# 25 Integers: Addition and Subtraction

Size: px
Start display at page:

## Transcription

1 25 Integers: Addition and Subtraction Whole numbers and their operations were developed as a direct result of people s need to count. But nowadays many quantitative needs aside from counting require numbers other than whole numbers. In this and the next section we study the set Z of integers which consists of: the set W of whole numbers, i.e. W = {0, 1, 2, 3, }, and the negative integers denoted by N = { 1, 2, 3, }. That is, Z = {, 3, 2, 1, 0, 1, 2, 3, }. In today s society these numbers are used to record debits and credits, profits and losses, changes in the stock markets, degrees above and below zero in measuring temperature, the altitude above and below sea level, etc. As usual, we introduce the set of integers by means of pictures and diagrams with steadily increasing levels of abstraction to suggest, in turn, how these ideas might be presented to school children. Representations of Integers We will discuss two different ways for representing integers: set model and number line model. Set Model: In this model, we use signed counters. We represent +1 by and 1 by. In this case, the number +2 is represented by and the number 5 is represented by One plus counter neutralizes one minus counter. Thus, we can represent 0 by. Number-Line Model: The number line model is shown in Figure 25.1 Figure 25.1 Example 25.1 Represent 4 on a number line and as a set of signed counters. 1

2 Solution. Using signed counters we have Figure 25.2 shows the position of 4 on a number-line. Figure 25.2 Looking at Figure 25.1, we see that 2 and 2 have the same distance from 0 but on opposite sides. Such numbers are called opposite. In general, the opposite of x is x. Hence, the opposite of 5 is 5 and the opposite of 5 is ( 5) = 5. Example 25.2 Find the opposite of each of these integers. (a) 4 (b) 2 (c) 0 Solution. (a) The opposite of 4 is 4. (b) The opposite of 2 is ( 2) = 2. (c) The opposite of 0 is 0 since 0 is neither positive nor negative. Absolute Value of an Integer As an important application of the use of the number line model for integers is the concept of absolute value of an integer. We see from Figure 25.1 that the number 3 is represented by the point numbered 3 and the integer 3 is represented by the point numbered 3. Note that both 3 and 3 are three units from 0 on the number line. The absolute value of an integer x is the distance of the corresponding point on the number line from zero. We indicate the absolute value of x by x. It follows from the above discussion that 3 = 3 = 3. Example 25.3 Determine the absolute values of these integers. (a) 11 (b) 11 (c) 0 2

3 Solution. (a) 11 = 11 (b) 11 = 11 (c) 0 = 0. Practice Problems Problem 25.1 Which of the following are integers? (a) 11 (b) 0 (c) 3 4 (d) 9 3 Problem 25.2 Let N = { 1, 2, 3, }. Find (a) N W (b) N N, where N is the set of natural numbers or positive integers and W is the set of whole numbers. Problem 25.3 What number is 5 units to the left of 95? Problem 25.4 A and B are 9 units apart on the number line. A is twice as far from 0 as B. What are A and B? Problem 25.5 Represent 5 using signed counters and number line. Problem 25.6 In terms of distance, explain why 4 = 4. Problem 25.7 Find the additive inverse (i.e. opposite) of each of the following integers. (a) 2 (b) 0 (c) 5 (d) m (e) m Problem 25.8 Evaluate each of the following. (a) 5 (b) 10 (c) 4 (d) 5 Problem 25.9 Find all possible integers x such that x = 2. 3

