42 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x Brief review of Conic Sections

Save this PDF as:

Size: px
Start display at page:

Download "42 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2. 1.6.1 Brief review of Conic Sections"

Transcription

1 2 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.18: Parabola y = Quadric Surfaces Brief review of Conic Sections You may need to review conic sections for this to make more sense. You should know what a parabola, hyperbola and ellipse are. We remind you of their equation here. If you have never seen these equations before, consult a calculus book to study them in more detail. Parabola: y = a or x = ay 2. The parabola is along the axis corresponding to the variable not being squared. Figures 1.18 and 1.19 illustrate this. Ellipse: x2 = 1. An ellipse looks like an elongated circle. It extends b2 in the x direction from a to a and in the y direction from b to b. Figure 1.20 illustrates this. Hyperbola x2 y 2 y2 a 2 = 1 or b2 a 2 = 1. The hyperbola never crosses the b2 axis corresponding to the variable having the negative sign. Figures 1.21 and 1.22 illustrate this Introduction to Quadric Surfaces A quadric surface is the graph of a second degree equation in three variables. The general form of such an equation is A + By 2 + Cz 2 + Dxy + Exz + F yz + Gx + Hy + Iz + J = 0

2 1.6. QUADRIC SURFACES 3 Figure 1.19: Parabola x = 2y 2 Figure 1.20: Ellipse x2 9 = 1

3 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.21: Hyperbola 9 = 1 Figure 1.22: Hyperbola x2 y 2 9 = 1

4 1.6. QUADRIC SURFACES 5 where A, B,...,J are constants. Quadric surfaces can be classi ed into ve categories: ellipsoids, hyperboloids, cones, paraboloids, and quadric cylinders. In this document, we will study these categories and learn how to identify them. Quadrics surfaces are the 3-D equivalent of conic sections in the plane. You should review conic sections if you are not familiar with them. For each category, we will learn to nd elements which characterize it. These elements include: 1. Standard equation 2. Traces. They are the curves of intersection of the surface with planes parallel to the coordinate planes. 3. Intercepts. They are the points of intersection of the surface with the coordinate axes Classi cation of Quadric Surfaces Quadric surfaces fall into nine categories. To know which one, one has to rewrite it so that it has one of the forms below. Rewriting a quadric surface often involves completing the square. Make sure you remember how to do this. Ellipsoid It is the 3-D equivalent of an ellipse in 2-D. Its standard equation is of the form: b 2 + z2 c 2 = 1 The traces of an ellipsoid are ellipses. This is easy to see. For example, if we try to nd the intersection of an ellipsoid with the plane parallel to the xy plane, that is the plane with equation z = k for some number k, we obtain: b 2 = 1 k 2 c 2 which is an ellipse as long as c < k < c. If k > c or k < c, the two do not intersect. The intercepts of the ellipsoid are (a; 0; 0), (0; b; 0), (0; 0; c). An example of an ellipsoid is shown in Figure 1.23 Hyperboloid There are two types depending on how many pieces the surface has.

5 6 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.23: Graph of x2 9 + z2 16 = 1 Hyperboloid of one sheet The standard equation is: b 2 z 2 c 2 = 1 The minus sign could also be in front of the rst or second fraction. However, there can only be one minus sign. In the example shown in Figure 1.2, the minus sign is in front of the z variable. The axis of the paraboloid is the z axis. The intersection of the paraboloid with planes perpendicular to the axis of the hyperboloid (the xy plane in this case) are ellipses. The intersection with planes parallel to the axis of the hyperboloid are hyperbolas. If, for example we put the minus sign in front of the x variable, then the axis of the hyperboloid will be the x axis. This time, it is the intersection with planes parallel to the yz plane which will be ellipses. The graph of such an example is shown in Figure 1.25 In general, the axis of a hyperboloid of one sheet is the axis corresponding to the variable having the minus sign.to see that the intersection of the hyperboloid shown in gure 1.2 with a plane parallel to the xy plane is an ellipse, we let z = k in its equation. We get b 2 = 1 + k2 c 2 which is an ellipse. To see that the intersection of the hyperboloid shown in gure 1.2 with a plane parallel to the yz plane is an hyperbola, we let x = k in its equation. We get y 2 z 2 b 2 c 2 = 1 k 2 a 2 which is an hyperbola.

