Statistics for Business and Economics: Confidence Intervals for Means

Size: px
Start display at page:

Download "Statistics for Business and Economics: Confidence Intervals for Means"

Transcription

1 Statistics for Business and Economics: Confidence Intervals for Means STT 315: Section 201 Instructor: Abdhi Sarkar Acknowledgement: I d like to thank Dr. AshokeSinha for allowing me to use and edit the slides.

2 Set-up Suppose we take a random sample of size n from a population with mean and standard deviation. The sample mean will serve the purpose of point estimator of population mean. Goal: To construct a %C.I. for. However the procedure will depend on whether the sample size n is large enough or not, we know the value of or not. 2

3 Large sample C.I. s of 3

4 Reminder: Sampling distribution of Suppose we take a random sample from a population with mean, and standard deviation. In that case, the sample mean has the following properties: = =. =. Furthermore, for large sample size ( 30) ~,, approximately. 4

5 Building a C.I. for If ~(0,1)then / is such a number that > =. Thus P < < = 1. Since ~, approximately, we have $% ~ 0,1 approximately. So working backward we find that there is roughly 1 probability that the interval, + contain. will 5

6 100 1 %C.I. for If sample size is largethen the % approximate C.I. for is: (, if std. dev. ()is known,, if std. dev. is unknown, where is the sample mean, and )is the sample standard deviation. If 30, we can consider the sample is large enough. If sample is not large enough, we need to assume that the population is normally distributed. We shall use TI83/84 to compute C.I. s for. 6

7 Example A sample of 82 MSU undergraduates, the mean number of Facebook friends was friends with standard deviation of friends. Use this information to make a 95% confidence interval for the average number of Facebook friends MSU undergraduates have. Press [STAT]. Select [TESTS]. Choose 7: ZInterval. Select with arrow keys Stats Input the following: : : n : 82 C-Level: 95 Choose Calculate and press [ENTER]. Answer: 95% C.I. for µ is (520.19, ). 7

8 C.I. s of for normal populations 8

9 Reminder: Sampling distribution of Suppose we take a random sample from a population normally distributed with mean,and standard deviation. In that case, the sample mean has the following properties: = =. =. Furthermore, if the population is normally distributed then ~,,. 9

10 100 1 %C.I. for [known ] If the sample is from normally distributedpopulation with known std. dev., then the %C.I. for is:, where is the sample mean. Use ZInterval from TI 83/84 to compute C.I. for [known ]. The margin of error: M.E.=. The width of the C.I. is 2 = 2-.. To find use: =./012 1,0,1. 10

11 100 1 %C.I. for [known ] Larger the std. dev.,larger the M.E. Larger the confidence level, larger the M.E. Larger the sample size, smaller the M.E. Given the confidence level and std. dev., one can find the optimal sample size for a particular margin of error using the formula: = Always round-up for the optimal sample size. 11

12 Example The number of bolts produced each hour from a particular machine is normally distributed with a standard deviation of 7.4. For a random sample of 15 hours, the average number of bolts produced was Find a 98% confidence interval for the population mean number of bolts produced per hour. Press [STAT]. Select [TESTS]. Choose 7: ZInterval. Select with arrow keys Stats Input the following: : 7.4 : n : 15 C-Level: 98 Choose Calculate and press [ENTER]. Answer: 98% C.I. for µ is (582.86, ). 12

13 Example The number of bolts produced each hour from a particular machine is normally distributed with a standard deviation of 7.4. For a random sample of 15 hours, the average number of bolts produced was Find a 98% confidence interval for the population mean number of bolts produced per hour. We found 98% C.I. for µ is (582.86, ). Width = =8.88. So M.E = Width/2 = Suppose we want the margin of error for 98% confidence interval for the population mean number of bolts produced per hour to be 3.5. What is the optimal sample size? We shall use = For 98% C.I., = So = 9.9: =./ ,0,1 = =.B = So optimal sample size is

