Chapter 3 - Multidimensional Information Visualization II

Size: px
Start display at page:

Download "Chapter 3 - Multidimensional Information Visualization II"

Transcription

1 Chapter 3 - Multidimensional Information Visualization II Concepts for visualizing univariate to hypervariate data Vorlesung Informationsvisualisierung Prof. Dr. Florian Alt, WS 2013/14 Konzept und Folien (4th revised edition): Thorsten Büring, Andreas Butz, Michael Burch 1

2 Outline Reference model and data terminology Visualizing data with < 4 variables Visualizing multivariable data Geometric transformation Glyphs Pixel-based Downscaling of dimensions Case studies: support for exploring multidimensional data Rank-by-feature Dust & magnet Clutter reduction techniques 2

3 Exploring Multivariate Data 3

4 Rank-By-Feature Seo & Shneiderman 2004 Part of the Hierarchical Clustering Explorer (HCE) ( Tabs: histogram and scatterplot ordering Implements systematic approach for data exploration (1) study 1D, study 2D, then find features (2) ranking guides insight, statistics confirm Tool provides low-dimensional projections as a histogram (1D) or scatterplot (2D) Users can select a feature detection criterion (e.g. test for normal distribution (1D), correlation coefficient (2D)) to rank projections The ranking facility is particularly helpful when the number of possible projections is too large to investigate: concentrate on the interesting ones 4

5 Rank-By-Feature Users start with 1D projections (histogram ordering) Four coordinated views A: selection of ranking criterion B: overview of scores for all dimensions (color coding: the brighter the color, the higher the score) C: numerical / statistical detail for each dimension (e.g. score, mean, standard deviation) D: display of histogram + boxplot (minimum, first quartile, median, third quartile, maximum) 5

6 Rank-By-Feature Some basic statistical terms Mean: Sum of all values divided by the number of values Median: Middle value of a distribution of values when ranked in order of magnitude Mode: Single most common value Variance: average squared deviation between the mean and the values Standard deviation: square root of the variance (translates the variance into the original units of measurement) Statistical tests supported by HCE for 1D ranking Normality of the distribution: distribution of items forms a symmetric, bell-shaped curve Uniformity of the distribution: all of the values of a random variable occur with equal probability (results in a flat histogram) Number of potential outliers Number of unique values 6

7 Mode The most frequent score Describes how most items behave Pros: Easy to calculate and understand Can be used with nominal data Cons: There can be more than one mode Mode can change dramatically by adding only one dataset Independent of all other data in the set y c n e u q r e F Score mode Negatively Skewed Distribution 7

8 Median Middle score of the distribution Example data: Sorted by magnitude: median = 6 If #scores even average two middle scores Example data: Sorted by magnitude: median = 5 Pros: Relatively unaffected by outliers (very low or high scores) and skewed distributions Can be used with ordinal, interval and ratio data Cons: Does not consider all scores of the data set Not very stable 8

9 Mean Sum of all scores divided by #scores: Most often used if average is mentioned Pros: Considers every score most accurate summary of the data Resistant to sampling variation: removing one sample changes the mean far less than mode or median Cons: 1 m = n Heavily affected by extreme scores and skewed distributions Can only be used with interval and ratio data n i= 1 X i 9

10 Standard Deviation and Variance How do you measure the accuracy of the mean? Example data set 1: mean = 5 Example data set 2: mean = 5 Which of the data sets is better reflected by the mean? If x1, x2, xn are the data in a sample with mean m Deviation = difference between mean and scores = (xi - m) 2 2 (xi m) ) Variance s = n Standard deviation (SD) s = Var(X) Both variance and standard deviations measure the accuracy of the data set variability of the data 10

11 Quantile, Quartile, and Percentile Quantile Cut points' that divide a sample of data into groups containing (as far as possible) equal numbers of observations. Quartile (Quantile of 4) Values that divide a sample of data into 4 groups containing (as far as possible) equal numbers of observations Percentile (Quantile of 100) Values that divide a sample of data into 100 groups containing (as far as possible) equal numbers of observations lower quartile median upper quartile 11

12 Rank-By-Feature Move on to 2D projections (scatterplot ordering) Identify pairwise relationships between dimensions B: prism provides overview of scores for dimension pairs; score is color coded D: scatterplot browser; multiple browsers are possible; Ranking criteria Correlation coefficient: direction and strength of linear relationship Least square error for simple linear / curvilinear regression: how well does the regression model fit Number of items in a user-defined region of interest & uniformity of scatterplot 12