6 1.6. QUADRIC SURFACES 7 Figure 1.2: Hyperboloid of one sheet x2 9 z 2 16 = 1 Figure 1.25: Hyperboloid of one sheet 9 + z2 16 = 1

7 8 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.26: Hyperboloid of two sheets x2 y 2 9 z 2 16 = 1 Hyperboloid of two sheets The standard equation is: y 2 z 2 a 2 b 2 c 2 = 1 The minus signs could be in front of other fractions also. There has to be two minus signs to have a hyperboloid of two sheets. The number of sheets is the same as the number of minus signs. The axis of a hyperboloid of two sheets is the axis corresponding to the variable not having a minus sign. The intersection of an hyperboloid of two sheets with a plane parallel to its axis is a hyperbola. Its intersection with a plane perpendicular to its axis is an ellipse when it exists. Figure 1.26 shows a hyperboloid of two sheets with axis the x axis. Figure 1.27 shows a hyperboloid of two sheets with axis the y axis. Elliptic Cones The standard equation is the same as for a hyperboloid, replacing the 1 on the right side of the equation by a 0. Whether we have one minus sign or two, we get an equation of the form: b 2 = z2 c 2 The axis of the cone corresponds to the variable on the right side of the equation. Figure 1.28 shows a cone with axis the z axis. Figure 1.29 shows a cone with axis the y axis. Due to the limitations of the graphing software used for this document, it may appear that the graphs shown in Figure 1.28 and Figure 1.29 are made of two pieces. It is not so. If you look at their equations, you will see that they both contain the point (0; 0; 0). Hence, they should be connected. The

8 1.6. QUADRIC SURFACES 9 Figure 1.27: Hyperboloid of two sheets 9 z 2 16 = 1 Figure 1.28: The cone x2 9 = z2 16

9 50 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.29: The cone x2 + z2 9 = y2 16 intersection of a cone with a plane perpendicular to its axis is an ellipse. The intersection of a cone with a plane parallel to its axis is either a hyperbola if the plane does not contain the origin or a pair of lines if the plane contains the origin. The surface of a cone has the property that if P is any point on the cone, then the line segment OP lies entirely on the cone. Paraboloid If we start with the equation of a cone, and remove the squares to the expression on the right side of the equal sign, we obtain a paraboloid., There are two types of paraboloids, depending on whether the expression to the left of the equal sign has a minus sign or not. Elliptic paraboloid The standard equation is b 2 = z c Figure 1.30 shows a paraboloid with axis the z axis: The intersection it makes with a plane perpendicular to its axis is an ellipse. The other traces are parabolas. If we change the sign of c, the paraboloid is oriented the other way as shown in Figure The axis along which the paraboloid extends corresponds to the variable not being squared. Hyperbolic paraboloid The standard equation is: a 2 y 2 b 2 = z c

10 1.6. QUADRIC SURFACES 51 Figure 1.30: Elliptic paraboloid x2 9 = z Figure 1.31: Elliptic paraboloid x2 9 = z

11 52 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.32: Hyperbolic paraboloid x2 y 2 2 = z An example is shown in Figure This graph is also called a saddle. We will visit it again when we study the problem of nding extrema of functions of several variables. For this example, the intersection with a plane parallel to the xy plane is a hyperbola. The intersection with the other coordinate planes is a parabola. Quadric cylinders There are three types. Elliptic cylinder The standard equation is: b 2 = 1 Figure 1.33 shows such a cylinder. Its axis is the z axis, the axis corresponding to the variable missing in the equation. Its intersection with the xy plane, the plane containing the two variables present in the equation, is an ellipse. Hyperbolic cylinder The standard equation is: a 2 y 2 b 2 = 1 Figure 1.3 shows such a cylinder. Its axis is the z axis, the axis corresponding to the variable missing in the equation. Its intersection with the xy plane, the plane containing the two variables present in the equation, is a hyperbola.

