INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models

Size: px
Start display at page:

Download "INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models"

Transcription

1 Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is the only deviation from linear programming, it is called an integer programming (IP) problem. If only some variables are required to be integer, the model is called a mixed integer programming (MIP) San Francisco Police Dep. problem is an IP problem. Wyndor Glass Co. problem could be an IP problem; how? João Miguel da Costa Sousa / Alexandra Moutinho 26 Integer Programming In integer programming the divisibility assumption must be dropped. Another area of application relates to problems involving yes or no decisions, which have binary variables. These IP problems are called binary integer programming (BIP) problems. A small example of a typical BIP problem is given in the following. Prototype example California Manufacturing Company is considering expansion, building a factory in Los Angeles, San Francisco or in both cities. One new warehouse can also be considered in a city where a new factory is being built. Maximum $0 million to invest. Obective: find feasible combination of alternatives that maximizes the total net present value. Decision number Yes or no question Decision variable Net present value Capital required Build factory in Los Angeles? x $9 million $6 million 2 Build factory in San Francisco? x 2 $5 million $3 million 3 Build warehouse in Los Angeles? x 3 $6 million $5 million 4 Build warehouse in San Francisco? x 4 $4 million $2 million João Miguel da Costa Sousa / Alexandra Moutinho 262 João Miguel da Costa Sousa / Alexandra Moutinho 263 BIP model All decision variables have the binary form: if decision is yes, x = =,2,3,4 0 if decision is no, Z = total net present value of these decisions. Maximize Z = 9x + 5x 2 + 6x 3 + 4x 4. Constraints: 6x + 3x 2 + 5x 3 + 2x 4 0 x 3 + x 4 Mutually exclusive alternatives x 3 x and x 4 x 2 Contingent decisions x is binary, for =,2,3,4. João Miguel da Costa Sousa / Alexandra Moutinho 264 BIP models Groups of yes or no decisions often constitute groups of mutually exclusive alternatives: only one decision in the group can be yes. Occasionally, decisions of the yes or no type are contingent decisions: decision that depends upon previous ones. Software options for solving BIP, IP or MIP models: Excel MatLab LINGO/LINDO MPL/CPLEX João Miguel da Costa Sousa / Alexandra Moutinho 265

2 BIP applications Formulation examples Investment analysis, such as the California Man. Co. Site selection, of factories, warehouses, etc. Designing a production and distribution network, or more generally the entire global supply chain. Dispatching shipments, scheduling routes, vehicles and time period for departure and arrivals. Airline applications, as e.g. fleet assignment and crew scheduling. Scheduling interrelated activities, asset divestures, etc. Example : making choices when decision variables are continuous. R&D Division of Good Products Co. has developed three possible new products. Requirement : from the three, at most two can be chosen to be produced. Each product can be produced in either of two plants. However, management has imposed another restriction: Requirement 2: ust one of the two plants can be chosen as the producer of the new products. João Miguel da Costa Sousa / Alexandra Moutinho 266 João Miguel da Costa Sousa / Alexandra Moutinho 267 Example Production time used for each unit produced Production time available per week Product Product 2 Product 3 Plant 3 hours 4 hours 2 hours 30 hours Plant 2 4 hours 6 hours 2 hours 40 hours Unit profit (0 3 $) Sales potential (units per week) Obectives: choose the products, the plant and the production rates of the chosen products to maximize total profit. João Miguel da Costa Sousa / Alexandra Moutinho 268 Formulation of the problem Similar to a standard product mix problem, such as the Wyndor Glass Co. if we drop the two restrictions and require each product to use production hours in both plants. Let x, x 2, x 3 be the production rates of the respective products: Maximize Z= 5x + 7x2+ 3x 3 subect to 3x + 4x2+ 2x3 30 4x + 6x2+ 2x3 40 x 7 x2 5 x3 9 x, x, x João Miguel da Costa Sousa / Alexandra Moutinho 269 Formulation of the problem For real problem, restriction adds the constraint: Number of strictly positive variables (x, x 2, x 3 ) must be 2 This must be converted to an IP problem. It needs the introduction of auxiliary binary variables. Restriction 2 requires replacing the first two functional constraints by: Either 3x + 4x2+ 2x3 30 or 4x + 6x + 2x 40 must hold. 2 3 This again requires an auxiliary binary variable. João Miguel da Costa Sousa / Alexandra Moutinho 270 Auxiliary binary variables For requirement, three auxiliary binary variables (y, y 2, y 3 )are introduced: if x > 0 can hold (can produce product ) y = 0 if x = 0 must hold (cannot produce product ) This is introduced in the model with the help of an extremely large positive number M, adding the constraints: x My x2 My2 x3 My3 y+ y2+ y3 2 y is binary, for =,2,3. João Miguel da Costa Sousa / Alexandra Moutinho 27 2

3 Auxiliary binary variables For requirement 2, another auxiliary binary variable y 4 is introduced: if 4x+ 6x2+ 2x3 40 must hold (choose Plant 2) y4 = 0 if 3x+ 4x2+ 2x3 30 must hold (choose Plant ) This adds the constraints: 3x+ 4x2+ 2x3 30+ My4 4x+ 6x2+ 2x M( y4) y is binary 4 João Miguel da Costa Sousa / Alexandra Moutinho 272 Complete model (MIP) Maximize Z= 5x + 7x + 3x 2 3 subect to x x 5 x 9 x My 0 x My x My y + y + y x + 4x + 2x My x + 6x + 2x + My 40+ M and x 0, for i=,2,3 i y is binary, for =,2,3,4 João Miguel da Costa Sousa / Alexandra Moutinho 273 Solution MIP problem with 3 continuous and four binary variables. Optimal solution: y =, y 2 = 0, y 3 =, y 4 =, x = 5.5, x 2 = 0, x 3 = 9. That is, produce products and 3 with production rates 5.5 units per week and 9 units per week respectively, and choose Plant 2 for production. Resulting total profit is $54,500 per week. João Miguel da Costa Sousa / Alexandra Moutinho 274 Example: Southwestern Airways Southwestern Airways needs to assign three crews to cover all the upcoming flights. Table shows the flights in the first column. Other 2 columns show the 2 feasible sequences of flights for a crew. Numbers in each column indicate the order of the flights. Exactly three sequences must be chosen (one per crew). More than one crew can be assigned to a flight, but it must be paid as if it was working. Last row shows the cost of assigning a crew to a particular sequence of flights. João Miguel da Costa Sousa / Alexandra Moutinho 275 Data for Southwestern Airways Formulation of the problem Feasible sequence of flights Flight San Francisco to Los Angeles 2. San Francisco to Denver 3. San Francisco to Seattle 4. Los Angeles to Chicago Los Angeles to San Francisco Chicago to Denver Chicago to Seattle Denver to San Francisco Denver to Chicago Seattle to San Francisco Seattle to Los Angeles Cost (000 ) João Miguel da Costa Sousa / Alexandra Moutinho 276 Obective: minimize the total cost for the three crew assignments that cover all flights. 2 feasible sequences of flights: 2 yes or no decisions: Should sequence be assigned to a crew? The 2 binary variables to represent the decisions are: if sequence is assigned to a crew x = 0 otherwise João Miguel da Costa Sousa / Alexandra Moutinho 277 3