4 Problem Let W be the set of whole numbers, Z + the set of positive integers (i.e. Z + = N), Z the set of negative integers, and Z the set of all integers. Find each of the following. (a) W Z (b) W Z (c) Z + Z (d) Z + Z (e) W Z + In the remainder of this section we discuss integer addition and subtraction. We will use the devices of signed counters and number lines to illustrate how these operations should be performed in the set of integers. Addition of Integers A football player loses 3 yards on one play and 2 yards on the next, what s the player s overall yardage on the two plays? The answer is 3+( 2) which involves addition of integers. We compute this sum using the two models discussed above. Using Signed Counters Since 3 is represented by 3 negative counters and 2 is represented by 2 negative counters then by combining these counters we obtain 5 negative counters which represent the integer 5. So 3 + ( 2) = 5. Using Number Line Move three units to the left of 0 and then 2 units to the left from 3 as shown in Figure Figure 25.3 Example 25.4 Find the following sums using (i) signed counters, and (ii) number line. (a) ( 7) + 4 (b) 5 + ( 2) (c) 2 + ( 2) 4

5 Solution. The results of the above examples are entirely typical and we state them as a theorem. Theorem 25.1 Let a and b be integers. Then the following are always true: (i) ( a) + ( b) = (a + b) (ii) If a > b then a + ( b) = a b (iii) If a < b then a + ( b) = (b a) (iv) a + ( a) = 0. Example 25.5 Compute the following sums. (a) (b) ( 6) + ( 5) (c) 7 + ( 3) (d) 4 + ( 9) (e) 6 + ( 6) Solution. (a) = 18 (b) ( 6) + ( 5) = (6 + 5) = 11 (c) 7 + ( 3) = 7 3 = 4 (d) 4 + ( 9) = (9 4) = 5 (e) 6 + ( 6) = 0 Integer addition has all the properties of whole number addition. properties are summarized in the following theorem. These 5

6 Theorem 25.2 Let a, b, and c be integers. Closure a + b is a unique integer. Commutativity a + b = b + a. Associativity a + (b + c) = (a + b) + c. Identity Element 0 is the unique integer such that a + 0 = 0 + a = a. A useful consequence of Theorem 25.1 (iv) is the additive cancellation. Theorem 25.3 For any integers a, b, c, if a + c = b + c then a = b. Proof. a = a + 0 identity element = a + (c + ( c)) additive inverse = (a + c) + ( c) associativity = (b + c) + c given = b + (c + ( c)) associativity = b + 0 additive inverse = b identity element Example 25.6 Use the additive cancellation to show that ( a) = a. Solution. Since a + ( a) = ( ( a)) + ( a) = 0 then by the additive cancellation property we have a = ( a) Practice Problems Problem What is the opposite or additive inverse of each of the following? (a and b are integers) (a) a + b (b) a b Problem What integer addition problem is shown on the number line? 6

7 Problem (a) Explain how to compute with a number line. (b) Explain how to compute with signed counters. Problem In today s mail, you will receive a check for \$86, a bill for \$30, and another bill for \$20. Write an integer addition equation that gives the overall gain or loss. Problem Compute the following without a calculator. (a) (b) ( 8) + ( 17) (c) ( 35) Problem Show two ways to represent the integer 3 using signed counters. Problem Illustrate each of the following addition using the signed counters. (a) 5 + ( 3) (b) (c) (d) ( 3) + ( 2) Problem Demonstrate each of the additions in the previous problem using number line model. Problem Write an addition problem that corresponds to each of the following sentences and then answer the question. (a) The temperature was 10 C and then it rose by 8 C. What is the new temperature? (b) A certain stock dropped 17 points and the following day gained 10 points. What was the net change in the stock s worth? (c) A visitor to a casino lost \$200, won \$100, and then lost \$50. What is the change in the gambler s net worth? Problem Compute each of the following: (a) ( 9) + ( 5) (b) 7 + ( 5) (c) ( 7) + 6 7

8 Problem If a is an element of { 3, 2, 1, 0, 1, 2} and b is an element of { 5, 4, 3, 2, 1, 0, 1}, find the smallest and largest values for the following expressions. (a) a + b (b) a + b Subtraction of Integers Like integer addition, integer subtraction can be illustrated with signed counters and number line. Signed Counters Take Away Approach As with the subtraction of whole numbers, one approach to integer subtraction is the notion of take away. Figure 25.4 illustrates various examples of subtraction of integers. Figure 25.4 Another important fact about subtraction of integers is illustrated in Figure Figure

