima. Otherwise, return to perform another iteration. Summary of Fathoming Criteria. A subproblem is fathomed if an analysis of its relaxation reveals that Criterion 1: Feasible solution of the subproblem must have Z Z*, or Criterion 2: The subproblem has no feasible solutions, or Criterion 3: An optimal solution of the subproblem has been found. Summary of the MIP Branch-and-Bound Algorithm

6 Initialization: Set Z* = -. Apply the bounding step, fathoming step, and optimality test descriabed below to the whole problem. If not fathomed, classify this problem as the one remaining subproblem for performing the first full iteration below. Steps for each iteration: 1. Branching: Among the remaining (unfathomed) subproblems, select the one that was created most recently. (Break ties according to which has the larger bound.) Among the integer-restricted variables that have a noninteger value in the optimal solution for the LP relaxation of the subproblem, choose the first one in the natural ordering of the variables to be the branching variable. Let x j be this variable and xj* its value in this solution. Branch from the node for the subproblem to create two new subproblems by adding the respective constraints x j [x j *] and x j [x j *] Bounding: For each new subproblem, obtain its bound by applying the simplex method (or the dual simplex method when reoptimizing) to its LP relaxation and using the value of Z for the resulting optimal solution. 3. Fathoming: For each new subproblem, apply the three fathoming tests given below, and discard those subproblems that are fathomed by any of the tests. Test 1: Its bound Z*, where Z* is the value of Z for the current incumbent Test 2: Its LP relaxation has no feasible solutions Test 3: The optimal solution for its LP relaxation has integer values for the integer restricted variables. (If this solution is better than the incumbent, it becomes the new incumbent and test 1 is reapplied to all unfathomed subproblems with the new larger Z*.) Optimality test: Stop when there are no remaining subproblems: the current incumbent is optimal. Otherwise, perform another iteration. Procedure for Tightening a Constraint Denote the constraint by a 1 x 1 +a 2 x 2 + +a n x n b. 1. Calculate S = sum of the positive a j. 2. Identify any a j 0 such that S < b + a j a. If none, stop; the constraint cannot be tightened further. b. If a j > 0, go to step 3. c. If a j < 0, go to step (a j >0) Calculate a j = S-b and b = S-a j. Reset a j = a j and b = b. Return to step (a j <0) Increase a j to a j = b-s. Return to step 1.

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is

More information

Simplex method summary

Simplex method summary Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on right-hand side, positive constant on left slack variables for

More information

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

4 UNIT FOUR: Transportation and Assignment problems

4 UNIT FOUR: Transportation and Assignment problems 4 UNIT FOUR: Transportation and Assignment problems 4.1 Objectives By the end of this unit you will be able to: formulate special linear programming problems using the transportation model. define a balanced

More information

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2 IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

More information

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED SUBSIDIARY GCE UNIT 4736/01 MATHEMATICS Decision Mathematics 1 THURSDAY 14 JUNE 2007 Afternoon Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1) Time: 1 hour 30 minutes INSTRUCTIONS

More information

56:171 Operations Research Midterm Exam Solutions Fall 2001

56:171 Operations Research Midterm Exam Solutions Fall 2001 56:171 Operations Research Midterm Exam Solutions Fall 2001 True/False: Indicate by "+" or "o" whether each statement is "true" or "false", respectively: o_ 1. If a primal LP constraint is slack at the

More information

Network Models 8.1 THE GENERAL NETWORK-FLOW PROBLEM

Network Models 8.1 THE GENERAL NETWORK-FLOW PROBLEM Network Models 8 There are several kinds of linear-programming models that exhibit a special structure that can be exploited in the construction of efficient algorithms for their solution. The motivation

More information

Special Situations in the Simplex Algorithm

Special Situations in the Simplex Algorithm Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

Chapter 13: Binary and Mixed-Integer Programming

Chapter 13: Binary and Mixed-Integer Programming Chapter 3: Binary and Mixed-Integer Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Standard Form of a Linear Programming Problem

Standard Form of a Linear Programming Problem 494 CHAPTER 9 LINEAR PROGRAMMING 9. THE SIMPLEX METHOD: MAXIMIZATION For linear programming problems involving two variables, the graphical solution method introduced in Section 9. is convenient. However,