4 Formulation of the problem Minimize Z= 2x + 3x + 4x + 6x + 7x + 5x + 7x + 8x + 9x + 9x + 8x + 9x subect to x + x4+ x7 + x (SF to LA) 0 x2+ x5+ x8+ x x + x + x9+ x x4 + x7 + x 9 + x + x 0 2 x and x is binary, x6 x0 x x4+ x5+ x9 for =,2,,2 x7 + x8 + x + x + x 0 2 x2+ x4+ x5+ x9 x5+ x8+ x x3+ x7+ x8+ x 2 x + x + x + x + x x = 3 (assign three crews) João Miguel da Costa Sousa / Alexandra Moutinho 278 = Solution One optimal solution is: x 3 = (assign sequence 3 to a crew) x 4 = (assign sequence 4 to a crew) x = (assign sequence to a crew) And all other x = 0. Total cost is $8,000. Another optimal solution is: x = x 5 = x 2 =. João Miguel da Costa Sousa / Alexandra Moutinho 279 Discussion This example belongs to a class called set covering problems, with a number of potential activities (e.g. flight sequences) and characteristics (e.g. flights). Obective: determine the least costly combination of activities that collectively possess each characteristic at least once. S i is the set of all activities that possess characteristic i. A constraint is included for each characteristic i: x Si In set partitioning problems the constraint is x = S João Miguel da Costa Sousa / Alexandra Moutinho 280 Solving IP problems Are integer problems easy to solve? Difference to LP is that IP have far fewer solutions. IP problems have a finite number of feasible solutions. However: Finite it numbers can be astronomically large! With n variables a BIP problem has 2 n solutions, having exponential growth. LP assures that a CPF solution can be optimal, guaranteeing the remarkable efficiency of the simplex method. LP problems are much easier to solve than IP problems! João Miguel da Costa Sousa / Alexandra Moutinho 28 Solving IP problems Solving IP problems Consequently, most IP algorithms incorporate the simplex method. This is called the LP relaxation. Sometimes, the solution of the LP problem is the solution of the IP problem, such as : Minimum cost flow problem, including transportation problem, assignment problem, shortest path problem and maximum flow problem. Special structures (see examples 2 and 3): mutually exclusive alternatives, contingent decisions or setcovering constraints can also simplify the problem. João Miguel da Costa Sousa / Alexandra Moutinho 282 Primary determinants of computational complexity:. number of integer variables, 2. these variables are binary or general integer variables, 3. any special structure in the problem. This is in contrast to LP, where number of constraints is much more important than the number of variables. As IP problems are much more difficult than LP, we could apply LP and round the obtained solution... Yes? João Miguel da Costa Sousa / Alexandra Moutinho 283 4

5 Example Example 2 Minimize Z= x subect to x + x x + x and x, x 0, 2 x, x integers. 2 Minimize Z= x + 5x2 subect to x+ 0x2 20 x 2 and x, x 0, integers. 2 João Miguel da Costa Sousa / Alexandra Moutinho 284 João Miguel da Costa Sousa / Alexandra Moutinho 285 Solving IP problems Branch and bound applied to BIP Thus, a better approach to deal with IP problems that are too large to be solved exactly are heuristic algorithms. Heuristics and metaheuristics are extremely efficient for very large problems, but do not guarantee to find an optimal solution. These algorithms will be discussed later. Most popular traditional method for solving IP problems is the branch and bound technique. Pure IP problems can consider some type of enumeration procedure. This should be done in a clever way such that only a tiny fraction of the feasible solutions is examined. Branch and bound with a divide to conquer technique can be used. dividing (branching) the problem into smaller and smaller subproblems until it can be conquered conquering (fathoming) by bounding how good the best solution can be. If no optimal solution in subset: discard it. João Miguel da Costa Sousa / Alexandra Moutinho 286 João Miguel da Costa Sousa / Alexandra Moutinho 287 Example: California Manuf, Co. Branching Recall prototype example: Maximize Z = 9x + 5x 2 + 6x 3 + 4x 4 subect to () 6x + 3x 2 + 5x 3 + 2x 4 0 (2) x 3 + x 4 (3) x + x 3 0 (4) x 2 + x 4 0 and (5) x is binary, for =, 2, 3, 4. João Miguel da Costa Sousa / Alexandra Moutinho 288 Most straightforward way to divide the problem: fix the value of a variable: e.g. x = 0 for one subset and x = for another subset. Subproblemp (fix x =0): Subproblem 2 (fix x = ): Maximize Z =5x 2 +6x 3 +4x 4 subect to () 3x 2 +5x 3 +2x 4 0 (2) x 3 + x 4 (3) x 3 0 (4) x 2 + x 4 0 (5) x is binary, for =2,3,4. Maximize Z =9+5x 2 +6x 3 +4x 4 subect to () 3x 2 +5x 3 +2x 4 4 (2) x 3 + x 4 (3) x 3 (4) x 2 + x 4 0 (5) x is binary, for =2,3,4. João Miguel da Costa Sousa / Alexandra Moutinho 289 5