9 Note that 5 3 = 5 + ( 3). In general, the following is true. Adding the Opposite Approach For all integers a and b, a b = a + ( b). Adding the opposite is perhaps the most efficient method for subtracting integers because it replaces any subtraction problem with an equivalent addition problem. Example 25.7 Find the following differences by adding the opposite. (a) 8 3 (b) 4 ( 5) Solution. (a) 8 3 = ( 8) + ( 3) = (8 + 3) = 11. (b) 4 ( 5) = 4 + [ ( 5)] = = 9. Missing-Addend Approach Signed counters model can be also used to illustrate the missing-addend approach for the subtraction of integers. Figure 25.6 illustrates both equations 3 ( 2) = 5 and 3 = 5 + ( 2). Figure 25.6 Since all subtraction diagrams can be interpreted in this way, we can introduce the missing-addend approach for subtraction: If a, b, and c are any integers, then a b = c if and only if a = c + b. Number Line Model The number line model used for integer addition can also be used to model integer subtraction. In this model, the operation of subtraction corresponds of starting from the tail of the first number facing the negative direction. 9

10 Thus, from the tail of the first number we move forward if we are subtracting a positive integer and backward if we are subtracting a negative integer. Figure 25.7 illustrates some examples. Figure 25.7 In summary there are three equivalent ways to view subtraction of integers. 1. Take away 2. Adding the opposite 3. Missing addend Example 25.8 Find 4 ( 2) using all three methods of subtraction. Solution. Take away: See Figure 25.8 Figure 25.8 Adding the opposite: 4 ( 2) = 4 + [ ( 2)] = = 6. Missing-Addend: 4 ( 2) = c if and only if 4 = c + ( 2). But 4 = 6 + ( 2) so that c = 6. Practice Problems 10

11 Problem Explain how to compute 5 ( 2) using a number line. Problem Tell what subtraction problem each picture illustrates. Problem Explain how to compute the following with signed counters. (a) ( 6) ( 2) (b) 2 6 (c) 2 3 (d) 2 ( 4) Problem (a) On a number line, subtracting 3 is the same as moving the. (b) On a number line, adding 3 is the same as moving. units to units to the Problem An elevetor is at an altitude of 10 feet. The elevator goes down 30 ft. (a) Write an integer equation for this situation. (b) What is the new altitude? Problem Compute each of the following using a b = a + ( b). (a) 3 ( 2) (b) 3 2 (c) 3 ( 2) Problem Use number-line model to find the following. (a) 4 ( 1) (b)

12 Problem Compute each of the following. (a) 5 11 (b) ( 4) ( 10) (c) 8 ( 3) (d) ( 8) 2 Problem Find x. (a) x + 21 = 16 (b) ( 5) + x = 7 (c) x 6 = 5 (d) x ( 8) = 17. Problem Which of the following properties hold for integer subtraction. If a property does not hold, disprove it by a counterexample. (a) Closure (b) Commutative (c) Associative (d) Identity 12

### A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

### Chapter 8 Integers 8.1 Addition and Subtraction

Chapter 8 Integers 8.1 Addition and Subtraction Negative numbers Negative numbers are helpful in: Describing temperature below zero Elevation below sea level Losses in the stock market Overdrawn checking

### 26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

### Adding and Subtracting Positive and Negative Numbers

Adding and Subtracting Positive and Negative Numbers Absolute Value For any real number, the distance from zero on the number line is the absolute value of the number. The absolute value of any real number

Overview of Mathematics Task Arcs: Mathematics Task Arcs A task arc is a set of related lessons which consists of eight tasks and their associated lesson guides. The lessons are focused on a small number