13 Dust & Magnet Yi et al Data cases are represented as particles of iron dust Magnets represent the dimensions of the data set Users manipulate the magnets to move the dust Dust moves at different speed depending on its data values for the magnet dimensions 13

14 Clutter Reduction Techniques 15

15 Clutter Reduction Techniques Clutter: crowded and disordered visual entities that obscure the structure in visual displays Avoiding clutter is one of the main challenges in Information Visualization Techniques to reduce clutter Dimension reordering Sampling Constant-density visualization Point displacement Aggregation / Clustering (one mark represents more than one case, e.g. group day sales into months) Filtering (Dynamic queries, zooming) 16

16 Dimension Reordering Peng et al Automatically identify the views with the least amount of visual clutter Clutter definition and algorithms for different visualization techniques 17

17 Dimension Reordering 18

18 Sampling Reduce the density of visual representation by displaying a random subset of the data Random sampling preserves the distribution of data Overall trends (e.g. correlation) can still be detected at a reduced density Uniform sampling (Ellis & Dix 2004) Applying the same (manually or automatically defined) sampling factor to the entire data space Problem: areas with low density may become empty Non-uniform sampling (Bertini & Santucci 2004) Preserving relative density Model to compute where, how, and how much to sample to preserve image characteristics 19

19 Bertini & Santucci

20 Sampling Lens Ellis et al Magic Lens approach to apply random sampling to user-defined regions while maintaining the original data density in the context 21

21 Constant Information Density Woodruff et al Data objects in areas with high information density are represented by small-sized low-detail glyphs Objects in sparse-density areas are represented by larger, more detailed glyphs The number of information objects is kept constant as the user scales and moves the view 22

22 Constant Information Density 23

23 Point Displacement Items that would overlap other items are moved to adjacent free positions Position of the items and their distance should be preserved as much as possible Three algorithms for displacing pixels (e.g. adding abstract data to geographical maps) (Keim & Hermann 1998) Nearest-Neighbor Curve-based Gridfit Algorithms share the same procedure All data points which have a unique position are placed on the display Keim 2000: data with and without overlap New positions are determined for the remaining points 24

24 Point Displacement Nearest-Neighbor algorithm For all points which have not been set in the first step, place them on the nearest unoccupied position Fast to compute, but limited effectiveness for very dense displays (pixels may be placed very far from their original positions) Curve-based algorithm For all points which have not been set in the first step Compute the nearest unoccupied position on a given screen-filling curve Shift all points between the occupied pixel and the unoccupied position along the screen-filling curve Place the point on the newly available unoccupied pixel 25

25 Chapter 4 - Interaction with Visualizations Dynamic linking, brushing and filtering in Information Visualization displays Vorlesung Informationsvisualisierung Prof. Dr. Florian Alt, WS 2013/14 Konzept und Folien (4th revised edition): Thorsten Büring, Andreas Butz, Michael Burch 1

26 Outline Definitions Direct Manipulation (DM) Dynamic Queries Movable Filters Common Interaction Techniques Select Explore Reconfigure Encode Abstract / Elaborate Filter Connect 2

27 Definitions 3

28 InfoVis & Interaction Information Visualization research originally: focus on finding novel visual representations Increasing interest in interaction design, HCI models and evaluation as well as aesthetics in the InfoVis community HCI Interaction models help us to better understand the complex concepts of human-machine communication Norman s execution-evaluation cycle (Norman 1988) 1. Establishing the goal 2. Forming the intention 3. Specifying the action sequence 4. Executing the interaction 5. Perceiving the system state 6. Interpreting the system state 7. Evaluating the system state with respect to the goals and intentions 4

29 InfoVis & Interaction InfoVis systems are composed of two major components: Representation Roots lie in the field of Computer Graphics Mapping from data to geometrical objects and How these objects are rendered Interaction Roots lie in the field of Human-Computer Interaction (HCI) Dialog between user and the system User explores the data from different perspectives to find insights 5

30 Representation and Interaction Although discussed as two separate components, representation and interaction clearly are not mutually exclusive. For example: Interaction with a system may activate a change in representation. Representation component has received vast majority of attention in InfoVis research. Scan of recent conference proceedings and journal issues in InfoVis uncovers many articles about new representations of datasets but interaction is often relegated to a secondary role. 6