14 100 1 %C.I. for [unknown and n<30 ] However the formula of the previous C.I. of cannot be used if the std. dev. is unknown. In such case, one should substitute by sample standard deviation ). However, unlike the large sample we can no longer use - distribution (i.e. (0,1) distribution). In that case, student s D-distribution comes to rescue. D-distributions are all symmetric continuous distributions centered around 0. A degree of freedom (EF) is attached to each D-distrn. For our problem, EF = 1. 14

15 The concept of D ;HI If J~D HI then D5 ;HI is such a number that 6 J > D ;HI =. 2 Thus P D ;HI <J <D ;HI =1. 15

16 100 1 %C.I. for [unknown ] If the sample is from normally distributedpopulation but the std. dev. is unknown, then the % C.I. for is: D ;$: ), where is the sample mean, and )is the sample standard deviation. Here the margin of error is D ;$: (. The width of the C.I. is 2D ;$: ( = 2-.. Use TInterval from TI 83/84 to compute C.I. for [unknown ]. 16

17 Example The Daytona Beach Tourism Commission is interested in the average amount of money a typical college student spends per day during spring break. They survey 25 students and find that the mean spending is $63.57 with a standard deviation of $ Develop a 97% confidence interval for the population mean daily spending. Press [STAT]. Select [TESTS]. Choose 8: TInterval. Select with arrow keys Stats Input the following: : Sx: n : 25 C-Level: 97 Choose Calculate and press [ENTER]. Answer: 97% C.I. for µ is (55.58, 71.56). 17

Confidence Intervals

Confidence Intervals Section 6.1 75 Confidence Intervals Section 6.1 C H A P T E R 6 4 Example 4 (pg. 284) Constructing a Confidence Interval Enter the data from Example 1 on pg. 280 into L1. In this example, n > 0, so the

More information

5.1 Identifying the Target Parameter

5.1 Identifying the Target Parameter University of California, Davis Department of Statistics Summer Session II Statistics 13 August 20, 2012 Date of latest update: August 20 Lecture 5: Estimation with Confidence intervals 5.1 Identifying

More information

Chapter Study Guide. Chapter 11 Confidence Intervals and Hypothesis Testing for Means

Chapter Study Guide. Chapter 11 Confidence Intervals and Hypothesis Testing for Means OPRE504 Chapter Study Guide Chapter 11 Confidence Intervals and Hypothesis Testing for Means I. Calculate Probability for A Sample Mean When Population σ Is Known 1. First of all, we need to find out the

More information

Confidence Intervals for the Difference Between Two Means

Confidence Intervals for the Difference Between Two Means Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means

More information

Chapter 7 Review. Confidence Intervals. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 7 Review. Confidence Intervals. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 7 Review Confidence Intervals MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Suppose that you wish to obtain a confidence interval for

More information

Simple Inventory Management

Simple Inventory Management Jon Bennett Consulting http://www.jondbennett.com Simple Inventory Management Free Up Cash While Satisfying Your Customers Part of the Business Philosophy White Papers Series Author: Jon Bennett September

More information

Review. March 21, 2011. 155S7.1 2_3 Estimating a Population Proportion. Chapter 7 Estimates and Sample Sizes. Test 2 (Chapters 4, 5, & 6) Results

Review. March 21, 2011. 155S7.1 2_3 Estimating a Population Proportion. Chapter 7 Estimates and Sample Sizes. Test 2 (Chapters 4, 5, & 6) Results MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 7 Estimates and Sample Sizes 7 1 Review and Preview 7 2 Estimating a Population Proportion 7 3 Estimating a Population

More information

Stats on the TI 83 and TI 84 Calculator

Stats on the TI 83 and TI 84 Calculator Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and

More information

Objectives. 6.1, 7.1 Estimating with confidence (CIS: Chapter 10) CI)

Objectives. 6.1, 7.1 Estimating with confidence (CIS: Chapter 10) CI) Objectives 6.1, 7.1 Estimating with confidence (CIS: Chapter 10) Statistical confidence (CIS gives a good explanation of a 95% CI) Confidence intervals. Further reading http://onlinestatbook.com/2/estimation/confidence.html