More information

Solving Linear Programs

Solving Linear Programs Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti

More information

Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood

Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8720-E October 1998 $3.00 Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood A key problem faced

More information

OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

More information

Degeneracy in Linear Programming

Degeneracy in Linear Programming Degeneracy in Linear Programming I heard that today s tutorial is all about Ellen DeGeneres Sorry, Stan. But the topic is just as interesting. It s about degeneracy in Linear Programming. Degeneracy? Students

More information

Special cases in Transportation Problems

Special cases in Transportation Problems Unit 1 Lecture 18 Special cases in Transportation Problems Learning Objectives: Special cases in Transportation Problems Multiple Optimum Solution Unbalanced Transportation Problem Degeneracy in the Transportation

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number

More information

Unit 1. Today I am going to discuss about Transportation problem. First question that comes in our mind is what is a transportation problem?

Unit 1. Today I am going to discuss about Transportation problem. First question that comes in our mind is what is a transportation problem? Unit 1 Lesson 14: Transportation Models Learning Objective : What is a Transportation Problem? How can we convert a transportation problem into a linear programming problem? How to form a Transportation

More information

A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem

A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,

More information

Linear Programming: Theory and Applications

Linear Programming: Theory and Applications Linear Programming: Theory and Applications Catherine Lewis May 11, 2008 1 Contents 1 Introduction to Linear Programming 3 1.1 What is a linear program?...................... 3 1.2 Assumptions.............................

More information

Linear Programming. March 14, 2014

Linear Programming. March 14, 2014 Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

More information

3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max

3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

GENERALIZED INTEGER PROGRAMMING

GENERALIZED INTEGER PROGRAMMING Professor S. S. CHADHA, PhD University of Wisconsin, Eau Claire, USA E-mail: schadha@uwec.edu Professor Veena CHADHA University of Wisconsin, Eau Claire, USA E-mail: chadhav@uwec.edu GENERALIZED INTEGER

More information

A Labeling Algorithm for the Maximum-Flow Network Problem

A Labeling Algorithm for the Maximum-Flow Network Problem A Labeling Algorithm for the Maximum-Flow Network Problem Appendix C Network-flow problems can be solved by several methods. In Chapter 8 we introduced this topic by exploring the special structure of

More information

Chapter 2 Solving Linear Programs

Chapter 2 Solving Linear Programs Chapter 2 Solving Linear Programs Companion slides of Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-Wesley, 1977) prepared by José Fernando Oliveira Maria Antónia Carravilla A

More information

Linear Programming. Solving LP Models Using MS Excel, 18

Linear Programming. Solving LP Models Using MS Excel, 18 SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

More information

Linear Programming in Matrix Form

Linear Programming in Matrix Form Linear Programming in Matrix Form Appendix B We first introduce matrix concepts in linear programming by developing a variation of the simplex method called the revised simplex method. This algorithm,

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen MASTER STHESIS Minimizing costs for transport buyers using integer programming and column generation Eser Esirgen DepartmentofMathematicalSciences CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

Decision Mathematics D1 Advanced/Advanced Subsidiary. Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes

Decision Mathematics D1 Advanced/Advanced Subsidiary. Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes Paper Reference(s) 6689/01 Edexcel GCE Decision Mathematics D1 Advanced/Advanced Subsidiary Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Nil Items included with

More information

Dantzig-Wolfe bound and Dantzig-Wolfe cookbook

Dantzig-Wolfe bound and Dantzig-Wolfe cookbook Dantzig-Wolfe bound and Dantzig-Wolfe cookbook thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline LP strength of the Dantzig-Wolfe The exercise from last week... The Dantzig-Wolfe

More information

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where. Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

More information

Creating a More Efficient Course Schedule at WPI Using Linear Optimization

Creating a More Efficient Course Schedule at WPI Using Linear Optimization Project Number: ACH1211 Creating a More Efficient Course Schedule at WPI Using Linear Optimization A Major Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial

More information

Duality in Linear Programming

Duality in Linear Programming Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow

More information

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method 578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