### Properties of Real Numbers

16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

### Accentuate the Negative: Homework Examples from ACE

Accentuate the Negative: Homework Examples from ACE Investigation 1: Extending the Number System, ACE #6, 7, 12-15, 47, 49-52 Investigation 2: Adding and Subtracting Rational Numbers, ACE 18-22, 38(a),

### Integers (pages 294 298)

A Integers (pages 294 298) An integer is any number from this set of the whole numbers and their opposites: { 3, 2,, 0,, 2, 3, }. Integers that are greater than zero are positive integers. You can write

### Addition and Subtraction of Integers

Addition and Subtraction of Integers Integers are the negative numbers, zero, and positive numbers Addition of integers An integer can be represented or graphed on a number line by an arrow. An arrow pointing

### Listen and Learn PRESENTED BY MATHEMAGICIAN Mathematics, Grade 7

Number Sense and Numeration Integers Adding and Subtracting Listen and Learn PRESENTED BY MATHEMAGICIAN Mathematics, Grade 7 Introduction Welcome to today s topic Parts of Presentation, questions, Q&A

### Adding and Subtracting Integers Unit. Grade 7 Math. 5 Days. Tools: Algebra Tiles. Four-Pan Algebra Balance. Playing Cards

Adding and Subtracting Integers Unit Grade 7 Math 5 Days Tools: Algebra Tiles Four-Pan Algebra Balance Playing Cards By Dawn Meginley 1 Objectives and Standards Objectives: Students will be able to add

### Opposites are all around us. If you move forward two spaces in a board game

Two-Color Counters Adding Integers, Part II Learning Goals In this lesson, you will: Key Term additive inverses Model the addition of integers using two-color counters. Develop a rule for adding integers.

### Unit 7 The Number System: Multiplying and Dividing Integers

Unit 7 The Number System: Multiplying and Dividing Integers Introduction In this unit, students will multiply and divide integers, and multiply positive and negative fractions by integers. Students will

### The Crescent Primary School Calculation Policy

The Crescent Primary School Calculation Policy Examples of calculation methods for each year group and the progression between each method. January 2015 Our Calculation Policy This calculation policy has

### Exponents. Exponents tell us how many times to multiply a base number by itself.

Exponents Exponents tell us how many times to multiply a base number by itself. Exponential form: 5 4 exponent base number Expanded form: 5 5 5 5 25 5 5 125 5 625 To use a calculator: put in the base number,

### Objective. Materials. TI-73 Calculator

0. Objective To explore subtraction of integers using a number line. Activity 2 To develop strategies for subtracting integers. Materials TI-73 Calculator Integer Subtraction What s the Difference? Teacher

### Subtracting Negative Integers

Subtracting Negative Integers Notes: Comparison of CST questions to the skill of subtracting negative integers. 5 th Grade/65 NS2.1 Add, subtract, multiply and divide with decimals; add with negative integers;

### Chapter 11 Number Theory

Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

### Topic: Number Line. How do we use the EV3 robot s number line program to help us understand the addition and subtraction of integer equations?

Topic: Number Line Teachers: Laura Scarfogliero, Illana Gagliardi & Dawn Ramirez Genre: Math Unit: Integers Grade Level: 6th grade Estimated Duration: 1 2 single period Essential Question (Domain 1: Planning

### Lesson 4: Efficiently Adding Integers and Other Rational Numbers

Classwork Example 1: Rule for Adding Integers with Same Signs a. Represent the sum of 3 + 5 using arrows on the number line. i. How long is the arrow that represents 3? ii. iii. How long is the arrow that

### Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter 4 described a mathematical system

CHAPTER Number Theory FIGURE FIGURE FIGURE Plus hours Plus hours Plus hours + = + = + = FIGURE. Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter described a mathematical

### Algebra 1. Practice Workbook with Examples. McDougal Littell. Concepts and Skills

McDougal Littell Algebra 1 Concepts and Skills Larson Boswell Kanold Stiff Practice Workbook with Examples The Practice Workbook provides additional practice with worked-out examples for every lesson.

