Data Mining: Exploring Data. Lecture Notes for Chapter 3. Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler

Save this PDF as:

Size: px
Start display at page:

Download "Data Mining: Exploring Data. Lecture Notes for Chapter 3. Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler"

Transcription

1 Data Mining: Exploring Data Lecture Notes for Chapter 3 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler

2 Topics Exploratory Data Analysis Summary Statistics Visualization

3 What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include - Helping to select the right tool for preprocessing or analysis Making use of humans abilities to recognize patterns People can recognize patterns not captured by data analysis tools Related to the area of Exploratory Data Analysis (EDA) - Created by statistician John Tukey Seminal book is "Exploratory Data Analysis" by Tukey A nice online introduction can be found in Chapter 1 of the NIST Engineering Statistics Handbook

4 Iris Sample Data Set Many of the exploratory data techniques are illustrated with the Iris Plant data set. - Can be obtained from the UCI Machine Learning Repository - From the statistician R.A. Fisher - Three flower types (classes): Setosa Virginica Versicolour - Four (non-class) attributes Sepal width and length Petal width and length Virginica. Robert H. Mohlenbrock. USDA NRCS Northeast wetland flora: Field office guide to plant species. Northeast National Technical Center, Chester, PA. Courtesy of USDA NRCS Wetland Science Institute.

5 Topics Exploratory Data Analysis Summary Statistics Visualization

6 Summary Statistics Summary statistics are numbers that summarize properties of the data - Summarized properties include location and spread for continuous data Examples: location - mean spread - standard deviation - Most summary statistics can be calculated in a single pass through the data

7 Frequency and Mode The frequency of an attribute value is the percentage of time the value occurs in the data set - For example, given the attribute gender and a representative population of people, the gender female occurs about 50% of the time. The mode of an attribute is the most frequent attribute value The notions of frequency and mode are typically used with categorical data

8 Percentiles Given an ordinal or continuous attribute x and a number p between 0 and 100, the pth percentile is a value xp of x such that p% of the observed values of x are less than xp. xp is the value x For instance, the 50th percentile 50% such that 50% of all values of x are less than x50%.

9 Percentiles Median 50% of the cases has a smaller value & 50% are larger xp xp

10 Measures of Location: Mean and Median The mean is the most common measure of the location of a set of points. However, the mean is very sensitive to outliers. Thus, the median or a trimmed mean is also commonly used.

11 Measures of Spread: Range and Variance Range is the difference between the max and min The variance or standard deviation is the most common measure of the spread of a set of points. However, this is also sensitive to outliers, so that other measures are often used.

12 Multivariate Summary Statistics Object x1 x m 18 4 Covariance between features i and j m 1 sij = ( x ki x i )(x kj x j ) k=1 m 1 Correlation sij r ij= si s j si is the variance of feature i

13 Topics Exploratory Data Analysis Summary Statistics Visualization

14 Visualization Visualization is the conversion of data into a visual or tabular format so that the characteristics of the data and the relationships among data items or attributes can be analyzed or reported. Visualization of data is one of the most powerful and appealing techniques for data exploration. - Humans have a well developed ability to analyze large amounts of information that is presented visually - Can detect general patterns and trends - Can detect outliers and unusual patterns

15 Example: Sea Surface Temperature The following shows the Sea Surface Temperature (SST) for July Tens of thousands of data points are summarized in a single figure

16 Representation Is the mapping of information to a visual format Data objects, their attributes, and the relationships among data objects are translated into graphical elements such as points, lines, shapes, and colors. Example: - Objects are often represented as points - Their attribute values can be represented as the position of the points or the characteristics of the points, e.g., color, size, and shape - If position is used, then the relationships of points, i.e., whether they form groups or a point is an outlier, is easily perceived.

17 Arrangement Is the placement of visual elements within a display Can make a large difference in how easy it is to understand the data Example:

18 Selection Is the elimination or the deemphasis of certain objects and attributes Selection may involve the choosing a subset of attributes - Dimensionality reduction is often used to reduce the - number of dimensions to two or three Alternatively, pairs of attributes can be considered Selection may also involve choosing a subset of objects - A region of the screen can only show so many points - Can sample, but want to preserve points in sparse areas

19 Histograms Usually shows the distribution of values of a single variable Example: Petal Width (10 and 20 bins, respectively) Divide the values into bins and show a bar plot of the number of objects in each bin. The height of each bar indicates the number of objects Shape of histogram depends on the number of bins

20 Empirical Cumulative Distribution Function (ECDF) Probability Density PDF Function (PDF): describes the relative likelihood for this random variable to take on a given value Cumulative Distribution CDF Function (CDF): Shows the distribution of data as the fraction of points that are less than this value.