6 Branching Bounding Dividing (branching) into suproblems creates a tree with branches (arcs) for the All node. This is the solution tree or enumeration tree. Branching variable is the one used for branching. The branching continues or not after evaluating the subproblem. Other IP problems usually creates as many branches as needed. A bound is needed for the best feasible solution of each of the subproblems. Standard way is to perform a relaxation of the problem, e.g. by deleting one set of constraints that makes the problem difficult to solve. Most common is to require integer variables, so LP relaxation is the most widely used. João Miguel da Costa Sousa / Alexandra Moutinho 290 João Miguel da Costa Sousa / Alexandra Moutinho 29 Bounding in example Example: for the whole problem, (5) is replaced by x and x 0 for =,2,3,4. Using simplex: (x, x 2, x 3, x 4 ) = (5/6,, 0, ), with Z = 6.5 Thus, Z 6.5 for all feasible solutions for BIP problem. Can be rounded to Z 6 (why?) LP relaxation for subproblem (x =0): (x, x 2, x 3, x 4 ) = (0,, 0, ), with Z = 9 LP relaxation for subproblem 2 (x =): (x, x 2, x 3, x 4 ) = (, 4/5, 0, 4/5), with Z = 6.5 João Miguel da Costa Sousa / Alexandra Moutinho 292 Fathoming A subproblem can be conquered (fathomed, i.e. search tree is pruned) in three ways:. When the optimal solution for the LP relaxation of a subproblem is integer, it must be optimal. Example: for x =0, (x, x 2, x 3, x 4 ) = (0,, 0, ), is integer. It must be stored as first incumbent (best feasible solution found so far) for the whole problem, along with value of Z: Z * = value of Z for first incumbent In the example Z * = 9. Subproblem is solved, so it is fathomed (dismissed). João Miguel da Costa Sousa / Alexandra Moutinho 293 Fathoming Summary of fathoming tests 2. As Z * = 9, we should not consider subproblems with bound 9. Thus, a problem is fathomed when Bound Z * In Subproblem 2 that does not occur, the bound of 6 is larger than 9. However, it can occur for descendants. As new incumbents with larger values of Z * are found, it becomes easier to fathom in this way. 3. If the simplex method finds that a subproblem s LP relaxation has no feasible solution, the subproblem has no feasible solution and can be dismissed. João Miguel da Costa Sousa / Alexandra Moutinho 294 A subproblem is fathomed (dismissed) if Test : Its bound Z * or Test 2: Its LP relaxation has no feasible solutions or Test 3: Optimal solution for its LP relaxation is integer. If better, this solution becomes new incumbent, and Test is reapplied for all unfathomed subproblems. João Miguel da Costa Sousa / Alexandra Moutinho 295 6

7 Fathoming in example Result of applying the three tests is in figure below. Subproblem is fathomed by test 3. João Miguel da Costa Sousa / Alexandra Moutinho 296 BIP branch and bound algorithm Initialization: Set Z * =. Apply bounding, fathoming and optimization steps described below to the whole problem. If not fathomed, perform iteration. Steps for each iteration:. Branching: Among the remaining subproblems, select the one created most recently. Branch from this node by fixing the next variable as either 0 or. 2. Bounding: For each new subproblem, obtain its bound by applying its LP relaxation. Round down Z for resulting optimal solution. João Miguel da Costa Sousa / Alexandra Moutinho 297 BIP branch and bound algorithm Completing example 3. Fathoming: For each new subproblem, apply the three fathoming tests, and discard subproblems that are fathomed by the tests. Optimality test: Stop when there are no remaining subproblems. The current incumbent is optimal. Otherwise, perform another iteration. Iteration 2. Remaining subproblems are for x =. Subproblem 3 (fix x =, x 2 = 0): Maximize Z = 9 + 6x 3 + 4x 4 subect to () 5x 3 + 2x 4 4 (2) x 3 + x 4 (3) x 3 (4) x 4 0 (5) x is binary, for = 3, 4. Subproblem 4 (fix x =, x 2 = ): Maximize Z = 4 + 6x 3 + 4x 4 subect to () 5x 3 + 2x 4 (2) x 3 + x 4 (3) x 3 (4) x 4 (5) x is binary, for = 3, 4. João Miguel da Costa Sousa / Alexandra Moutinho 298 João Miguel da Costa Sousa / Alexandra Moutinho 299 Example LP relaxation is obtained by replacing (5) by 0 x = 3, 4. Optimal solutions are: LP relaxation for subproblem 3: (x, x 2, x 3, x 4 ) = (, 0, 0.8, 0), with Z = 3.8 LP relaxation for subproblem 4: (x, x 2, x 3, x 4 ) = (,, 0, 0.5), with Z = 6 Resulting bounds: Bound for subproblem 3: Z 3 Bound for subproblem 4: Z 6 Example All three fathoming tests fail, so both are unfathomed. João Miguel da Costa Sousa / Alexandra Moutinho 300 João Miguel da Costa Sousa / Alexandra Moutinho 30 7