12 1.6. QUADRIC SURFACES 53 Figure 1.33: The elliptic cylinder x2 9 = 1 Figure 1.3: The hyperbolic cylinder x2 y 2 9 = 1

13 5 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.35: Parabolic cylinder y = x2 Parabolic cylinder The standard equation is y = a Figure 1.35 shows such a cylinder. It appears to be wrapped around the axis corresponding to the missing variable. Its intersection with the xy plane, the plane containing the two variables present in the equation, is a parabola. Conclusion We have studied the following forms: Name Equation Ellipsoid b 2 + z2 c 2 = 1 Hyperboloid of one sheet z 2 b 2 c 2 = 1 y 2 z 2 Hyperboloid of two sheets a 2 b 2 c 2 = 1 Elliptic cone b 2 = z2 c 2 Elliptic paraboloid b 2 = z c y 2 Hyperbolic paraboloid a 2 b 2 = z c Elliptic cylinder b 2 = 1 y 2 Hyperbolic cylinder a 2 b 2 = 1 Parabolic cylinder y = a

14 1.6. QUADRIC SURFACES 55 z 2 y x Figure 1.36: Example 1 Classi cation - Examples Classifying a quadric surface amounts to transforming its equation until it has one of the forms described above. This often involves completing the square. In all the above equations, it is possible to have (x h) 2 instead of, or (y k) 2 instead of y 2 or (z l) 2 instead of z 2. You will recall from pre-calculus that this will simply translate the object, but will not change its shape. For (x 1)2 (y + 2)2 example + + z2 2 3 = 1 has the same shape as + y 3 + z2 = 1. It is translated from it 1 unit in the positive x direction and 2 units in the negative y direction. Example 1 Classify 9y 2 + z = 0 We only have terms in, y 2, and z 2. We won t have to complete the square. We simply group these terms together, and put everything else to the right of the equal sign. We obtain: 9y 2 + z 2 = 36 Since we want a 1 on the right, we divide by 36, we obtain 9 + y2 z 2 36 = 1 This is a hyperboloid of two sheets. Its graph is shown in Figure 1.36.Its intersection with a plane parallel to the xy plane, that is a plane of coordinates z = k is 9 + y2 = 1 + k2 32 which is a hyperbola. As an exercise, nd the other traces.

15 56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Example 2 Classify + y 2 + z 2 2x = 0 We have a term in and x, so we will have to complete the square. 2x + y 2 + z 2 = 0 2x y 2 + z 2 = 1 (x 1) 2 + y2 2 + z 2 1 = 1 2 This is an ellipsoid centered at (1; 0; 0). Its intercepts are (0; 0; 0), (2; 0; 0). Make sure you can do the above before attempting the problems Problems Do # 1-25 (odd numbers) at the end of 9.6 in your book.

Sphere centered at the origin.

A Quadratic surfaces In this appendix we will study several families of so-called quadratic surfaces, namely surfaces z = f(x, y) which are defined by equations of the type A + By 2 + Cz 2 + Dxy + Exz

Homework 3 Model Solution Section

Homework 3 Model Solution Section 12.6 13.1. 12.6.3 Describe and sketch the surface + z 2 = 1. If we cut the surface by a plane y = k which is parallel to xz-plane, the intersection is + z 2 = 1 on a plane,

3.6 Cylinders and Quadric Surfaces Objectives I know the definition of a cylinder. I can name the 6 quadric surfaces, write their equation, and sketch their graph. Let s take stock in the types of equations

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,

Hyperboloid of Two Sheets

Math 59 Winter 009 Recitation Handout 5: Sketching D Surfaces If you are simply given an equation of the form z = f(x, y) and asked to draw the graph, producing the graph can be a very complicated and

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

Algebra II: Strand 7. Conic Sections; Topic 1. Intersection of a Plane and a Cone; Task 7.1.2

1 TASK 7.1.2: THE CONE AND THE INTERSECTING PLANE Solutions 1. What is the equation of a cone in the 3-dimensional coordinate system? x 2 + y 2 = z 2 2. Describe the different ways that a plane could intersect

2 Topics in 3D Geometry

2 Topics in 3D Geometry In two dimensional space, we can graph curves and lines. In three dimensional space, there is so much extra space that we can graph planes and surfaces in addition to lines and

2.1 Three Dimensional Curves and Surfaces

. Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

Chapter 3 Quadratic curves, quadric surfaces In this chapter we begin our study of curved surfaces. We focus on the quadric surfaces. To do this, we also need to look at quadratic curves, such as ellipses.