31 Representation and Interaction Interaction rarely is the main focus of research in InfoVis. Making it the little brother of InfoVis Interaction is overshadowed by the more noteworthy representation aspects. Interaction is an essential part of InfoVis Without it, an InfoVis technique or system becomes a static image or autonomously animated images. Static images clearly have analytic and expressive value But usefulness becomes more limited as the data set they represent grows larger with more variables 7

32 Representation and Interaction By the way: Also with a static image such as a poster, a user (or reader) will often perform interactions Rotating the poster Looking closer/further Jotting down notes on the poster Spence suggests the notion of passive interaction through which the user s mental model on the data set is changed and enhanced. Finally, through interaction, some limits of a representation can be overcome, and the cognition of a user can be further amplified. Importance of interaction and the need for its further study seem undisputed. 8

33 Definition Interaction: Before discussing the term interaction, we will find a solid definition for it. But: Finding a solid definition for it is challenging! In the broader context of Human-Computer Interaction (HCI) it is simply described as the communication between user and the system. [Dix et al., 2004] Becker, Cleveland, and Wilks compactly define interaction as direct manipulation and instantianeous change. [Becker et al., 1987] 9

34 Definition asymmetry in data rates. [Ware, 2000] The amount of data flowing from InfoVis systems to users is far greater than from users to systems. Thus, interaction techniques in InfoVis seem more designed for changing and adjusting visual representation than for entering data into systems, which clearly is an important aspect of interaction in HCI. 10

35 Definition We view interaction techniques in InfoVis as the features that provide users with the ability to directly or indirectly manipulate and interpret representation. According to this view, a static image or an autonomously animated representation does not have associated interaction techniques. However, a menu interface for changing from a scatter plot to a parallel coordinates plot is an interaction technique since it allows a user to manipulate a representation even if it may be less interactive or direct. 11

36 Direct Manipulation 12

37 Direct Manipulation (DM) Shneiderman 1982 DM features Visibility of all objects of interest Incremental actions with rapid feedback on all actions Reversibility of all actions, so that users are encouraged to explore without penalties Syntactic correctness of all actions, so that every user action is a legal operation DM does not only make interaction easier for novice users but fundamentally extends visualization capabilities 13

38 Example: Brushing Becker & Cleveland 1987 A collection of dynamic methods for viewing multidimensional data Brush is an interactive interface tool to select / mark subsets of data in a single view, e.g. by sweeping a virtual brush across items of interest Given linked views (e.g. scatterplot matrix) the brushing can support the identification of correlations across multiple dimensions (brushing & linking) Usually used to visually filter data (via highlighting) Additional manipulation / operations may be performed on the subsets (masking, magnification, labeling etc.) Different types of brushes (Hauser et al. 2002) Simple brush via sweeping Composite brush: composed multiple single-axis brushes by the use of logical operators Angular brush Smooth brush Composite scatterplot brushes - Hauser et al

39 Example: Brushing Brushing one dimension in parallel coordinates to highlight car data objects with 4 cylinders Hauser et al

40 Brushing a parallel coordinate plot Robert Kosara, Poster: Indirect Multi-Touch Interaction for Brushing in Parallel Coordinates, IEEE Information Visualization Posters,

41 Angular Brush Angular brush: brushing by specifying a slope range highlight correlation and outliers between two dimensions Hauser et al

42 Smooth Brush Non-binary brushing Degree-of-interest defined by distance to brushed range Decreasing degree is mapped to decreasing drawing intensity Hauser et al

43 Another Brushing Example Example for composite (AND) brush in Parallel Coordinate Plot find the cities with high wages, small prices and many paid holiday days Demo InfoScope: products/infoscope.html (free trial and applet) 19

44 Dynamic Queries Shneiderman 1994 Explore and search databases SQL example: SELECT customer_id, customer_name, COUNT(order_id) as total FROM customers INNER JOIN orders ON customers.customer_id = orders.customer_id GROUP BY customer_id, customer_name HAVING COUNT(order_id) > 5 ORDER BY COUNT(order_id) DESC Problems Takes time to learn Takes time to formulate and reformulate User must know what she is looking for only exact matches Lots of ways to fail SQL error messages helpful? Zero hits what component is to be changed? 20

45 Dynamic Queries Based on Direct Manipulation (DM) DM principles with regard to Dynamic Queries Visual presentation of the query s components Visual presentation of results Rapid, incremental, and reversible control of the query Selection by pointing, not typing Immediate, continuous feedback Implementation approach Graphical query formulation: Users formulate queries by adjusting sliders, pressing buttons, bounding box selection Search results displayed are continuously updated (< 100 ms) 21