8 Iteration 3 Subproblem 4 has the larger bound, so next branching is done from (x, x 2 ) = (, ). Subproblem 5 Subproblem 6 (fix x =, x 2 =, x 3 = 0): (fix x =, x 2 =, x 3 = ): Maximize Z = 4 + 4x 4 Maximize Z = x 4 subect to subect to () 5x 3 + 2x 4 () 2x 4 4 (2), (4) x 4 (2) x 4 0 (5) x 4 is binary (4) x 4 (5) x 4 is binary João Miguel da Costa Sousa / Alexandra Moutinho 302 Iteration 3 (cont.) LP relaxation: replace (5) by 0 x 4. Optimal solutions are: LP relaxation for subproblem 5: (x, x 2, x 3, x 4 ) = (,, 0, 0.5), Z = 6 LP relaxation for subproblem 6: No feasible solutions. Bound for subproblem 5: Z 6 Subproblem 6 is fathomed by test 2, but not subproblem 5. João Miguel da Costa Sousa / Alexandra Moutinho 303 Iteration 3 (concl.) Iteration 4 Node created most recently is selected for branching: x 4 = 0: (x, x 2, x 3, x 4 ) = (,, 0, 0) is feasible, with Z = 4, x 4 = : (x, x 2, x 3, x 4 ) = (,, 0, ) is infeasible. First solution passes test 3 (integer solution) and second passes test 2 (infeasible) for fathoming. First solution is better than incumbent, so it becomes new incumbent, with Z * = 4 Reapplying fathoming test (bound) to remaining branch of Subproblem 3: Bound = 3 Z * = 4 (fathomed). João Miguel da Costa Sousa / Alexandra Moutinho 304 João Miguel da Costa Sousa / Alexandra Moutinho 305 Solution tree after Iteration 4 João Miguel da Costa Sousa / Alexandra Moutinho 306 Other options in Branch and Bound Branching can be done e.g. from the best bound rather than from the most recently created subproblem. Bounding is done by solving a relaxation. Another possible one is e.g. the Lagrangian g relaxation. Fathoming criteria can be generally stated as: Crit. : feasible solutions of subproblem must have Z Z *, Crit. 2: the subproblem has no feasible solutions, or Crit. 3: an optimal solution of subproblem has been found. Some adustments necessary for Branch and bound to find multiple optimal solutions. João Miguel da Costa Sousa / Alexandra Moutinho 307 8

9 Branch and bound for MIP Branch and bound for MIP General form of the problem: Maximize Z n = = c x subect to ax b, for i=,2,, m, and n i i = x 0, for =,2,, n x is integer, for =,2,, I; I n. Similar to BIP algorithm. Solving LP relaxations are the basis for bounding and fathoming. 4 changes are needed:. Choice of branching variable. Only integer variables that have a noninteger value in the optimal solution for the LP relaxation can be chosen. João Miguel da Costa Sousa / Alexandra Moutinho 308 João Miguel da Costa Sousa / Alexandra Moutinho 309 Branch and bound for MIP Recurring branching variable 2. As integer variables can have a large number of possible values, create ust two new subproblems: x * : noninteger value of optimal solution for LP relaxation. [x * ] = greatest integer x *. Range of variables for two new subproblems: bl x * [x * ] and x * [x * ] +. Each inequality becomes an additional constraint. Example: x * = 3.5, then: x * 3 and x * 4. When changes. and 2. are combined a recurring branching variable can occur, see figure. João Miguel da Costa Sousa / Alexandra Moutinho 30 João Miguel da Costa Sousa / Alexandra Moutinho 3 Branch and bound for MIP Changes needed: 3. Bounding step: value of Z was rounded down in BIP algorithm. Now some variables are not integerrestricted so bound is value of Z without rounding. 4. Fathoming test 3: optimal solution for the subproblem s LP relaxation must only be integer for integer restricted variables. João Miguel da Costa Sousa / Alexandra Moutinho 32 MIP branch and bound algorithm Initialization: Set Z * =. Apply bounding, fathoming and optimization steps described below to the whole problem. If not fathomed, perform iteration. Steps for each iteration:. Branching: Among the remaining subproblems, bl select the one created most recently. From integer variables that have a noninteger value in the optimal solution for the LP relaxation choose the first one. Let x be this variable and x * its value. Branch from this creating two subproblems by adding the respective constraints: x * [x * ] and x * [x * ] +. João Miguel da Costa Sousa / Alexandra Moutinho 33 9

10 MIP branch and bound algorithm 2. Bounding: For each new subproblem, obtain its bound by applying its LP relaxation. Use Z without rounding for resulting optimal solution. 3. Fathoming: For each new subproblem, apply the three fathoming tests, and discard subproblems that are fathomed by the tests. Test : Its bound Z *, where Z * is value of Z for current incumbent. Test 2: Its LP relaxation has no feasible solutions. João Miguel da Costa Sousa / Alexandra Moutinho 34 MIP branch and bound algorithm 3. Fathoming (cont.): Test 3: Optimal solution for its LP relaxation has integer values for integer restricted variables. (If this solution is better it becomes new incumbent, and test is reapplied for all unfathomed subproblems). Optimality test: Stop when there are no remaining subproblems. The current incumbent is optimal. Otherwise, perform another iteration. See MIP examples in PL#7 and in page 58 of Hillier s book. João Miguel da Costa Sousa / Alexandra Moutinho 35 Branch and cut approach to BIP Branch and bound was develop and refined in the 60 s and early 70 s. Can solve problems up to 00 variables. Branch and cut approach was introduced in the mid 80 s, and can solve problems with thousands of variables. Only solve large problems if they are sparse (less than 5 or even % of nonzero values in functional constraints). Uses a combination of automatic problem processing, generation of cutting planes and B&B techniques. João Miguel da Costa Sousa / Alexandra Moutinho 36 Automatic problem processing for BIP Computer inspection of IP formulation to spot reformulations that make the problem quicker to solve: Fixing variables: identify variables that can be fixed at 0 or, because other value cannot lead to feasible and optimal solution. Eliminating redundant constraints: identify and eliminate constraints that are automatically satisfied by solutions that satisfy all other constraints. Tightening constraints: tighten constraints in a way that reduces feasible region of LP relaxation without eliminating any feasible solutions for the BIP problem. João Miguel da Costa Sousa / Alexandra Moutinho 37 Tightening constraints LP relaxation including feasible region. LP relaxation after tightening constraint. João Miguel da Costa Sousa / Alexandra Moutinho 38 Generating cutting planes for BIP Cutting plane (or cut) is a new functional constraint that reduces feasible region for LP relaxation without eliminating any feasible solutions of IP problem. Procedure for generating cutting planes:. Consider functional constraint in form with only nonnegative coefficients. 2. Find a group of N variables such that a) Constraint is violated if every variable in group = and all other variables = 0. b) It is satisfied if value of any variables changes from to Resulting cutting plane: sum of variables in group N. João Miguel da Costa Sousa / Alexandra Moutinho 39 0