Two vectors are equal if they have the same length and direction. They do not

Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

Date Period Unit 0: Quadratic Relations DAY TOPIC Distance and Midpoint Formulas; Completing the Square Parabolas Writing the Equation 3 Parabolas Graphs 4 Circles 5 Exploring Conic Sections video This

MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM

MA6-A Calculus III 6 Fall Homework Solutions Due 9//6 :AM 9. # Find the parametric euation and smmetric euation for the line of intersection of the planes + + z = and + z =. To write down a line euation,

Name: Class: Date: Conics Multiple Choice Post-Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Conics Multiple Choice Post-Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1 Graph the equation x = 4(y 2) 2 + 1. Then describe the

Extra Problems for Midterm 2

Extra Problems for Midterm Sudesh Kalyanswamy Exercise (Surfaces). Find the equation of, and classify, the surface S consisting of all points equidistant from (0,, 0) and (,, ). Solution. Let P (x, y,

Pre Calculus Math 40S: Explained!

www.math0s.com 97 Conics Lesson Part I The Double Napped Cone Conic Sections: There are main conic sections: circle, ellipse, parabola, and hyperbola. It is possible to create each of these shapes by passing

Pure Math 30: Explained!

www.puremath30.com 45 Conic Sections: There are 4 main conic sections: circle, ellipse, parabola, and hyperbola. It is possible to create each of these shapes by passing a plane through a three dimensional

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

M52 Practice Final. = 4y focus: 0, 1 ˆ Ë. y focus: 0, Name: Class: Date:

Class: Date: M52 Practice Final Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the standard form of the equation of the parabola and determine the

Study Guide and Review

For each equation, identify the vertex, focus, axis of symmetry, and directrix. Then graph the 11. (x + 3) 2 = 12(y + 2) (x + 3) 2 = 12(y + 2) The equation is in standard form and the squared term is x,

Lines and planes in space (Sect. 12.5) Review: Lines on a plane. Lines in space (Today). Planes in space (Next class). Equation of a line

Lines and planes in space (Sect. 2.5) Lines in space (Toda). Review: Lines on a plane. The equations of lines in space: Vector equation. arametric equation. Distance from a point to a line. lanes in space

Section 1.8 Coordinate Geometry

Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of

Surface Normals and Tangent Planes

Surface Normals and Tangent Planes Normal and Tangent Planes to Level Surfaces Because the equation of a plane requires a point and a normal vector to the plane, nding the equation of a tangent plane to

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

Test Bank Exercises in. 7. Find the intercepts, the vertical asymptote, and the slant asymptote of the graph of

Test Bank Exercises in CHAPTER 5 Exercise Set 5.1 1. Find the intercepts, the vertical asymptote, and the horizontal asymptote of the graph of 2x 1 x 1. 2. Find the intercepts, the vertical asymptote,

Introduction to Conics: Parabolas

Introduction to Conics: Parabolas MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: recognize a conic as the intersection of a plane

10-5 Parabolas. Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 2

10-5 Parabolas Warm Up Lesson Presentation Lesson Quiz 2 Warm Up 1. Given, solve for p when c = Find each distance. 2. from (0, 2) to (12, 7) 13 3. from the line y = 6 to (12, 7) 13 Objectives Write the

APPLICATIONS. are symmetric, but. are not.

CHAPTER III APPLICATIONS Real Symmetric Matrices The most common matrices we meet in applications are symmetric, that is, they are square matrices which are equal to their transposes In symbols, A t =

Midterm Exam I, Calculus III, Sample A

Midterm Exam I, Calculus III, Sample A 1. (1 points) Show that the 4 points P 1 = (,, ), P = (, 3, ), P 3 = (1, 1, 1), P 4 = (1, 4, 1) are coplanar (they lie on the same plane), and find the equation of

Notes on the representational possibilities of projective quadrics in four dimensions

bacso 2006/6/22 18:13 page 167 #1 4/1 (2006), 167 177 tmcs@inf.unideb.hu http://tmcs.math.klte.hu Notes on the representational possibilities of projective quadrics in four dimensions Sándor Bácsó and

Level: High School: Geometry. Domain: Expressing Geometric Properties with Equations G-GPE

1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. Translate between the geometric

Chapter 10: Analytic Geometry

10.1 Parabolas Chapter 10: Analytic Geometry We ve looked at parabolas before when talking about the graphs of quadratic functions. In this section, parabolas are discussed from a geometrical viewpoint.