46 Examples Visual representations of data to query? Some examples: geographic data, starfields, tables etc. Shneiderman

47 HomeFinder One of the first DQ interfaces Williamson & Shneiderman 1983(!) 23

48 FilmFinder Ahlberg & Shneiderman

49 Dynamic Query Controls Check boxes and buttons (Nominal with low cardinality) Sliders and range slider (ordinal and quantitative data) Alphaslider (ordinal data) (Ahlberg & Shneiderman 1994) Small-sized widget to search sorted lists Online-text output Two-tiled slider thumb for dragging operations with different granularities Letter index visualizing the distribution of initial letters jump to a position in the slider Locating an item out of 10,000 items ~ 28s for novice users Pros and cons to text entry? Extend data sliders with data visualization (Eick 1994) 28

50 Dynamic Queries Online Online examples: Apartment Search ( Diamond search ( 29

51 DQ in current search interfaces DQ have become widespread with fast search algorithms and increased computing capacity search happens while typing in search terms in google search new routes are calculated while point is dragged in google maps 30

52 Making Money with Dynamic Queries Starfield displays and Dynamic Queries provided the basis for SpotFire Christopher Ahlberg 1991: Visiting student from Sweden at the HCIL University of Maryland 1996: Founder of SpotFire 2007: SpotFire was sold for 195 Mio. $ Well done! 31

53 Summary Dynamic Queries Users can rapidly, safely playfully explore a data space no false input possible Users can rapidly generate new queries based on incidental learning Visual representation of data supports data exploration Analysis by continuously developing and testing hypotheses (detect clusters, outliers, trends in multivariate data) Provides straightforward undo and reversing of actions Potential problems with DQ as implemented in the FilmFinder? Limit of query complexity filters are always conjunctive Performance is limited for very large data sets and client / server applications Controls require valuable display space Information is pruned Only single range queries and single selection in the alphaslider 32

Chapter 3 - Multidimensional Information Visualization II

Chapter 3 - Multidimensional Information Visualization II Chapter 3 - Multidimensional Information Visualization II Concepts for visualizing univariate to hypervariate data Vorlesung Informationsvisualisierung Prof. Dr. Florian Alt, WS 2013/14 Konzept und Folien

More information

Lecture 2: Descriptive Statistics and Exploratory Data Analysis

Lecture 2: Descriptive Statistics and Exploratory Data Analysis Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals

More information

DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

More information

Exercise 1.12 (Pg. 22-23)

Exercise 1.12 (Pg. 22-23) Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

More information

Introduction to Exploratory Data Analysis

Introduction to Exploratory Data Analysis Introduction to Exploratory Data Analysis A SpaceStat Software Tutorial Copyright 2013, BioMedware, Inc. (www.biomedware.com). All rights reserved. SpaceStat and BioMedware are trademarks of BioMedware,

More information

Information Visualization Multivariate Data Visualization Krešimir Matković

Information Visualization Multivariate Data Visualization Krešimir Matković Information Visualization Multivariate Data Visualization Krešimir Matković Vienna University of Technology, VRVis Research Center, Vienna Multivariable >3D Data Tables have so many variables that orthogonal

More information

Multi-Dimensional Data Visualization. Slides courtesy of Chris North

Multi-Dimensional Data Visualization. Slides courtesy of Chris North Multi-Dimensional Data Visualization Slides courtesy of Chris North What is the Cleveland s ranking for quantitative data among the visual variables: Angle, area, length, position, color Where are we?!

More information

Data Exploration Data Visualization

Data Exploration Data Visualization Data Exploration Data Visualization What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping to select

More information

Visualization Techniques in Data Mining

Visualization Techniques in Data Mining Tecniche di Apprendimento Automatico per Applicazioni di Data Mining Visualization Techniques in Data Mining Prof. Pier Luca Lanzi Laurea in Ingegneria Informatica Politecnico di Milano Polo di Milano

More information

Geostatistics Exploratory Analysis

Geostatistics Exploratory Analysis Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras [email protected]

More information

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012 Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts

More information

Diagrams and Graphs of Statistical Data

Diagrams and Graphs of Statistical Data Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in

More information

TIBCO Spotfire Business Author Essentials Quick Reference Guide. Table of contents:

TIBCO Spotfire Business Author Essentials Quick Reference Guide. Table of contents: Table of contents: Access Data for Analysis Data file types Format assumptions Data from Excel Information links Add multiple data tables Create & Interpret Visualizations Table Pie Chart Cross Table Treemap

More information

3: Summary Statistics

3: Summary Statistics 3: Summary Statistics Notation Let s start by introducing some notation. Consider the following small data set: 4 5 30 50 8 7 4 5 The symbol n represents the sample size (n = 0). The capital letter X denotes

More information

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

More information

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics. Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

More information

Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

More information

Data Analysis. Using Excel. Jeffrey L. Rummel. BBA Seminar. Data in Excel. Excel Calculations of Descriptive Statistics. Single Variable Graphs

Data Analysis. Using Excel. Jeffrey L. Rummel. BBA Seminar. Data in Excel. Excel Calculations of Descriptive Statistics. Single Variable Graphs Using Excel Jeffrey L. Rummel Emory University Goizueta Business School BBA Seminar Jeffrey L. Rummel BBA Seminar 1 / 54 Excel Calculations of Descriptive Statistics Single Variable Graphs Relationships

More information

DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS

DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 110 012 [email protected] 1. Descriptive Statistics Statistics

More information

What is Visualization? Information Visualization An Overview. Information Visualization. Definitions

What is Visualization? Information Visualization An Overview. Information Visualization. Definitions What is Visualization? Information Visualization An Overview Jonathan I. Maletic, Ph.D. Computer Science Kent State University Visualize/Visualization: To form a mental image or vision of [some

More information

Data Visualization Handbook

Data Visualization Handbook SAP Lumira Data Visualization Handbook www.saplumira.com 1 Table of Content 3 Introduction 20 Ranking 4 Know Your Purpose 23 Part-to-Whole 5 Know Your Data 25 Distribution 9 Crafting Your Message 29 Correlation

More information

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

More information

Northumberland Knowledge

Northumberland Knowledge Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about

More information

BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS

BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-110 012 [email protected] Genomics A genome is an organism s

More information

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

More information

9. Text & Documents. Visualizing and Searching Documents. Dr. Thorsten Büring, 20. Dezember 2007, Vorlesung Wintersemester 2007/08

9. Text & Documents. Visualizing and Searching Documents. Dr. Thorsten Büring, 20. Dezember 2007, Vorlesung Wintersemester 2007/08 9. Text & Documents Visualizing and Searching Documents Dr. Thorsten Büring, 20. Dezember 2007, Vorlesung Wintersemester 2007/08 Slide 1 / 37 Outline Characteristics of text data Detecting patterns SeeSoft

More information

The Forgotten JMP Visualizations (Plus Some New Views in JMP 9) Sam Gardner, SAS Institute, Lafayette, IN, USA

The Forgotten JMP Visualizations (Plus Some New Views in JMP 9) Sam Gardner, SAS Institute, Lafayette, IN, USA Paper 156-2010 The Forgotten JMP Visualizations (Plus Some New Views in JMP 9) Sam Gardner, SAS Institute, Lafayette, IN, USA Abstract JMP has a rich set of visual displays that can help you see the information

More information

Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)

Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.) Center: Finding the Median When we think of a typical value, we usually look for the center of the distribution. For a unimodal, symmetric distribution, it s easy to find the center it s just the center

More information

3D Interactive Information Visualization: Guidelines from experience and analysis of applications

3D Interactive Information Visualization: Guidelines from experience and analysis of applications 3D Interactive Information Visualization: Guidelines from experience and analysis of applications Richard Brath Visible Decisions Inc., 200 Front St. W. #2203, Toronto, Canada, [email protected] 1. EXPERT

More information

Cours de Visualisation d'information InfoVis Lecture. Multivariate Data Sets

Cours de Visualisation d'information InfoVis Lecture. Multivariate Data Sets Cours de Visualisation d'information InfoVis Lecture Multivariate Data Sets Frédéric Vernier Maître de conférence / Lecturer Univ. Paris Sud Inspired from CS 7450 - John Stasko CS 5764 - Chris North Data

More information

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)

More information

Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data.

Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data. Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data. Andrada Tatu Institute for Computer and Information Science University of Konstanz Peter

More information

Data exploration with Microsoft Excel: analysing more than one variable

Data exploration with Microsoft Excel: analysing more than one variable Data exploration with Microsoft Excel: analysing more than one variable Contents 1 Introduction... 1 2 Comparing different groups or different variables... 2 3 Exploring the association between categorical

More information

COMP 150-04 Visualization. Lecture 11 Interacting with Visualizations

COMP 150-04 Visualization. Lecture 11 Interacting with Visualizations COMP 150-04 Visualization Lecture 11 Interacting with Visualizations Assignment 5: Maps Due Wednesday, March 17th Design a thematic map visualization Option 1: Choropleth Map Implementation in Processing

More information

Using SPSS, Chapter 2: Descriptive Statistics

Using SPSS, Chapter 2: Descriptive Statistics 1 Using SPSS, Chapter 2: Descriptive Statistics Chapters 2.1 & 2.2 Descriptive Statistics 2 Mean, Standard Deviation, Variance, Range, Minimum, Maximum 2 Mean, Median, Mode, Standard Deviation, Variance,

More information

Principles of Data Visualization for Exploratory Data Analysis. Renee M. P. Teate. SYS 6023 Cognitive Systems Engineering April 28, 2015

Principles of Data Visualization for Exploratory Data Analysis. Renee M. P. Teate. SYS 6023 Cognitive Systems Engineering April 28, 2015 Principles of Data Visualization for Exploratory Data Analysis Renee M. P. Teate SYS 6023 Cognitive Systems Engineering April 28, 2015 Introduction Exploratory Data Analysis (EDA) is the phase of analysis

More information

Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools. Tools for Summarizing Data Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

More information

Visualization methods for patent data

Visualization methods for patent data Visualization methods for patent data Treparel 2013 Dr. Anton Heijs (CTO & Founder) Delft, The Netherlands Introduction Treparel can provide advanced visualizations for patent data. This document describes

More information

The Visual Statistics System. ViSta

The Visual Statistics System. ViSta Visual Statistical Analysis using ViSta The Visual Statistics System Forrest W. Young & Carla M. Bann L.L. Thurstone Psychometric Laboratory University of North Carolina, Chapel Hill, NC USA 1 of 21 Outline

More information

T O P I C 1 2 Techniques and tools for data analysis Preview Introduction In chapter 3 of Statistics In A Day different combinations of numbers and types of variables are presented. We go through these

More information

The Value of Visualization 2

The Value of Visualization 2 The Value of Visualization 2 G Janacek -0.69 1.11-3.1 4.0 GJJ () Visualization 1 / 21 Parallel coordinates Parallel coordinates is a common way of visualising high-dimensional geometry and analysing multivariate

More information

Exploratory Data Analysis for Ecological Modelling and Decision Support

Exploratory Data Analysis for Ecological Modelling and Decision Support Exploratory Data Analysis for Ecological Modelling and Decision Support Gennady Andrienko & Natalia Andrienko Fraunhofer Institute AIS Sankt Augustin Germany http://www.ais.fraunhofer.de/and 5th ECEM conference,

More information

Visualization Software

Visualization Software Visualization Software Maneesh Agrawala CS 294-10: Visualization Fall 2007 Assignment 1b: Deconstruction & Redesign Due before class on Sep 12, 2007 1 Assignment 2: Creating Visualizations Use existing

More information

Intro to GIS Winter 2011. Data Visualization Part I

Intro to GIS Winter 2011. Data Visualization Part I Intro to GIS Winter 2011 Data Visualization Part I Cartographer Code of Ethics Always have a straightforward agenda and have a defining purpose or goal for each map Always strive to know your audience

More information

A Correlation of. to the. South Carolina Data Analysis and Probability Standards

A Correlation of. to the. South Carolina Data Analysis and Probability Standards A Correlation of to the South Carolina Data Analysis and Probability Standards INTRODUCTION This document demonstrates how Stats in Your World 2012 meets the indicators of the South Carolina Academic Standards

More information

An example. Visualization? An example. Scientific Visualization. This talk. Information Visualization & Visual Analytics. 30 items, 30 x 3 values

An example. Visualization? An example. Scientific Visualization. This talk. Information Visualization & Visual Analytics. 30 items, 30 x 3 values Information Visualization & Visual Analytics Jack van Wijk Technische Universiteit Eindhoven An example y 30 items, 30 x 3 values I-science for Astronomy, October 13-17, 2008 Lorentz center, Leiden x An

More information

Azure Machine Learning, SQL Data Mining and R

Azure Machine Learning, SQL Data Mining and R Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:

More information

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

More information

Bill Burton Albert Einstein College of Medicine [email protected] April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Bill Burton Albert Einstein College of Medicine [email protected] April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce

More information

Name: Date: Use the following to answer questions 2-3:

Name: Date: Use the following to answer questions 2-3: Name: Date: 1. A study is conducted on students taking a statistics class. Several variables are recorded in the survey. Identify each variable as categorical or quantitative. A) Type of car the student

More information

2013 MBA Jump Start Program. Statistics Module Part 3

2013 MBA Jump Start Program. Statistics Module Part 3 2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just

More information

Clustering & Visualization

Clustering & Visualization Chapter 5 Clustering & Visualization Clustering in high-dimensional databases is an important problem and there are a number of different clustering paradigms which are applicable to high-dimensional data.

More information

Descriptive Statistics

Descriptive Statistics Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

More information

An introduction to using Microsoft Excel for quantitative data analysis

An introduction to using Microsoft Excel for quantitative data analysis Contents An introduction to using Microsoft Excel for quantitative data analysis 1 Introduction... 1 2 Why use Excel?... 2 3 Quantitative data analysis tools in Excel... 3 4 Entering your data... 6 5 Preparing

More information

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

More information

Scatter Plots with Error Bars

Scatter Plots with Error Bars Chapter 165 Scatter Plots with Error Bars Introduction The procedure extends the capability of the basic scatter plot by allowing you to plot the variability in Y and X corresponding to each point. Each

More information

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler Data Mining: Exploring Data Lecture Notes for Chapter 3 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler Topics Exploratory Data Analysis Summary Statistics Visualization What is data exploration?

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

More information

January 26, 2009 The Faculty Center for Teaching and Learning

January 26, 2009 The Faculty Center for Teaching and Learning THE BASICS OF DATA MANAGEMENT AND ANALYSIS A USER GUIDE January 26, 2009 The Faculty Center for Teaching and Learning THE BASICS OF DATA MANAGEMENT AND ANALYSIS Table of Contents Table of Contents... i

More information

Multivariate Analysis of Ecological Data

Multivariate Analysis of Ecological Data Multivariate Analysis of Ecological Data MICHAEL GREENACRE Professor of Statistics at the Pompeu Fabra University in Barcelona, Spain RAUL PRIMICERIO Associate Professor of Ecology, Evolutionary Biology

More information

Big Data: Rethinking Text Visualization

Big Data: Rethinking Text Visualization Big Data: Rethinking Text Visualization Dr. Anton Heijs [email protected] Treparel April 8, 2013 Abstract In this white paper we discuss text visualization approaches and how these are important

More information

Module 3: Correlation and Covariance

Module 3: Correlation and Covariance Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis

More information

List of Examples. Examples 319

List of Examples. Examples 319 Examples 319 List of Examples DiMaggio and Mantle. 6 Weed seeds. 6, 23, 37, 38 Vole reproduction. 7, 24, 37 Wooly bear caterpillar cocoons. 7 Homophone confusion and Alzheimer s disease. 8 Gear tooth strength.

More information

Data Visualization Techniques

Data Visualization Techniques Data Visualization Techniques From Basics to Big Data with SAS Visual Analytics WHITE PAPER SAS White Paper Table of Contents Introduction.... 1 Generating the Best Visualizations for Your Data... 2 The

More information

MTH 140 Statistics Videos

MTH 140 Statistics Videos MTH 140 Statistics Videos Chapter 1 Picturing Distributions with Graphs Individuals and Variables Categorical Variables: Pie Charts and Bar Graphs Categorical Variables: Pie Charts and Bar Graphs Quantitative

More information

Practical Data Science with Azure Machine Learning, SQL Data Mining, and R

Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Overview This 4-day class is the first of the two data science courses taught by Rafal Lukawiecki. Some of the topics will be

More information

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 8/05/2005 1 What is data exploration? A preliminary

More information

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable

More information

Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm

Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm

More information

Dimensionality Reduction: Principal Components Analysis

Dimensionality Reduction: Principal Components Analysis Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely

More information

Lecture 1: Review and Exploratory Data Analysis (EDA)

Lecture 1: Review and Exploratory Data Analysis (EDA) Lecture 1: Review and Exploratory Data Analysis (EDA) Sandy Eckel [email protected] Department of Biostatistics, The Johns Hopkins University, Baltimore USA 21 April 2008 1 / 40 Course Information I Course