More information

The Assignment Problem and the Hungarian Method

The Assignment Problem and the Hungarian Method The Assignment Problem and the Hungarian Method 1 Example 1: You work as a sales manager for a toy manufacturer, and you currently have three salespeople on the road meeting buyers. Your salespeople are

More information

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

More information

A Column-Generation and Branch-and-Cut Approach to the Bandwidth-Packing Problem

A Column-Generation and Branch-and-Cut Approach to the Bandwidth-Packing Problem [J. Res. Natl. Inst. Stand. Technol. 111, 161-185 (2006)] A Column-Generation and Branch-and-Cut Approach to the Bandwidth-Packing Problem Volume 111 Number 2 March-April 2006 Christine Villa and Karla

More information

Arithmetic Progression

Arithmetic Progression Worksheet 3.6 Arithmetic and Geometric Progressions Section 1 Arithmetic Progression An arithmetic progression is a list of numbers where the difference between successive numbers is constant. The terms

More information

Binary Adders: Half Adders and Full Adders

Binary Adders: Half Adders and Full Adders Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction

Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction Lecture 11 Dynamic Programming 11.1 Overview Dynamic Programming is a powerful technique that allows one to solve many different types of problems in time O(n 2 ) or O(n 3 ) for which a naive approach

More information

Chapter 10: Network Flow Programming

Chapter 10: Network Flow Programming Chapter 10: Network Flow Programming Linear programming, that amazingly useful technique, is about to resurface: many network problems are actually just special forms of linear programs! This includes,

More information

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form Section 1.3 Matrix Products A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form (scalar #1)(quantity #1) + (scalar #2)(quantity #2) +...

More information

Chapter 11 Monte Carlo Simulation

Chapter 11 Monte Carlo Simulation Chapter 11 Monte Carlo Simulation 11.1 Introduction The basic idea of simulation is to build an experimental device, or simulator, that will act like (simulate) the system of interest in certain important

More information

A Constraint Programming based Column Generation Approach to Nurse Rostering Problems

A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Abstract A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Fang He and Rong Qu The Automated Scheduling, Optimisation and Planning (ASAP) Group School of Computer Science,

More information

Decision Mathematics D1. Advanced/Advanced Subsidiary. Friday 12 January 2007 Morning Time: 1 hour 30 minutes. D1 answer book

Decision Mathematics D1. Advanced/Advanced Subsidiary. Friday 12 January 2007 Morning Time: 1 hour 30 minutes. D1 answer book Paper Reference(s) 6689/01 Edexcel GCE Decision Mathematics D1 Advanced/Advanced Subsidiary Friday 12 January 2007 Morning Time: 1 hour 30 minutes Materials required for examination Nil Items included

More information

Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

More information

Session 6 Number Theory

Session 6 Number Theory Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

Adding and Subtracting Positive and Negative Numbers

Adding and Subtracting Positive and Negative Numbers Adding and Subtracting Positive and Negative Numbers Absolute Value For any real number, the distance from zero on the number line is the absolute value of the number. The absolute value of any real number

More information

Chapter 6: Sensitivity Analysis

Chapter 6: Sensitivity Analysis Chapter 6: Sensitivity Analysis Suppose that you have just completed a linear programming solution which will have a major impact on your company, such as determining how much to increase the overall production

More information

Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

More information

How to speed-up hard problem resolution using GLPK?

How to speed-up hard problem resolution using GLPK? How to speed-up hard problem resolution using GLPK? Onfroy B. & Cohen N. September 27, 2010 Contents 1 Introduction 2 1.1 What is GLPK?.......................................... 2 1.2 GLPK, the best one?.......................................

More information

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left. The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

More information

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical

More information

Linear Programming. April 12, 2005

Linear Programming. April 12, 2005 Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first

More information

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery

More information

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above: Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in

More information

STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. Clarificationof zonationprocedure described onpp. 238-239

STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. Clarificationof zonationprocedure described onpp. 238-239 STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. by John C. Davis Clarificationof zonationprocedure described onpp. 38-39 Because the notation used in this section (Eqs. 4.8 through 4.84) is inconsistent