Conic Sections. 1. The type of graph can be determined by looking at the terms.

Conic Sections General Quadratic Equation in Two Variables The general quadratic equation in two variables can be written as A + By + Cy + D + Ey + F = 0 where at least one of the variables A, B, C is

Section 9.5: Equations of Lines and Planes

Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.

Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R

In this chapter we turn to surfaces in general. We discuss the following topics. Describing surfaces with equations and parametric descriptions.

Chapter 4 Surfaces In this chapter we turn to surfaces in general. We discuss the following topics. Describing surfaces with equations and parametric descriptions. Some constructions of surfaces: surfaces

Unit 9: Conic Sections Name Per. Test Part 1

Unit 9: Conic Sections Name Per 1/6 HOLIDAY 1/7 General Vocab Intro to Conics Circles 1/8-9 More Circles Ellipses 1/10 Hyperbolas (*)Pre AP Only 1/13 Parabolas HW: Part 4 HW: Part 1 1/14 Identifying conics

Section 10.2 The Parabola

243 Section 10.2 The Parabola Recall that the graph of f(x) = x 2 is a parabola with vertex of (0, 0) and axis of symmetry of x = 0: x = 0 f(x) = x 2 vertex: (0, 0) In this section, we want to expand our

Tangent and normal lines to conics

4.B. Tangent and normal lines to conics Apollonius work on conics includes a study of tangent and normal lines to these curves. The purpose of this document is to relate his approaches to the modern viewpoints

Activities for Algebra II and Pre Calculus

Activities for Algebra II and Pre Calculus Laura Harlow Pearland ISD LauraHarlow8@gmail.com Activities Student engagement Increase student understanding Useful and meaningful Exploration of Conic Sections

-axis -axis. -axis. at point.

Chapter 5 Tangent Lines Sometimes, a concept can make a lot of sense to us visually, but when we try to do some explicit calculations we are quickly humbled We are going to illustrate this sort of thing

12.5 Equations of Lines and Planes

Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

( ) 2 = 9x 2 +12x + 4 or 8x 2 " y 2 +12x + 4 = 0; (b) Solution: (a) x 2 + y 2 = 3x + 2 " \$ x 2 + y 2 = 1 2

Conic Sections (Conics) Conic sections are the curves formed when a plane intersects the surface of a right cylindrical doule cone. An example of a doule cone is the 3-dimensional graph of the equation

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

Mrs. Turner s Precalculus page 0. Graphing Conics: Circles, Ellipses, Parabolas, Hyperbolas. Name: period:

Mrs. Turner s Precalculus page 0 Graphing Conics: Circles, Ellipses, Parabolas, Hyperbolas Name: period: 9.0 Circles Notes Mrs. Turner s Precalculus page 1 The standard form of a circle is ( x h) ( y r

Cathedral Brasilia Part 1

Cathedral Brasilia Part 1 1 Introduction: The lesson involves the start of making a representative model an iconic cathedral in Brasilia. The Cathedral Brasilia, designed by Oscar Niemeyer, is a hyperboloid

MATHEMATICS FOR ENGINEERS & SCIENTISTS 7

MATHEMATICS FOR ENGINEERS & SCIENTISTS 7 We stress that f(x, y, z) is a scalar-valued function and f is a vector-valued function. All of the above works in any number of dimensions. For instance, consider

Applications of the Integral

Chapter 6 Applications of the Integral Evaluating integrals can be tedious and difficult. Mathematica makes this work relatively easy. For example, when computing the area of a region the corresponding