11 Constraint Programming Combination of artificial intelligence with computer programming languages in the mid 80 s. Flexibility in stating (nonlinear) constraints:. Mathematical constraints, e.g., x + y < z. 2. Disunctive constraints, e.g., times of certain tasks cannot overlap. 3. Relational constraints, e.g., at least three tasks should be assigned to a certain machine. João Miguel da Costa Sousa / Alexandra Moutinho 320 Stating constraints 4. Explicit constraints, e.g., x and y have same domain {,2,3,4,5}, but (x, y) must be (, ), (2, 3) or (4, 5). 5. Unary constraints, e.g. z is integer between 5 and Logical constraints, t e.g., if x = 5, then y [6, 8]. Allows use of standard logical functions such as IF, AND, OR, NOT. Constraint programming applies domain reduction and constraint propagation. The process creates a tree search. João Miguel da Costa Sousa / Alexandra Moutinho 32 Example Constraint Programming Consider: x {,2}, x 2 {,2}, x 3 {,2,3}, x 4 {,2,3,4,5} Constraints:. All variables must have different values; 2. x +x 3 = 4 Apply domain reduction and constraint propagation to obtain feasible solutions: x {}, x 2 {2}, x 3 {3}, x 4 {4,5}. João Miguel da Costa Sousa / Alexandra Moutinho 322 Steps in Constraint Programming:. Formulate a compact model for the problem by using a variety of constraint types (most not of IP type). 2. Efficiently find feasible solutions that satisfy all these constraints. 3. Search among feasible solutions for an optimal one. Strength of constraint programming is in first two steps, whereas the main strength of IP is in step 3. Current research: integrate CP and IP! João Miguel da Costa Sousa / Alexandra Moutinho 323

Chapter 13: Binary and Mixed-Integer Programming

Chapter 13: Binary and Mixed-Integer Programming Chapter 3: Binary and Mixed-Integer Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:

More information

Solving Integer Programming with Branch-and-Bound Technique

Solving Integer Programming with Branch-and-Bound Technique Solving Integer Programming with Branch-and-Bound Technique This is the divide and conquer method. We divide a large problem into a few smaller ones. (This is the branch part.) The conquering part is done

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

A Constraint Programming based Column Generation Approach to Nurse Rostering Problems

A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Abstract A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Fang He and Rong Qu The Automated Scheduling, Optimisation and Planning (ASAP) Group School of Computer Science,

More information

A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem

A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,

More information

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery

More information

Discrete Optimization

Discrete Optimization Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using

More information

Integer Programming. subject to: (i = 1, 2,..., m),

Integer Programming. subject to: (i = 1, 2,..., m), Integer Programming 9 The linear-programming models that have been discussed thus far all have been continuous, in the sense that decision variables are allowed to be fractional. Often this is a realistic

More information

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

MODELS AND ALGORITHMS FOR WORKFORCE ALLOCATION AND UTILIZATION

MODELS AND ALGORITHMS FOR WORKFORCE ALLOCATION AND UTILIZATION MODELS AND ALGORITHMS FOR WORKFORCE ALLOCATION AND UTILIZATION by Ada Yetunde Barlatt A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Industrial

More information

at which branching takes place, a "middleman," if you will. See the transship model panel. ABSTRACT

at which branching takes place, a middleman, if you will. See the transship model panel. ABSTRACT Optimal Solution of Discrete Resource Allocation Problems with SAS/OR Software by LTC Doug McAllaster, US Army Logistics Management College, Fort Lee, VA ABSTRACT This paper is a tutorial on how to use

More information

Lecture 10 Scheduling 1

Lecture 10 Scheduling 1 Lecture 10 Scheduling 1 Transportation Models -1- large variety of models due to the many modes of transportation roads railroad shipping airlines as a consequence different type of equipment and resources

More information

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents

More information

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

More information

A Column-Generation and Branch-and-Cut Approach to the Bandwidth-Packing Problem

A Column-Generation and Branch-and-Cut Approach to the Bandwidth-Packing Problem [J. Res. Natl. Inst. Stand. Technol. 111, 161-185 (2006)] A Column-Generation and Branch-and-Cut Approach to the Bandwidth-Packing Problem Volume 111 Number 2 March-April 2006 Christine Villa and Karla

More information

Cost Models for Vehicle Routing Problems. 8850 Stanford Boulevard, Suite 260 R. H. Smith School of Business

Cost Models for Vehicle Routing Problems. 8850 Stanford Boulevard, Suite 260 R. H. Smith School of Business 0-7695-1435-9/02 $17.00 (c) 2002 IEEE 1 Cost Models for Vehicle Routing Problems John Sniezek Lawerence Bodin RouteSmart Technologies Decision and Information Technologies 8850 Stanford Boulevard, Suite

More information

Network Models 8.1 THE GENERAL NETWORK-FLOW PROBLEM

Network Models 8.1 THE GENERAL NETWORK-FLOW PROBLEM Network Models 8 There are several kinds of linear-programming models that exhibit a special structure that can be exploited in the construction of efficient algorithms for their solution. The motivation

More information

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where. Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

More information

Models in Transportation. Tim Nieberg

Models in Transportation. Tim Nieberg Models in Transportation Tim Nieberg Transportation Models large variety of models due to the many modes of transportation roads railroad shipping airlines as a consequence different type of equipment

More information

Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing

Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing Pietro Belotti, Antonio Capone, Giuliana Carello, Federico Malucelli Tepper School of Business, Carnegie Mellon University, Pittsburgh

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm. Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

More information

OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

More information

Chapter 3 INTEGER PROGRAMMING 3.1 INTRODUCTION. Robert Bosch. Michael Trick

Chapter 3 INTEGER PROGRAMMING 3.1 INTRODUCTION. Robert Bosch. Michael Trick Chapter 3 INTEGER PROGRAMMING Robert Bosch Oberlin College Oberlin OH, USA Michael Trick Carnegie Mellon University Pittsburgh PA, USA 3.1 INTRODUCTION Over the last 20 years, the combination of faster

More information

Linear Programming. Solving LP Models Using MS Excel, 18

Linear Programming. Solving LP Models Using MS Excel, 18 SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

More information

7.1 Modelling the transportation problem

7.1 Modelling the transportation problem Chapter Transportation Problems.1 Modelling the transportation problem The transportation problem is concerned with finding the minimum cost of transporting a single commodity from a given number of sources