21 Example: ECDF

22 Two-Dimensional Histograms Show the joint distribution of the values of two attributes Example: petal width and petal length - What does this tell us?

23 Box Plots Invented by J. Tukey Another way of displaying the distribution of data Following figure shows the basic part of a box plot IQR Q1 outlier Q3 Q1 1.5 IQR Q IQR 75th percentile IQR Median 4 σ 3 σ 2 σ σ 1 σ 0σ σ 1σ 2σ σ 3σ 4σ σ 75th percentile 50th percentile 25th percentile 24.65% 4 σ 3 σ 2 σ 1 σ 50% 0σ 24.65% 1σ 2σ 3σ 4σ 25th percentile 1.5 IQR IQR

24 Example of Box Plots Box plots can be used to compare attributes

25 Scatter Plots - Attributes values determine the position - Two-dimensional scatter plots most common, but can have three-dimensional scatter plots - Often additional attributes can be displayed by using the size, shape, and color of the markers that represent the objects - It is useful to have arrays of scatter plots can compactly summarize the relationships of several pairs of attributes See example on the next slide

26 Scatter Plot Array of Iris Attributes

27 Contour Plots - Useful when a continuous attribute is measured on a spatial grid - They partition the plane into regions of similar values - The contour lines that form the boundaries of these regions connect points with equal values - The most common example is contour maps of elevation - Can also display temperature, rainfall, air pressure, etc. An example for Sea Surface Temperature (SST) is provided on the next slide

28 Contour Plot Example: SST Dec, 1998 Celsius

29 Matrix Plots - Can plot a data matrix - Can be useful when objects are sorted according to class - Typically, the attributes are normalized to prevent one attribute from dominating the plot - Plots of similarity or distance matrices can also be useful for visualizing the relationships between objects

30 Visualization of the Iris Data Matrix Deviation form feature mean standard deviation

31 Visualization of the Iris Correlation Matrix

32 Parallel Coordinates Used to plot the attribute values of highdimensional data Instead of using perpendicular axes, use a set of parallel axes The attribute values of each object are plotted as a point on each corresponding coordinate axis and the points are connected by a line Thus, each object is represented as a line Often, the lines representing a distinct class of objects group together, at least for some attributes Ordering of attributes is important in seeing such groupings

33 Parallel Coordinates Plots for Iris Data Reordered features

34 Other Visualization Techniques Star Plots - Similar approach to parallel coordinates, but axes radiate - from a central point The line connecting the values of an object is a polygon Chernoff Faces - Approach created by Herman Chernoff - This approach associates each attribute with a characteristic - of a face The values of each attribute determine the appearance of the corresponding facial characteristic Each object becomes a separate face Relies on human s ability to distinguish faces

35 Star Plots for Iris Data Setosa Versicolor Virginica

36 Chernoff Faces for Iris Data Setosa Versicolor Virginica

Iris Sample Data Set. Basic Visualization Techniques: Charts, Graphs and Maps. Summary Statistics. Frequency and Mode

Iris Sample Data Set Basic Visualization Techniques: Charts, Graphs and Maps CS598 Information Visualization Spring 2010 Many of the exploratory data techniques are illustrated with the Iris Plant data

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining

Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar What is data exploration? A preliminary exploration of the data to better understand its characteristics.

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining

Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 8/05/2005 1 What is data exploration? A preliminary

COM CO P 5318 Da t Da a t Explora Explor t a ion and Analysis y Chapte Chapt r e 3

COMP 5318 Data Exploration and Analysis Chapter 3 What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping

Data Exploration Data Visualization

Data Exploration Data Visualization What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping to select

Data Exploration and Preprocessing. Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)

Data Exploration and Preprocessing Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann

Graphical Representation of Multivariate Data

Graphical Representation of Multivariate Data One difficulty with multivariate data is their visualization, in particular when p > 3. At the very least, we can construct pairwise scatter plots of variables.