More information

Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

More information

Confidence Intervals for Cp

Confidence Intervals for Cp Chapter 296 Confidence Intervals for Cp Introduction This routine calculates the sample size needed to obtain a specified width of a Cp confidence interval at a stated confidence level. Cp is a process

More information

Confidence Intervals for One Standard Deviation Using Standard Deviation

Confidence Intervals for One Standard Deviation Using Standard Deviation Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from

More information

Coefficient of Determination

Coefficient of Determination Coefficient of Determination The coefficient of determination R 2 (or sometimes r 2 ) is another measure of how well the least squares equation ŷ = b 0 + b 1 x performs as a predictor of y. R 2 is computed

More information

Hypothesis Testing. Steps for a hypothesis test:

Hypothesis Testing. Steps for a hypothesis test: Hypothesis Testing Steps for a hypothesis test: 1. State the claim H 0 and the alternative, H a 2. Choose a significance level or use the given one. 3. Draw the sampling distribution based on the assumption

More information

Chapter 23 Inferences About Means

Chapter 23 Inferences About Means Chapter 23 Inferences About Means Chapter 23 - Inferences About Means 391 Chapter 23 Solutions to Class Examples 1. See Class Example 1. 2. We want to know if the mean battery lifespan exceeds the 300-minute

More information

Hypothesis testing - Steps

Hypothesis testing - Steps Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

More information

p ˆ (sample mean and sample

p ˆ (sample mean and sample Chapter 6: Confidence Intervals and Hypothesis Testing When analyzing data, we can t just accept the sample mean or sample proportion as the official mean or proportion. When we estimate the statistics

More information

Confidence Intervals for Cpk

Confidence Intervals for Cpk Chapter 297 Confidence Intervals for Cpk Introduction This routine calculates the sample size needed to obtain a specified width of a Cpk confidence interval at a stated confidence level. Cpk is a process

More information

7 Confidence Intervals

7 Confidence Intervals blu49076_ch07.qxd 5/20/2003 3:15 PM Page 325 c h a p t e r 7 7 Confidence Intervals and Sample Size Outline 7 1 Introduction 7 2 Confidence Intervals for the Mean (s Known or n 30) and Sample Size 7 3

More information

Social Studies 201 Notes for November 19, 2003

Social Studies 201 Notes for November 19, 2003 1 Social Studies 201 Notes for November 19, 2003 Determining sample size for estimation of a population proportion Section 8.6.2, p. 541. As indicated in the notes for November 17, when sample size is

More information

Practice problems for Homework 12 - confidence intervals and hypothesis testing. Open the Homework Assignment 12 and solve the problems.

Practice problems for Homework 12 - confidence intervals and hypothesis testing. Open the Homework Assignment 12 and solve the problems. Practice problems for Homework 1 - confidence intervals and hypothesis testing. Read sections 10..3 and 10.3 of the text. Solve the practice problems below. Open the Homework Assignment 1 and solve the

More information

Population Mean (Known Variance)

Population Mean (Known Variance) Confidence Intervals Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Population Mean (Known Variance) 1. A random sample of n measurements was selected from a population with

More information

How To Calculate Confidence Intervals In A Population Mean

How To Calculate Confidence Intervals In A Population Mean Chapter 8 Confidence Intervals 8.1 Confidence Intervals 1 8.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Calculate and interpret confidence intervals for one

More information

Chapter 7 - Practice Problems 2

Chapter 7 - Practice Problems 2 Chapter 7 - Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the requested value. 1) A researcher for a car insurance company

More information

Need for Sampling. Very large populations Destructive testing Continuous production process

Need for Sampling. Very large populations Destructive testing Continuous production process Chapter 4 Sampling and Estimation Need for Sampling Very large populations Destructive testing Continuous production process The objective of sampling is to draw a valid inference about a population. 4-

More information

Lecture Notes Module 1

Lecture Notes Module 1 Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific

More information

Confidence intervals

Confidence intervals Confidence intervals Today, we re going to start talking about confidence intervals. We use confidence intervals as a tool in inferential statistics. What this means is that given some sample statistics,