More information

Route optimization applied to school transports A method combining column generation with greedy heuristics

Route optimization applied to school transports A method combining column generation with greedy heuristics PREPRINT Route optimization applied to school transports A method combining column generation with greedy heuristics Mikael Andersson Peter Lindroth Department of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY

More information

Optimization with Big Data: Network Flows

Optimization with Big Data: Network Flows Optimization with Big Data: Network Flows Sertac Karaman Assistant Professor of Aeronautics and Astronautics Laboratory for Information and Decision Systems Institute for Data, Systems, and Society Massachusetts

More information

Strategic planning in LTL logistics increasing the capacity utilization of trucks

Strategic planning in LTL logistics increasing the capacity utilization of trucks Strategic planning in LTL logistics increasing the capacity utilization of trucks J. Fabian Meier 1,2 Institute of Transport Logistics TU Dortmund, Germany Uwe Clausen 3 Fraunhofer Institute for Material

More information

Integrating Benders decomposition within Constraint Programming

Integrating Benders decomposition within Constraint Programming Integrating Benders decomposition within Constraint Programming Hadrien Cambazard, Narendra Jussien email: {hcambaza,jussien}@emn.fr École des Mines de Nantes, LINA CNRS FRE 2729 4 rue Alfred Kastler BP

More information

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

USING EXCEL SOLVER IN OPTIMIZATION PROBLEMS

USING EXCEL SOLVER IN OPTIMIZATION PROBLEMS USING EXCEL SOLVER IN OPTIMIZATION PROBLEMS Leslie Chandrakantha John Jay College of Criminal Justice of CUNY Mathematics and Computer Science Department 445 West 59 th Street, New York, NY 10019 lchandra@jjay.cuny.edu

More information

Scheduling of Mixed Batch-Continuous Production Lines

Scheduling of Mixed Batch-Continuous Production Lines Université Catholique de Louvain Faculté des Sciences Appliquées Scheduling of Mixed Batch-Continuous Production Lines Thèse présentée en vue de l obtention du grade de Docteur en Sciences Appliquées par

More information

An Implementation of a Constraint Branching Algorithm for Optimally Solving Airline Crew Pairing Problems

An Implementation of a Constraint Branching Algorithm for Optimally Solving Airline Crew Pairing Problems MASTER S THESIS An Implementation of a Constraint Branching Algorithm for Optimally Solving Airline Crew Pairing Problems Douglas Potter Department of Mathematical Sciences CHALMERS UNIVERSITY OF TECHNOLOGY

More information

3 Introduction to Linear Programming

3 Introduction to Linear Programming 3 Introduction to Linear Programming 24 The development of linear programming has been ranked among the most important scientific advances of the mid-20th century, and we must agree with this assessment.

More information

Discuss the size of the instance for the minimum spanning tree problem.

Discuss the size of the instance for the minimum spanning tree problem. 3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can

More information

How to speed-up hard problem resolution using GLPK?

How to speed-up hard problem resolution using GLPK? How to speed-up hard problem resolution using GLPK? Onfroy B. & Cohen N. September 27, 2010 Contents 1 Introduction 2 1.1 What is GLPK?.......................................... 2 1.2 GLPK, the best one?.......................................

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

Optimization Modeling for Mining Engineers

Optimization Modeling for Mining Engineers Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2

More information

Planning and Scheduling in the Digital Factory

Planning and Scheduling in the Digital Factory Institute for Computer Science and Control Hungarian Academy of Sciences Berlin, May 7, 2014 1 Why "digital"? 2 Some Planning and Scheduling problems 3 Planning for "one-of-a-kind" products 4 Scheduling

More information

An optimization model for aircraft maintenance scheduling and re-assignment

An optimization model for aircraft maintenance scheduling and re-assignment Transportation Research Part A 37 (2003) 29 48 www.elsevier.com/locate/tra An optimization model for aircraft maintenance scheduling and re-assignment Chellappan Sriram 1, Ali Haghani * Department of Civil

More information

Charles Fleurent Director - Optimization algorithms

Charles Fleurent Director - Optimization algorithms Software Tools for Transit Scheduling and Routing at GIRO Charles Fleurent Director - Optimization algorithms Objectives Provide an overview of software tools and optimization algorithms offered by GIRO

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

Minimizing Cycle Time for PCB Assembly Lines: An Integer Programming Model and a Branch-and-Bound Approach

Minimizing Cycle Time for PCB Assembly Lines: An Integer Programming Model and a Branch-and-Bound Approach Information and Management Sciences Volume 19, Number 2, pp. 237-243, 2008 Minimizing Cycle Time for PCB Assembly Lines: An Integer Programming Model and a Branch-and-Bound Approach P. Ji Y. F. Wan Hong

More information

Two objective functions for a real life Split Delivery Vehicle Routing Problem

Two objective functions for a real life Split Delivery Vehicle Routing Problem International Conference on Industrial Engineering and Systems Management IESM 2011 May 25 - May 27 METZ - FRANCE Two objective functions for a real life Split Delivery Vehicle Routing Problem Marc Uldry

More information

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical

More information

Load Balancing of Telecommunication Networks based on Multiple Spanning Trees

Load Balancing of Telecommunication Networks based on Multiple Spanning Trees Load Balancing of Telecommunication Networks based on Multiple Spanning Trees Dorabella Santos Amaro de Sousa Filipe Alvelos Instituto de Telecomunicações 3810-193 Aveiro, Portugal dorabella@av.it.pt Instituto

More information

Lecture 3: Linear Programming Relaxations and Rounding

Lecture 3: Linear Programming Relaxations and Rounding Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can

More information

A Column Generation Model for Truck Routing in the Chilean Forest Industry

A Column Generation Model for Truck Routing in the Chilean Forest Industry A Column Generation Model for Truck Routing in the Chilean Forest Industry Pablo A. Rey Escuela de Ingeniería Industrial, Facultad de Ingeniería, Universidad Diego Portales, Santiago, Chile, e-mail: pablo.rey@udp.cl