### Answer: The relationship cannot be determined.

Question 1 Test 2, Second QR Section (version 3) In City X, the range of the daily low temperatures during... QA: The range of the daily low temperatures in City X... QB: 30 Fahrenheit Arithmetic: Ranges

Integers Unit Overview In this unit, you will study negative numbers, and you will learn to add, subtract, multiply and divide them. You will graph positive and negative numbers on number lines and on

### Grade 7 Mathematics. Unit 2. Integers. Estimated Time: 15 Hours

Grade 7 Mathematics Integers Estimated Time: 15 Hours [C] Communication [CN] Connections [ME] Mental Mathematics and Estimation [PS] Problem Solving [R] Reasoning [T] Technology [V] Visualization Grade

### Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.

Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material

### IV. ALGEBRAIC CONCEPTS

IV. ALGEBRAIC CONCEPTS Algebra is the language of mathematics. Much of the observable world can be characterized as having patterned regularity where a change in one quantity results in changes in other

### 6.2 Permutations continued

6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

### Lesson 2. Operations with Integers. Objectives

Student Name: Date: Contact Person Name: Phone Number: Lesson 2 Operations with Integers Objectives Add and subtract integers Determine the absolute value of a number Solve word problems that involve adding

### The theory of the six stages of learning with integers (Published in Mathematics in Schools, Volume 29, Number 2, March 2000) Stage 1

The theory of the six stages of learning with integers (Published in Mathematics in Schools, Volume 29, Number 2, March 2000) Stage 1 Free interaction In the case of the study of integers, this first stage

### UNIT 3 VOCABULARY: INTEGERS

1º ESO Bilingüe Page 1 UNIT 3 VOCABULARY: INTEGERS 3.1. Some uses of negative numbers There are many situations in which you need to use negative numbers. POSITIONS A submarine which is sailing 700 m below

### Lesson 2.2. 44 Lesson 2.2 ~ Adding Integers

Adding Integers Lesson 2.2 EXPLORE! integer Chips Integer chips are helpful for modeling integer operations. Each blue chip will represent the integer 1. Each red chip will represent the integer 1. When

WARDEN AVE P.S. Adding & Subtracting Integers Number Sense & Numeration Unit #1 Grade 7 Math 2014-2015 School Year This mini-unit will run from September 15-26 and must be handed in on Friday Sept. 26th

### Lesson Plan -- Integers, Opposites, Absolute Value

Lesson Plan -- Integers, Opposites, Absolute Value Chapter Resources - Lesson 3-1 Integers and the Number Line - Lesson 3-1 Integers and the Number Line Answers - Lesson 3-2 Opposites and Absolute Value

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### Inequalities - Absolute Value Inequalities

3.3 Inequalities - Absolute Value Inequalities Objective: Solve, graph and give interval notation for the solution to inequalities with absolute values. When an inequality has an absolute value we will

### Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

### 1 LESSON 1.1. Adding and Subtracting Integers. Adding Integers with the Same Sign ESSENTIAL QUESTION

Adding and Subtracting Integers? MODULE 1 LESSON 1.1 ESSENTIAL QUESTION Adding Integers with the Same Sign How can you use addition and subtraction of integers to solve real-world problems? 7.NS.1, 7.NS.1b,

### 8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

### Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20

SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

### 1 Error in Euler s Method

1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of

### 88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

### Decomposing Numbers (Operations and Algebraic Thinking)

Decomposing Numbers (Operations and Algebraic Thinking) Kindergarten Formative Assessment Lesson Designed and revised by Kentucky Department of Education Mathematics Specialists Field-tested by Kentucky

### Cartesian Products and Relations

Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

### Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

### 6. LECTURE 6. Objectives

6. LECTURE 6 Objectives I understand how to use vectors to understand displacement. I can find the magnitude of a vector. I can sketch a vector. I can add and subtract vector. I can multiply a vector by

### 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:

Exercises 1 - number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b) - 435 2. For each of

### Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.