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

5.1 Bipartite Matching

5.1 Bipartite Matching CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

More information

Decision Mathematics 1 TUESDAY 22 JANUARY 2008

Decision Mathematics 1 TUESDAY 22 JANUARY 2008 ADVANCED SUBSIDIARY GCE 4736/01 MATHEMATICS Decision Mathematics 1 TUESDAY 22 JANUARY 2008 Additional materials: Answer Booklet (8 pages) Graph paper Insert for Questions 3 and 4 List of Formulae (MF1)

More information

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

More information

International Doctoral School Algorithmic Decision Theory: MCDA and MOO

International Doctoral School Algorithmic Decision Theory: MCDA and MOO International Doctoral School Algorithmic Decision Theory: MCDA and MOO Lecture 2: Multiobjective Linear Programming Department of Engineering Science, The University of Auckland, New Zealand Laboratoire

More information

A Linear Programming Based Method for Job Shop Scheduling

A Linear Programming Based Method for Job Shop Scheduling A Linear Programming Based Method for Job Shop Scheduling Kerem Bülbül Sabancı University, Manufacturing Systems and Industrial Engineering, Orhanlı-Tuzla, 34956 Istanbul, Turkey bulbul@sabanciuniv.edu

More information

Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

More information

Cash $331 $9,095. Receivables 4,019 2,342. Prepaid expenses 2,729 456. Prepaid catalog costs 2,794 1,375. Deferred catalog costs 7,020 3,347

Cash $331 $9,095. Receivables 4,019 2,342. Prepaid expenses 2,729 456. Prepaid catalog costs 2,794 1,375. Deferred catalog costs 7,020 3,347 Coldwater Creek Coldwater Creek, located in Idaho, operates a direct-mail catalog business. Items marketed through these catalogs include women's and men's apparel, jewelry, and household items. The beginning

More information

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

Opposites are all around us. If you move forward two spaces in a board game

Opposites are all around us. If you move forward two spaces in a board game Two-Color Counters Adding Integers, Part II Learning Goals In this lesson, you will: Key Term additive inverses Model the addition of integers using two-color counters. Develop a rule for adding integers.

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

Transportation Polytopes: a Twenty year Update

Transportation Polytopes: a Twenty year Update Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

Cost Models for Vehicle Routing Problems. 8850 Stanford Boulevard, Suite 260 R. H. Smith School of Business

Cost Models for Vehicle Routing Problems. 8850 Stanford Boulevard, Suite 260 R. H. Smith School of Business 0-7695-1435-9/02 $17.00 (c) 2002 IEEE 1 Cost Models for Vehicle Routing Problems John Sniezek Lawerence Bodin RouteSmart Technologies Decision and Information Technologies 8850 Stanford Boulevard, Suite

More information

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d.

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d. DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms

More information

Week_11: Network Models

Week_11: Network Models Week_11: Network Models 1 1.Introduction The network models include the traditional applications of finding the most efficient way to link a number of locations directly or indirectly, finding the shortest

More information

The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

Manifold Learning Examples PCA, LLE and ISOMAP

Manifold Learning Examples PCA, LLE and ISOMAP Manifold Learning Examples PCA, LLE and ISOMAP Dan Ventura October 14, 28 Abstract We try to give a helpful concrete example that demonstrates how to use PCA, LLE and Isomap, attempts to provide some intuition

More information

Section IV.1: Recursive Algorithms and Recursion Trees

Section IV.1: Recursive Algorithms and Recursion Trees Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

2.6 Exponents and Order of Operations

2.6 Exponents and Order of Operations 2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated

More information

Circuits 1 M H Miller

Circuits 1 M H Miller Introduction to Graph Theory Introduction These notes are primarily a digression to provide general background remarks. The subject is an efficient procedure for the determination of voltages and currents

More information

25 Integers: Addition and Subtraction

25 Integers: Addition and Subtraction 25 Integers: Addition and Subtraction Whole numbers and their operations were developed as a direct result of people s need to count. But nowadays many quantitative needs aside from counting require numbers

More information

Binary Image Reconstruction

Binary Image Reconstruction A network flow algorithm for reconstructing binary images from discrete X-rays Kees Joost Batenburg Leiden University and CWI, The Netherlands kbatenbu@math.leidenuniv.nl Abstract We present a new algorithm

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information