Lecture 2: Descriptive Statistics and Exploratory Data Analysis

Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES 2: Data Pre-Processing Instructor: Yizhou Sun yzsun@ccs.neu.edu September 7, 2014 2: Data Pre-Processing Getting to know your data Basic Statistical Descriptions of Data

Data Mining Part 2. Data Understanding and Preparation 2.1 Data Understanding Spring 2010

Data Mining Part 2. and Preparation 2.1 Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Outline Introduction Measuring the Central Tendency Measuring the Dispersion of Data Graphic Displays References

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts

Bernd Klaus, some input from Wolfgang Huber, EMBL

Exploratory Data Analysis and Graphics Bernd Klaus, some input from Wolfgang Huber, EMBL Graphics in R base graphics and ggplot2 (grammar of graphics) are commonly used to produce plots in R; in a nutshell:

Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

Summarizing and Displaying Categorical Data

Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency

Geostatistics Exploratory Analysis

Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras cfelgueiras@isegi.unl.pt

A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes

A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes together with the number of data values from the set that

Visualizing Data. Contents. 1 Visualizing Data. Anthony Tanbakuchi Department of Mathematics Pima Community College. Introductory Statistics Lectures

Introductory Statistics Lectures Visualizing Data Descriptive Statistics I Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission of the

F. Farrokhyar, MPhil, PhD, PDoc

Learning objectives Descriptive Statistics F. Farrokhyar, MPhil, PhD, PDoc To recognize different types of variables To learn how to appropriately explore your data How to display data using graphs How

Exploratory Data Analysis

Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

Biostatistics: A QUICK GUIDE TO THE USE AND CHOICE OF GRAPHS AND CHARTS

Biostatistics: A QUICK GUIDE TO THE USE AND CHOICE OF GRAPHS AND CHARTS 1. Introduction, and choosing a graph or chart Graphs and charts provide a powerful way of summarising data and presenting them in

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

Descriptive Statistics. Understanding Data: Categorical Variables. Descriptive Statistics. Dataset: Shellfish Contamination

Descriptive Statistics Understanding Data: Dataset: Shellfish Contamination Location Year Species Species2 Method Metals Cadmium (mg kg - ) Chromium (mg kg - ) Copper (mg kg - ) Lead (mg kg - ) Mercury

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

Diagrams and Graphs of Statistical Data

Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in

Big Ideas in Mathematics

Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards

Example: Document Clustering. Clustering: Definition. Notion of a Cluster can be Ambiguous. Types of Clusterings. Hierarchical Clustering

Overview Prognostic Models and Data Mining in Medicine, part I Cluster Analsis What is Cluster Analsis? K-Means Clustering Hierarchical Clustering Cluster Validit Eample: Microarra data analsis 6 Summar

Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions

Chapter 4 - Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the

Lecture 1: Review and Exploratory Data Analysis (EDA)

Lecture 1: Review and Exploratory Data Analysis (EDA) Sandy Eckel seckel@jhsph.edu Department of Biostatistics, The Johns Hopkins University, Baltimore USA 21 April 2008 1 / 40 Course Information I Course

Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)

Center: Finding the Median When we think of a typical value, we usually look for the center of the distribution. For a unimodal, symmetric distribution, it s easy to find the center it s just the center

Lecture 2. Summarizing the Sample

Lecture 2 Summarizing the Sample WARNING: Today s lecture may bore some of you It s (sort of) not my fault I m required to teach you about what we re going to cover today. I ll try to make it as exciting

Week 1. Exploratory Data Analysis

Week 1 Exploratory Data Analysis Practicalities This course ST903 has students from both the MSc in Financial Mathematics and the MSc in Statistics. Two lectures and one seminar/tutorial per week. Exam

GCSE HIGHER Statistics Key Facts

GCSE HIGHER Statistics Key Facts Collecting Data When writing questions for questionnaires, always ensure that: 1. the question is worded so that it will allow the recipient to give you the information

Data Visualization - A Very Rough Guide

Data Visualization - A Very Rough Guide Ken Brodlie University of Leeds 1 What is This Thing Called Visualization? Visualization Use of computersupported, interactive, visual representations of data to

EXPLORING SPATIAL PATTERNS IN YOUR DATA

EXPLORING SPATIAL PATTERNS IN YOUR DATA OBJECTIVES Learn how to examine your data using the Geostatistical Analysis tools in ArcMap. Learn how to use descriptive statistics in ArcMap and Geoda to analyze