Vectors Objectives State the definition and give examples of vector and scalar variables. Analyze and describe position and movement in two dimensions using graphs and Cartesian coordinates. Organize and

### Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

### 1.2 Linear Equations and Rational Equations

Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of

### Today. Binary addition Representing negative numbers. Andrew H. Fagg: Embedded Real- Time Systems: Binary Arithmetic

Today Binary addition Representing negative numbers 2 Binary Addition Consider the following binary numbers: 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 How do we add these numbers? 3 Binary Addition 0 0 1 0 0 1 1

### Sample Problems. Practice Problems

Lecture Notes Quadratic Word Problems page 1 Sample Problems 1. The sum of two numbers is 31, their di erence is 41. Find these numbers.. The product of two numbers is 640. Their di erence is 1. Find these

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### MATH 90 CHAPTER 1 Name:.

MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.

### Measurement with Ratios

Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

### Integers are positive and negative whole numbers, that is they are; {... 3, 2, 1,0,1,2,3...}. The dots mean they continue in that pattern.

INTEGERS Integers are positive and negative whole numbers, that is they are; {... 3, 2, 1,0,1,2,3...}. The dots mean they continue in that pattern. Like all number sets, integers were invented to describe

### Addition Methods. Methods Jottings Expanded Compact Examples 8 + 7 = 15

Addition Methods Methods Jottings Expanded Compact Examples 8 + 7 = 15 48 + 36 = 84 or: Write the numbers in columns. Adding the tens first: 47 + 76 110 13 123 Adding the units first: 47 + 76 13 110 123

### Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

### So let us begin our quest to find the holy grail of real analysis.

1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

### How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

### Math Journal HMH Mega Math. itools Number

Lesson 1.1 Algebra Number Patterns CC.3.OA.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. Identify and

### Current California Math Standards Balanced Equations

Balanced Equations Current California Math Standards Balanced Equations Grade Three Number Sense 1.0 Students understand the place value of whole numbers: 1.1 Count, read, and write whole numbers to 10,000.

### 6 3 The Standard Normal Distribution

290 Chapter 6 The Normal Distribution Figure 6 5 Areas Under a Normal Distribution Curve 34.13% 34.13% 2.28% 13.59% 13.59% 2.28% 3 2 1 + 1 + 2 + 3 About 68% About 95% About 99.7% 6 3 The Distribution Since

### Notes for EER #4 Graph transformations (vertical & horizontal shifts, vertical stretching & compression, and reflections) of basic functions.

Notes for EER #4 Graph transformations (vertical & horizontal shifts, vertical stretching & compression, and reflections) of basic functions. Basic Functions In several sections you will be applying shifts

### B I N G O INTEGER BINGO. On the next page are a series of Integers, Phrases and Operations. 1. Cut out each of the integers, phrases and operations;

Unit 4: Integers They are positive and negative WHOLE numbers The zero is neutral The sign tells the direction of the number: Positive means to the right of zero on a number line Negative means to the

### Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words

### 6.4 Logarithmic Equations and Inequalities

6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.

### MATH-0910 Review Concepts (Haugen)

Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,

### Grade 6 Math Circles. Binary and Beyond

Faculty of Mathematics Waterloo, Ontario N2L 3G1 The Decimal System Grade 6 Math Circles October 15/16, 2013 Binary and Beyond The cool reality is that we learn to count in only one of many possible number

### LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,

LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are

### CONTENTS 1. Peter Kahn. Spring 2007

CONTENTS 1 MATH 304: CONSTRUCTING THE REAL NUMBERS Peter Kahn Spring 2007 Contents 2 The Integers 1 2.1 The basic construction.......................... 1 2.2 Adding integers..............................