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

Noncommercial Software for Mixed-Integer Linear Programming

Noncommercial Software for Mixed-Integer Linear Programming Noncommercial Software for Mixed-Integer Linear Programming J. T. Linderoth T. K. Ralphs December, 2004. Revised: January, 2005. Abstract We present an overview of noncommercial software tools for the

More information

Scheduling Algorithm with Optimization of Employee Satisfaction

Scheduling Algorithm with Optimization of Employee Satisfaction Washington University in St. Louis Scheduling Algorithm with Optimization of Employee Satisfaction by Philip I. Thomas Senior Design Project http : //students.cec.wustl.edu/ pit1/ Advised By Associate

More information

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 8, No 2 Sofia 2008 Optimal Scheduling for Dependent Details Processing Using MS Excel Solver Daniela Borissova Institute of

More information

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen MASTER STHESIS Minimizing costs for transport buyers using integer programming and column generation Eser Esirgen DepartmentofMathematicalSciences CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

Special Session on Integrating Constraint Programming and Operations Research ISAIM 2016

Special Session on Integrating Constraint Programming and Operations Research ISAIM 2016 Titles Special Session on Integrating Constraint Programming and Operations Research ISAIM 2016 1. Grammar-Based Integer Programming Models and Methods for Employee Scheduling Problems 2. Detecting and

More information

Optimal Hydrothermal Energy Generation for Ghana

Optimal Hydrothermal Energy Generation for Ghana Optimal Hydrothermal Energy Generation for Ghana Christian John Etwire, Stephen B. Twum Abstract: Power production and distribution in Ghana is ever more becoming erratic and expensive, both for the power

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Optimization Theory for Large Systems

Optimization Theory for Large Systems Optimization Theory for Large Systems LEON S. LASDON CASE WESTERN RESERVE UNIVERSITY THE MACMILLAN COMPANY COLLIER-MACMILLAN LIMITED, LONDON Contents 1. Linear and Nonlinear Programming 1 1.1 Unconstrained

More information

Dynamic programming formulation

Dynamic programming formulation 1.24 Lecture 14 Dynamic programming: Job scheduling Dynamic programming formulation To formulate a problem as a dynamic program: Sort by a criterion that will allow infeasible combinations to be eli minated

More information

11 Dynamic Programming

11 Dynamic Programming 11 Dynamic Programming EXAMPLE 1 Dynamic programming is a useful mathematical technique for making a sequence of interrelated decisions. It provides a systematic procedure for determining the optimal combination

More information

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004 Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February

More information

Operations Research An Introduction

Operations Research An Introduction Operations Research An Introduction Ninth Edition Hamdy A. Taha University of Arkansas, Fayettevilie Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London

More information

A scenario aggregation based approach for determining a robust airline fleet composition

A scenario aggregation based approach for determining a robust airline fleet composition Econometric Institute Reports EI 2002-17 A scenario aggregation based approach for determining a robust airline fleet composition Ovidiu Listes, Rommert Dekker Erasmus University Rotterdam, P.O. Box 1738,

More information

Classification - Examples

Classification - Examples Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking

More information

Nonlinear Optimization: Algorithms 3: Interior-point methods

Nonlinear Optimization: Algorithms 3: Interior-point methods Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris Jean-Philippe.Vert@mines.org Nonlinear optimization c 2006 Jean-Philippe Vert,

More information

Scheduling Shop Scheduling. Tim Nieberg

Scheduling Shop Scheduling. Tim Nieberg Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations

More information

Routing in Line Planning for Public Transport

Routing in Line Planning for Public Transport Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany MARC E. PFETSCH RALF BORNDÖRFER Routing in Line Planning for Public Transport Supported by the DFG Research

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

Measuring the Performance of an Agent

Measuring the Performance of an Agent 25 Measuring the Performance of an Agent The rational agent that we are aiming at should be successful in the task it is performing To assess the success we need to have a performance measure What is rational

More information

Logic Cuts Generation in a Branch and Cut Framework for Location Problems Mara A. Osorio Lama School of Computer Science Autonomous University of Puebla, Puebla 72560 Mexico Rosalba Mujica Garca Abstract

More information

In this paper we present a branch-and-cut algorithm for

In this paper we present a branch-and-cut algorithm for SOLVING A TRUCK DISPATCHING SCHEDULING PROBLEM USING BRANCH-AND-CUT ROBERT E. BIXBY Rice University, Houston, Texas EVA K. LEE Georgia Institute of Technology, Atlanta, Georgia (Received September 1994;

More information

Introduction: Models, Model Building and Mathematical Optimization The Importance of Modeling Langauges for Solving Real World Problems

Introduction: Models, Model Building and Mathematical Optimization The Importance of Modeling Langauges for Solving Real World Problems Introduction: Models, Model Building and Mathematical Optimization The Importance of Modeling Langauges for Solving Real World Problems Josef Kallrath Structure of the Lecture: the Modeling Process survey

More information

Linear Programming Supplement E

Linear Programming Supplement E Linear Programming Supplement E Linear Programming Linear programming: A technique that is useful for allocating scarce resources among competing demands. Objective function: An expression in linear programming

More information

A Decision Support System for Crew Planning in Passenger Transportation using a Flexible Branch-and-Price Algorithm

A Decision Support System for Crew Planning in Passenger Transportation using a Flexible Branch-and-Price Algorithm A Decision Support System for Crew Planning in Passenger Transportation using a Flexible Branch-and-Price Algorithm RICHARD FRELING 1, 2*, RAMON M. LENTINK 1, 2 AND ALBERT P.M. WAGELMANS 1 1 Erasmus Center

More information

Optimization of Supply Chain Networks

Optimization of Supply Chain Networks Optimization of Supply Chain Networks M. Herty TU Kaiserslautern September 2006 (2006) 1 / 41 Contents 1 Supply Chain Modeling 2 Networks 3 Optimization Continuous optimal control problem Discrete optimal

More information

Adaptive Linear Programming Decoding

Adaptive Linear Programming Decoding Adaptive Linear Programming Decoding Mohammad H. Taghavi and Paul H. Siegel ECE Department, University of California, San Diego Email: (mtaghavi, psiegel)@ucsd.edu ISIT 2006, Seattle, USA, July 9 14, 2006