Data Mining and Visualization

Data Mining and Visualization Jeremy Walton NAG Ltd, Oxford Overview Data mining components Functionality Example application Quality control Visualization Use of 3D Example application Market research

Chapter 8 Statistical Sonification for Exploratory Data Analysis

The Sonification Handbook Edited by Thomas Hermann, Andy Hunt, John G. Neuhoff Logos Publishing House, Berlin, Germany ISBN 978-3-8325-2819-5 2011, 586 pages Online: http://sonification.de/handbook Order:

Descriptive Statistics

Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

Exploratory Data Analysis

Exploratory Data Analysis Learning Objectives: 1. After completion of this module, the student will be able to explore data graphically in Excel using histogram boxplot bar chart scatter plot 2. After

SPSS for Exploratory Data Analysis Data used in this guide: studentp.sav (http://people.ysu.edu/~gchang/stat/studentp.sav)

Data used in this guide: studentp.sav (http://people.ysu.edu/~gchang/stat/studentp.sav) Organize and Display One Quantitative Variable (Descriptive Statistics, Boxplot & Histogram) 1. Move the mouse pointer

Clustering & Visualization

Chapter 5 Clustering & Visualization Clustering in high-dimensional databases is an important problem and there are a number of different clustering paradigms which are applicable to high-dimensional data.

Multi-Dimensional Data Visualization. Slides courtesy of Chris North

Multi-Dimensional Data Visualization Slides courtesy of Chris North What is the Cleveland s ranking for quantitative data among the visual variables: Angle, area, length, position, color Where are we?!

Graphing Data Presentation of Data in Visual Forms

Graphing Data Presentation of Data in Visual Forms Purpose of Graphing Data Audience Appeal Provides a visually appealing and succinct representation of data and summary statistics Provides a visually

The Value of Visualization 2

The Value of Visualization 2 G Janacek -0.69 1.11-3.1 4.0 GJJ () Visualization 1 / 21 Parallel coordinates Parallel coordinates is a common way of visualising high-dimensional geometry and analysing multivariate

Implications of Big Data for Statistics Instruction 17 Nov 2013

Implications of Big Data for Statistics Instruction 17 Nov 2013 Implications of Big Data for Statistics Instruction Mark L. Berenson Montclair State University MSMESB Mini Conference DSI Baltimore November

Analysis Tools and Libraries for BigData

+ Analysis Tools and Libraries for BigData Lecture 02 Abhijit Bendale + Office Hours 2 n Terry Boult (Waiting to Confirm) n Abhijit Bendale (Tue 2:45 to 4:45 pm). Best if you email me in advance, but I

Lean Six Sigma Training/Certification Book: Volume 1

Lean Six Sigma Training/Certification Book: Volume 1 Six Sigma Quality: Concepts & Cases Volume I (Statistical Tools in Six Sigma DMAIC process with MINITAB Applications Chapter 1 Introduction to Six Sigma,

Statistics Chapter 2

Statistics Chapter 2 Frequency Tables A frequency table organizes quantitative data. partitions data into classes (intervals). shows how many data values are in each class. Test Score Number of Students

Histogram. Graphs, and measures of central tendency and spread. Alternative: density (or relative frequency ) plot /13/2004

Graphs, and measures of central tendency and spread 9.07 9/13/004 Histogram If discrete or categorical, bars don t touch. If continuous, can touch, should if there are lots of bins. Sum of bin heights

Treatment and analysis of data Applied statistics Lecture 3: Sampling and descriptive statistics

Treatment and analysis of data Applied statistics Lecture 3: Sampling and descriptive statistics Topics covered: Parameters and statistics Sample mean and sample standard deviation Order statistics and

Cluster Analysis: Advanced Concepts and dalgorithms Dr. Hui Xiong Rutgers University Introduction to Data Mining 08/06/2006 1 Introduction to Data Mining 08/06/2006 1 Outline Prototype-based Fuzzy c-means

Lecture 9: Introduction to Pattern Analysis

Lecture 9: Introduction to Pattern Analysis g Features, patterns and classifiers g Components of a PR system g An example g Probability definitions g Bayes Theorem g Gaussian densities Features, patterns

STAT355 - Probability & Statistics

STAT355 - Probability & Statistics Instructor: Kofi Placid Adragni Fall 2011 Chap 1 - Overview and Descriptive Statistics 1.1 Populations, Samples, and Processes 1.2 Pictorial and Tabular Methods in Descriptive