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

Senior Math Circles February 4, 2009 Conics I

1 University of Waterloo Faculty of Mathematics Conics Senior Math Circles February 4, 2009 Conics I Centre for Education in Mathematics and Computing The most mathematically interesting objects usually

The Parabola. By: OpenStaxCollege

The Parabola By: OpenStaxCollege The Olympic torch concludes its journey around the world when it is used to light the Olympic cauldron during the opening ceremony. (credit: Ken Hackman, U.S. Air Force)

Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

Change of Coordinates in Two Dimensions

CHAPTER 5 Change of Coordinates in Two Dimensions Suppose that E is an ellipse centered at the origin. If the major and minor aes are horiontal and vertical, as in figure 5., then the equation of the ellipse

1.) Write the equation of a circle in standard form with radius 3 and center (-3,4). Then graph the circle.

Welcome to the world of conic sections! http://www.youtube.com/watch?v=bfonicn4bbg Some examples of conics in the real world: Parabolas Ellipse Hyperbola Your Assignment: Circle -Find at least four pictures

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

Engineering Drawing. Anup Ghosh

Engineering Drawing Anup Ghosh Divide a line in n equal segments. Divide a line in n equal segments. Divide a line in n equal segments. Divide a line in n equal segments. Divide a line in n equal segments.

Comal Independent School District Pre-AP Pre-Calculus Scope and Sequence

Comal Independent School District Pre- Pre-Calculus Scope and Sequence Third Quarter Assurances. The student will plot points in the Cartesian plane, use the distance formula to find the distance between

4.4 Transforming Circles

Specific Curriculum Outcomes. Transforming Circles E13 E1 E11 E3 E1 E E15 analyze and translate between symbolic, graphic, and written representation of circles and ellipses translate between different

Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE 2009 MARKING SCHEME HIGHER LEVEL

Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE 2009 MARKING SCHEME DESIGN & COMMUNICATION GRAPHICS HIGHER LEVEL LEAVING CERTIFICATE 2009 DESIGN & COMM. GRAPHICS HIGHER

Graphing the Complex Roots of Quadratic Functions on a Three Dimensional Coordinate Space

IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728. Volume 5, Issue 5 (Mar. - Apr. 2013), PP 27-36 Graphing the Complex Roots of Quadratic Functions on a Three Dimensional Coordinate Space Aravind

MVE041 Flervariabelanalys

MVE041 Flervariabelanalys 2015-16 This document contains the learning goals for this course. The goals are organized by subject, with reference to the course textbook Calculus: A Complete Course 8th ed.

Section 2.6 Cylindrical and Spherical Coordinates A) Review on the Polar Coordinates

Section.6 Cylindrical and Spherical Coordinates A) Review on the Polar Coordinates The polar coordinate system consists of the origin O,the rotating ray or half line from O with unit tick. A point P in

Practice Problems for Midterm 2

Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,

Precalculus Practice Test

Precalculus Practice Test 9.1 9.3 Name: Date: 1. Find the standard form of the parabola with the given characteristic and vertex at the origin. directrix: x = 4 The directrix x = 4 is a vertical line,

THE PARABOLA 13.2. section

698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.

Math 53 Worksheet Solutions- Minmax and Lagrange

Math 5 Worksheet Solutions- Minmax and Lagrange. Find the local maximum and minimum values as well as the saddle point(s) of the function f(x, y) = e y (y x ). Solution. First we calculate the partial

Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks

Algebra 2 Year-at-a-Glance Leander ISD 2007-08 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks

September 14, Conics. Parabolas (2).notebook

9/9/16 Aim: What is parabola? Do now: 1. How do we define the distance from a point to the line? Conic Sections are created by intersecting a set of double cones with a plane. A 2. The distance from the

Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

The Not-Formula Book for C1

Not The Not-Formula Book for C1 Everything you need to know for Core 1 that won t be in the formula book Examination Board: AQA Brief This document is intended as an aid for revision. Although it includes

1.7 Cylindrical and Spherical Coordinates

56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a two-dimensional coordinate system in which the

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

7.4 Applications of Eigenvalues and Eigenvectors

37 Chapter 7 Eigenvalues and Eigenvectors 7 Applications of Eigenvalues and Eigenvectors Model population growth using an age transition matri and an age distribution vector, and find a stable age distribution