More information

Lecture 2. Summarizing the Sample

Lecture 2. Summarizing the Sample Lecture 2 Summarizing the Sample WARNING: Today s lecture may bore some of you It s (sort of) not my fault I m required to teach you about what we re going to cover today. I ll try to make it as exciting

More information

Simple Predictive Analytics Curtis Seare

Simple Predictive Analytics Curtis Seare Using Excel to Solve Business Problems: Simple Predictive Analytics Curtis Seare Copyright: Vault Analytics July 2010 Contents Section I: Background Information Why use Predictive Analytics? How to use

More information

Using Excel for Data Manipulation and Statistical Analysis: How-to s and Cautions

Using Excel for Data Manipulation and Statistical Analysis: How-to s and Cautions 2010 Using Excel for Data Manipulation and Statistical Analysis: How-to s and Cautions This document describes how to perform some basic statistical procedures in Microsoft Excel. Microsoft Excel is spreadsheet

More information

AP STATISTICS REVIEW (YMS Chapters 1-8)

AP STATISTICS REVIEW (YMS Chapters 1-8) AP STATISTICS REVIEW (YMS Chapters 1-8) Exploring Data (Chapter 1) Categorical Data nominal scale, names e.g. male/female or eye color or breeds of dogs Quantitative Data rational scale (can +,,, with

More information

MEASURES OF VARIATION

MEASURES OF VARIATION NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

More information

DICON: Visual Cluster Analysis in Support of Clinical Decision Intelligence

DICON: Visual Cluster Analysis in Support of Clinical Decision Intelligence DICON: Visual Cluster Analysis in Support of Clinical Decision Intelligence Abstract David Gotz, PhD 1, Jimeng Sun, PhD 1, Nan Cao, MS 2, Shahram Ebadollahi, PhD 1 1 IBM T.J. Watson Research Center, New

More information

business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel

More information

Data Visualization Techniques

Data Visualization Techniques Data Visualization Techniques From Basics to Big Data with SAS Visual Analytics WHITE PAPER SAS White Paper Table of Contents Introduction.... 1 Generating the Best Visualizations for Your Data... 2 The

More information

Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:

Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve

More information

Gephi Tutorial Quick Start

Gephi Tutorial Quick Start Gephi Tutorial Welcome to this introduction tutorial. It will guide you to the basic steps of network visualization and manipulation in Gephi. Gephi version 0.7alpha2 was used to do this tutorial. Get

More information

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name: Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

More information

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques

More information

Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis Johannes Schauer [email protected] Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

More information

Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis Paul Cohen ISTA 370 Spring, 2012 Paul Cohen ISTA 370 () Exploratory Data Analysis Spring, 2012 1 / 46 Outline Data, revisited The purpose of exploratory data analysis Learning

More information

Introduction to Regression and Data Analysis

Introduction to Regression and Data Analysis Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it

More information

How To Write A Data Analysis

How To Write A Data Analysis Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction

More information

COM CO P 5318 Da t Da a t Explora Explor t a ion and Analysis y Chapte Chapt r e 3

COM CO P 5318 Da t Da a t Explora Explor t a ion and Analysis y Chapte Chapt r e 3 COMP 5318 Data Exploration and Analysis Chapter 3 What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping

More information

Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

More information

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

More information

EXPLORING SPATIAL PATTERNS IN YOUR DATA

EXPLORING SPATIAL PATTERNS IN YOUR DATA EXPLORING SPATIAL PATTERNS IN YOUR DATA OBJECTIVES Learn how to examine your data using the Geostatistical Analysis tools in ArcMap. Learn how to use descriptive statistics in ArcMap and Geoda to analyze

More information

Data Analysis for Yield Improvement using TIBCO s Spotfire Data Analysis Software

Data Analysis for Yield Improvement using TIBCO s Spotfire Data Analysis Software Page 327 Data Analysis for Yield Improvement using TIBCO s Spotfire Data Analysis Software Andrew Choo, Thorsten Saeger TriQuint Semiconductor Corporation 2300 NE Brookwood Parkway, Hillsboro, OR 97124

More information

Foundation of Quantitative Data Analysis

Foundation of Quantitative Data Analysis Foundation of Quantitative Data Analysis Part 1: Data manipulation and descriptive statistics with SPSS/Excel HSRS #10 - October 17, 2013 Reference : A. Aczel, Complete Business Statistics. Chapters 1

More information

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( ) Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

More information

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar What is data exploration? A preliminary exploration of the data to better understand its characteristics.

More information