Variables. Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is

Statistical Foundations: Measures of Location and Central Tendency and Summation and Expectation

Statistical Foundations: and Central Tendency and and Lecture 4 September 5, 2006 Psychology 790 Lecture #4-9/05/2006 Slide 1 of 26 Today s Lecture Today s Lecture Where this Fits central tendency/location

Data Preparation Part 1: Exploratory Data Analysis & Data Cleaning, Missing Data

Data Preparation Part 1: Exploratory Data Analysis & Data Cleaning, Missing Data CAS Predictive Modeling Seminar Louise Francis Francis Analytics and Actuarial Data Mining, Inc. www.data-mines.com Louise.francis@data-mines.cm

Data Visualization. or Graphical Data Presentation. Jerzy Stefanowski Instytut Informatyki

Data Visualization or Graphical Data Presentation Jerzy Stefanowski Instytut Informatyki Data mining for SE -- 2013 Ack. Inspirations are coming from: G.Piatetsky Schapiro lectures on KDD J.Han on Data

Exploratory Data Analysis

Exploratory Data Analysis Paul Cohen ISTA 370 Spring, 2012 Paul Cohen ISTA 370 () Exploratory Data Analysis Spring, 2012 1 / 46 Outline Data, revisited The purpose of exploratory data analysis Learning

Bar Graphs and Dot Plots

CONDENSED L E S S O N 1.1 Bar Graphs and Dot Plots In this lesson you will interpret and create a variety of graphs find some summary values for a data set draw conclusions about a data set based on graphs

Applying MapCalc Map Analysis Software

Applying MapCalc Map Analysis Software Using MapCalc s Shading Manager for Displaying Continuous Maps: The display of continuous data, such as elevation, is fundamental to a grid-based map analysis package.

Numerical Measures of Central Tendency

Numerical Measures of Central Tendency Often, it is useful to have special numbers which summarize characteristics of a data set These numbers are called descriptive statistics or summary statistics. A

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) (a) 2 (b) 1

Unit 2 Review Name Use the given frequency distribution to find the (a) class width. (b) class midpoints of the first class. (c) class boundaries of the first class. 1) Miles (per day) 1-2 9 3-4 22 5-6

Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller

Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller Getting to know the data An important first step before performing any kind of statistical analysis is to familiarize

CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide

Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are

Tutorial 2: Descriptive Statistics and Exploratory Data Analysis

Tutorial 2: Descriptive Statistics and Exploratory Data Analysis Rob Nicholls nicholls@mrc-lmb.cam.ac.uk MRC LMB Statistics Course 2014 A very basic understanding of the R software environment is assumed.

Principles of Data Visualization for Exploratory Data Analysis. Renee M. P. Teate. SYS 6023 Cognitive Systems Engineering April 28, 2015

Principles of Data Visualization for Exploratory Data Analysis Renee M. P. Teate SYS 6023 Cognitive Systems Engineering April 28, 2015 Introduction Exploratory Data Analysis (EDA) is the phase of analysis

WebFOCUS RStat. RStat. Predict the Future and Make Effective Decisions Today. WebFOCUS RStat

Information Builders enables agile information solutions with business intelligence (BI) and integration technologies. WebFOCUS the most widely utilized business intelligence platform connects to any enterprise

Icon and Geometric Data Visualization with a Self-Organizing Map Grid

Icon and Geometric Data Visualization with a Self-Organizing Map Grid Alessandra Marli M. Morais 1, Marcos Gonçalves Quiles 2, and Rafael D. C. Santos 1 1 National Institute for Space Research Av dos Astronautas.

Chapter 3 Descriptive Statistics: Numerical Measures. Learning objectives

Chapter 3 Descriptive Statistics: Numerical Measures Slide 1 Learning objectives 1. Single variable Part I (Basic) 1.1. How to calculate and use the measures of location 1.. How to calculate and use the

Connecting Segments for Visual Data Exploration and Interactive Mining of Decision Rules

Journal of Universal Computer Science, vol. 11, no. 11(2005), 1835-1848 submitted: 1/9/05, accepted: 1/10/05, appeared: 28/11/05 J.UCS Connecting Segments for Visual Data Exploration and Interactive Mining

Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam. Software Profiling Seminar, Statistics 101

Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam Software Profiling Seminar, 2013 Statistics 101 Descriptive Statistics Population Object Object Object Sample numerical description Object

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different

Introduction to Principal Component Analysis: Stock Market Values

Chapter 10 Introduction to Principal Component Analysis: Stock Market Values The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from

GeoGebra. 10 lessons. Gerrit Stols

GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter

Multivariate Analysis (Slides 4)

Multivariate Analysis (Slides 4) In today s class we examine examples of principal components analysis. We shall consider a difficulty in applying the analysis and consider a method for resolving this.