More information

Branch, Cut, and Price: Sequential and Parallel

Branch, Cut, and Price: Sequential and Parallel Branch, Cut, and Price: Sequential and Parallel T.K. Ralphs 1, L. Ladányi 2, and L.E. Trotter, Jr. 3 1 Department of Industrial and Manufacturing Systems Engineering, Lehigh University, Bethlehem, PA 18017,

More information

Discrete Optimization Introduction & applications

Discrete Optimization Introduction & applications Discrete Optimization 2013 1/21 Discrete Optimization Introduction & applications Bertrand Cornélusse ULg - Institut Montefiore 2013 Discrete Optimization 2013 2/21 Outline Introduction Some applications

More information

CHAPTER 9. Integer Programming

CHAPTER 9. Integer Programming CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral

More information

Introduction & Overview

Introduction & Overview ID2204: Constraint Programming Introduction & Overview Lecture 01, Christian Schulte cschulte@kth.se Software and Computer Systems School of Information and Communication Technology KTH Royal Institute

More information

Motivated by a problem faced by a large manufacturer of a consumer product, we

Motivated by a problem faced by a large manufacturer of a consumer product, we A Coordinated Production Planning Model with Capacity Expansion and Inventory Management Sampath Rajagopalan Jayashankar M. Swaminathan Marshall School of Business, University of Southern California, Los

More information

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

More information

Modeling and Solving the Capacitated Vehicle Routing Problem on Trees

Modeling and Solving the Capacitated Vehicle Routing Problem on Trees in The Vehicle Routing Problem: Latest Advances and New Challenges Modeling and Solving the Capacitated Vehicle Routing Problem on Trees Bala Chandran 1 and S. Raghavan 2 1 Department of Industrial Engineering

More information

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems

More information

Workforce scheduling with logical constraints: theory and applications in call centers

Workforce scheduling with logical constraints: theory and applications in call centers Workforce scheduling with logical constraints: theory and applications in call centers Gábor Danó This thesis was supervised by Sandjai Bhulai and Ger Koole Department of Mathematics Vrije Universiteit

More information

Decision Mathematics D1 Advanced/Advanced Subsidiary. Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes

Decision Mathematics D1 Advanced/Advanced Subsidiary. Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes Paper Reference(s) 6689/01 Edexcel GCE Decision Mathematics D1 Advanced/Advanced Subsidiary Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Nil Items included with

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information

A MODEL TO SOLVE EN ROUTE AIR TRAFFIC FLOW MANAGEMENT PROBLEM:

A MODEL TO SOLVE EN ROUTE AIR TRAFFIC FLOW MANAGEMENT PROBLEM: A MODEL TO SOLVE EN ROUTE AIR TRAFFIC FLOW MANAGEMENT PROBLEM: A TEMPORAL AND SPATIAL CASE V. Tosic, O. Babic, M. Cangalovic and Dj. Hohlacov Faculty of Transport and Traffic Engineering, University of

More information

Final Report. to the. Center for Multimodal Solutions for Congestion Mitigation (CMS) CMS Project Number: 2010-018

Final Report. to the. Center for Multimodal Solutions for Congestion Mitigation (CMS) CMS Project Number: 2010-018 Final Report to the Center for Multimodal Solutions for Congestion Mitigation (CMS) CMS Project Number: 2010-018 CMS Project Title: Impacts of Efficient Transportation Capacity Utilization via Multi-Product

More information

The Problem of Scheduling Technicians and Interventions in a Telecommunications Company

The Problem of Scheduling Technicians and Interventions in a Telecommunications Company The Problem of Scheduling Technicians and Interventions in a Telecommunications Company Sérgio Garcia Panzo Dongala November 2008 Abstract In 2007 the challenge organized by the French Society of Operational

More information

npsolver A SAT Based Solver for Optimization Problems

npsolver A SAT Based Solver for Optimization Problems npsolver A SAT Based Solver for Optimization Problems Norbert Manthey and Peter Steinke Knowledge Representation and Reasoning Group Technische Universität Dresden, 01062 Dresden, Germany peter@janeway.inf.tu-dresden.de

More information

COORDINATION PRODUCTION AND TRANSPORTATION SCHEDULING IN THE SUPPLY CHAIN ABSTRACT

COORDINATION PRODUCTION AND TRANSPORTATION SCHEDULING IN THE SUPPLY CHAIN ABSTRACT Technical Report #98T-010, Department of Industrial & Mfg. Systems Egnieering, Lehigh Univerisity (1998) COORDINATION PRODUCTION AND TRANSPORTATION SCHEDULING IN THE SUPPLY CHAIN Kadir Ertogral, S. David

More information

Social Media Mining. Data Mining Essentials

Social Media Mining. Data Mining Essentials Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

More information

2007/26. A tighter continuous time formulation for the cyclic scheduling of a mixed plant

2007/26. A tighter continuous time formulation for the cyclic scheduling of a mixed plant CORE DISCUSSION PAPER 2007/26 A tighter continuous time formulation for the cyclic scheduling of a mixed plant Yves Pochet 1, François Warichet 2 March 2007 Abstract In this paper, based on the cyclic

More information

THE SCHEDULING OF MAINTENANCE SERVICE

THE SCHEDULING OF MAINTENANCE SERVICE THE SCHEDULING OF MAINTENANCE SERVICE Shoshana Anily Celia A. Glass Refael Hassin Abstract We study a discrete problem of scheduling activities of several types under the constraint that at most a single

More information

Integer Programming Formulation

Integer Programming Formulation Integer Programming Formulation 1 Integer Programming Introduction When we introduced linear programs in Chapter 1, we mentioned divisibility as one of the LP assumptions. Divisibility allowed us to consider

More information

Chapter 10: Network Flow Programming

Chapter 10: Network Flow Programming Chapter 10: Network Flow Programming Linear programming, that amazingly useful technique, is about to resurface: many network problems are actually just special forms of linear programs! This includes,

More information

HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE

HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE Subodha Kumar University of Washington subodha@u.washington.edu Varghese S. Jacob University of Texas at Dallas vjacob@utdallas.edu

More information