Solutions for Review Problems

olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

Conic Sections in Cartesian and Polar Coordinates

Conic Sections in Cartesian and Polar Coordinates The conic sections are a family of curves in the plane which have the property in common that they represent all of the possible intersections of a plane

Review Sheet for Test 1

Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

2. THE x-y PLANE 7 C7

2. THE x-y PLANE 2.1. The Real Line When we plot quantities on a graph we can plot not only integer values like 1, 2 and 3 but also fractions, like 3½ or 4¾. In fact we can, in principle, plot any real

When Is the Sum of the Measures of the Angles of a Triangle Equal to 180º?

Sum of the Measures of Angles Unit 9 Non-Euclidean Geometries When Is the Sum of the Measures of the Angles of a Triangle Equal to 180º? Overview: Objective: This activity illustrates the need for Euclid

10.6 Systems of Nonlinear Equations

SECTION 0.6 Systems of Nonlinear Equations 793 0.6 Systems of Nonlinear Equations PREPARING FOR THIS SECTION Before getting started, review the following: Lines (Section., pp. 7 38) Ellipses (Section 9.3,

FINAL EXAM SOLUTIONS Math 21a, Spring 03

INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic

BEZIER CURVES AND SURFACES

Department of Applied Mathematics and Computational Sciences University of Cantabria UC-CAGD Group COMPUTER-AIDED GEOMETRIC DESIGN AND COMPUTER GRAPHICS: BEZIER CURVES AND SURFACES Andrés Iglesias e-mail:

Chapter 7: Eigenvalues and Eigenvectors 16

Chapter 7: Eigenvalues and Eigenvectors 6 SECION G Sketching Conics B the end of this section ou will be able to recognise equations of different tpes of conics complete the square and use this to sketch

PROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS

PROBLEM SET Practice Problems for Exam #2 Math 2350, Fall 2004 Nov. 7, 2004 Corrected Nov. 10 ANSWERS i Problem 1. Consider the function f(x, y) = xy 2 sin(x 2 y). Find the partial derivatives f x, f y,

Advanced Math Study Guide Topic Finding Triangle Area (Ls. 96) using A=½ bc sin A (uses Law of Sines, Law of Cosines) Law of Cosines, Law of Cosines (Ls. 81, Ls. 72) Finding Area & Perimeters of Regular

Astromechanics Two-Body Problem (Cont)

5. Orbit Characteristics Astromechanics Two-Body Problem (Cont) We have shown that the in the two-body problem, the orbit of the satellite about the primary (or vice-versa) is a conic section, with the

Math 210 Quadratic Polynomials Jerry L. Kazdan Polynomials in One Variable. After studying linear functions y = ax + b, the next step is to study quadratic polynomials, y = ax 2 + bx + c, whose graphs

Activity 6. Inequalities, They Are Not Just Linear Anymore! Objectives. Introduction. Problem. Exploration

Objectives Graph quadratic inequalities Graph linear-quadratic and quadratic systems of inequalities Activity 6 Introduction What do satellite dishes, car headlights, and camera lenses have in common?

Chapter 10: Topics in Analytic Geometry

Chapter 10: Topics in Analytic Geometry 10.1 Parabolas V In blue we see the parabola. It may be defined as the locus of points in the plane that a equidistant from a fixed point (F, the focus) and a fixed

Parabolic Curves and Their Equations

Judy Johnson Teaching Notes/Lesson Plan Objective The students will be able to determine the quadratic equation associated with a parabolic curve using the Conic and Statistics Functions of the Casio graphing

Section 2.4: Equations of Lines and Planes

Section.4: Equations of Lines and Planes An equation of three variable F (x, y, z) 0 is called an equation of a surface S if For instance, (x 1, y 1, z 1 ) S if and only if F (x 1, y 1, z 1 ) 0. x + y

1.7 Graphs of Functions

64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most

LINEAR FUNCTIONS OF 2 VARIABLES

CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

OpenStax-CNX module: m The Parabola. OpenStax College. Abstract

OpenStax-CNX module: m49440 1 The Parabola OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section, you will: Abstract Graph