### FIRST GRADE MATH Summer 2011

Standards Summer 2011 1 OA.1 Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in

### Playing with Numbers

PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also

### Quick Reference ebook

This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed

### Subtracting Integers

Subtracting Integers Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

### MANCHESTER COLLEGE Department of Education. Length: 25 minutes Grade Intended: Pre-Algebra (7 th )

LESSON PLAN by: Kyler Kearby Lesson: Multiplying and dividing integers MANCHESTER COLLEGE Department of Education Length: 25 minutes Grade Intended: Pre-Algebra (7 th ) Academic Standard: 7.2.1: Solve

### Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

### HFCC Math Lab Beginning Algebra 13 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES

HFCC Math Lab Beginning Algebra 1 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES Before being able to solve word problems in algebra, you must be able to change words, phrases, and sentences

### Section 1.1 Real Numbers

. Natural numbers (N):. Integer numbers (Z): Section. Real Numbers Types of Real Numbers,, 3, 4,,... 0, ±, ±, ±3, ±4, ±,... REMARK: Any natural number is an integer number, but not any integer number is

### Probabilistic Strategies: Solutions

Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

### Fractions Packet. Contents

Fractions Packet Contents Intro to Fractions.. page Reducing Fractions.. page Ordering Fractions page Multiplication and Division of Fractions page Addition and Subtraction of Fractions.. page Answer Keys..

### One Period Binomial Model

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 One Period Binomial Model These notes consider the one period binomial model to exactly price an option. We will consider three different methods of pricing

### Brain Game. 3.4 Solving and Graphing Inequalities HOW TO PLAY PRACTICE. Name Date Class Period. MATERIALS game cards

Name Date Class Period Brain Game 3.4 Solving and Graphing Inequalities MATERIALS game cards HOW TO PLAY Work with another student. Shuffle the cards you receive from your teacher. Then put them face down

### Section V.3: Dot Product

Section V.3: Dot Product Introduction So far we have looked at operations on a single vector. There are a number of ways to combine two vectors. Vector addition and subtraction will not be covered here,

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### 1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH

1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH Calendar The following tables show the CCSS focus of The Meeting activities, which appear at the beginning of each numbered lesson and are taught daily,

### Ways We Use Integers. Negative Numbers in Bar Graphs

Ways We Use Integers Problem Solving: Negative Numbers in Bar Graphs Ways We Use Integers When do we use negative integers? We use negative integers in several different ways. Most of the time, they are

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

### Solving Rational Equations

Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

### Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

### Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5

Worksheet 2.4 Introduction to Inequalities Section 1 Inequalities The sign < stands for less than. It was introduced so that we could write in shorthand things like 3 is less than 5. This becomes 3 < 5.

### 8 Divisibility and prime numbers

8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

### hp calculators HP 17bII+ Net Present Value and Internal Rate of Return Cash Flow Zero A Series of Cash Flows What Net Present Value Is

HP 17bII+ Net Present Value and Internal Rate of Return Cash Flow Zero A Series of Cash Flows What Net Present Value Is Present Value and Net Present Value Getting the Present Value And Now For the Internal

### Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the

### COMPETENCY TEST SAMPLE TEST. A scientific, non-graphing calculator is required for this test. C = pd or. A = pr 2. A = 1 2 bh

BASIC MATHEMATICS COMPETENCY TEST SAMPLE TEST 2004 A scientific, non-graphing calculator is required for this test. The following formulas may be used on this test: Circumference of a circle: C = pd or

### The Properties of Signed Numbers Section 1.2 The Commutative Properties If a and b are any numbers,

1 Summary DEFINITION/PROCEDURE EXAMPLE REFERENCE From Arithmetic to Algebra Section 1.1 Addition x y means the sum of x and y or x plus y. Some other words The sum of x and 5 is x 5. indicating addition

### Computation Strategies for Basic Number Facts +, -, x,

Computation Strategies for Basic Number Facts +, -, x, Addition Subtraction Multiplication Division Proficiency with basic facts aids estimation and computation of multi-digit numbers. The enclosed strategies