High-dimensional labeled data analysis with Gabriel graphs

High-dimensional labeled data analysis with Gabriel graphs Michaël Aupetit CEA - DAM Département Analyse Surveillance Environnement BP 12-91680 - Bruyères-Le-Châtel, France Abstract. We propose the use

Dimensionality Reduction: Principal Components Analysis

Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques

Data exploration with Microsoft Excel: analysing more than one variable

Data exploration with Microsoft Excel: analysing more than one variable Contents 1 Introduction... 1 2 Comparing different groups or different variables... 2 3 Exploring the association between categorical

The Forgotten JMP Visualizations (Plus Some New Views in JMP 9) Sam Gardner, SAS Institute, Lafayette, IN, USA

Paper 156-2010 The Forgotten JMP Visualizations (Plus Some New Views in JMP 9) Sam Gardner, SAS Institute, Lafayette, IN, USA Abstract JMP has a rich set of visual displays that can help you see the information

The Ordered Array. Chapter Chapter Goals. Organizing and Presenting Data Graphically. Before you continue... Stem and Leaf Diagram

Chapter - Chapter Goals After completing this chapter, you should be able to: Construct a frequency distribution both manually and with Excel Construct and interpret a histogram Chapter Presenting Data

Data Visualization in R

Data Visualization in R L. Torgo ltorgo@fc.up.pt Faculdade de Ciências / LIAAD-INESC TEC, LA Universidade do Porto Oct, 2014 Introduction Motivation for Data Visualization Humans are outstanding at detecting

Medical Information Management & Mining. You Chen Jan,15, 2013 You.chen@vanderbilt.edu

Medical Information Management & Mining You Chen Jan,15, 2013 You.chen@vanderbilt.edu 1 Trees Building Materials Trees cannot be used to build a house directly. How can we transform trees to building materials?

Information Visualization Multivariate Data Visualization Krešimir Matković

Information Visualization Multivariate Data Visualization Krešimir Matković Vienna University of Technology, VRVis Research Center, Vienna Multivariable >3D Data Tables have so many variables that orthogonal

4.1 Exploratory Analysis: Once the data is collected and entered, the first question is: "What do the data look like?"

Data Analysis Plan The appropriate methods of data analysis are determined by your data types and variables of interest, the actual distribution of the variables, and the number of cases. Different analyses

EXPLORATORY DATA ANALYSIS

CHAPTER 3 EXPLORATORY DATA ANALYSIS HYPOTHESIS TESTING VERSUS EXPLORATORY DATA ANALYSIS GETTING TO KNOW THE DATA SET DEALING WITH CORRELATED VARIABLES EXPLORING CATEGORICAL VARIABLES USING EDA TO UNCOVER

Introduction to Multivariate Analysis

Introduction to Multivariate Analysis Lecture 1 August 24, 2005 Multivariate Analysis Lecture #1-8/24/2005 Slide 1 of 30 Today s Lecture Today s Lecture Syllabus and course overview Chapter 1 (a brief

Multivariate Normal Distribution

Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

Appendix 2.1 Tabular and Graphical Methods Using Excel

Appendix 2.1 Tabular and Graphical Methods Using Excel 1 Appendix 2.1 Tabular and Graphical Methods Using Excel The instructions in this section begin by describing the entry of data into an Excel spreadsheet.

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median

CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box

Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School

Middle School 111.B. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter B. Middle School Statutory Authority: The provisions of this Subchapter B issued under the Texas Education

Getting Started with R and RStudio 1

Getting Started with R and RStudio 1 1 What is R? R is a system for statistical computation and graphics. It is the statistical system that is used in Mathematics 241, Engineering Statistics, for the following

Quantitative Data Analysis

Quantitative Data Analysis Text durch Klicken hinzufügen Definition http://www.deutsche-apothekerzeitung.de/uploads/tx_crondaz/t agesnews-image/umfragebogen_-_cirquedesprit Fotolia.jpg https:/ / tatics/