More information

Point and Interval Estimates

Point and Interval Estimates Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number

More information

12.5: CHI-SQUARE GOODNESS OF FIT TESTS

12.5: CHI-SQUARE GOODNESS OF FIT TESTS 125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

More information

Constructing and Interpreting Confidence Intervals

Constructing and Interpreting Confidence Intervals Constructing and Interpreting Confidence Intervals Confidence Intervals In this power point, you will learn: Why confidence intervals are important in evaluation research How to interpret a confidence

More information

Lesson 17: Margin of Error When Estimating a Population Proportion

Lesson 17: Margin of Error When Estimating a Population Proportion Margin of Error When Estimating a Population Proportion Classwork In this lesson, you will find and interpret the standard deviation of a simulated distribution for a sample proportion and use this information

More information

Paired 2 Sample t-test

Paired 2 Sample t-test Variations of the t-test: Paired 2 Sample 1 Paired 2 Sample t-test Suppose we are interested in the effect of different sampling strategies on the quality of data we recover from archaeological field surveys.

More information

Probability Distributions

Probability Distributions CHAPTER 5 Probability Distributions CHAPTER OUTLINE 5.1 Probability Distribution of a Discrete Random Variable 5.2 Mean and Standard Deviation of a Probability Distribution 5.3 The Binomial Distribution

More information

Sequences. A sequence is a list of numbers, or a pattern, which obeys a rule.

Sequences. A sequence is a list of numbers, or a pattern, which obeys a rule. Sequences A sequence is a list of numbers, or a pattern, which obeys a rule. Each number in a sequence is called a term. ie the fourth term of the sequence 2, 4, 6, 8, 10, 12... is 8, because it is the

More information

Hypothesis Testing: Two Means, Paired Data, Two Proportions

Hypothesis Testing: Two Means, Paired Data, Two Proportions Chapter 10 Hypothesis Testing: Two Means, Paired Data, Two Proportions 10.1 Hypothesis Testing: Two Population Means and Two Population Proportions 1 10.1.1 Student Learning Objectives By the end of this

More information

5.4 Solving Percent Problems Using the Percent Equation

5.4 Solving Percent Problems Using the Percent Equation 5. Solving Percent Problems Using the Percent Equation In this section we will develop and use a more algebraic equation approach to solving percent equations. Recall the percent proportion from the last

More information

TImath.com. F Distributions. Statistics

TImath.com. F Distributions. Statistics F Distributions ID: 9780 Time required 30 minutes Activity Overview In this activity, students study the characteristics of the F distribution and discuss why the distribution is not symmetric (skewed

More information

How Does My TI-84 Do That

How Does My TI-84 Do That How Does My TI-84 Do That A guide to using the TI-84 for statistics Austin Peay State University Clarksville, Tennessee How Does My TI-84 Do That A guide to using the TI-84 for statistics Table of Contents

More information

One-Way Analysis of Variance

One-Way Analysis of Variance One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We

More information

Understanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation

Understanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation Understanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation Leslie Chandrakantha lchandra@jjay.cuny.edu Department of Mathematics & Computer Science John Jay College of

More information

1.5 Oneway Analysis of Variance

1.5 Oneway Analysis of Variance Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) ±1.88 B) ±1.645 C) ±1.96 D) ±2.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) ±1.88 B) ±1.645 C) ±1.96 D) ±2. Ch. 6 Confidence Intervals 6.1 Confidence Intervals for the Mean (Large Samples) 1 Find a Critical Value 1) Find the critical value zc that corresponds to a 94% confidence level. A) ±1.88 B) ±1.645 C)

More information

8 6 X 2 Test for a Variance or Standard Deviation

8 6 X 2 Test for a Variance or Standard Deviation Section 8 6 x 2 Test for a Variance or Standard Deviation 437 This test uses the P-value method. Therefore, it is not necessary to enter a significance level. 1. Select MegaStat>Hypothesis Tests>Proportion

More information

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

More information

3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples 3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

More information

Recall this chart that showed how most of our course would be organized:

Recall this chart that showed how most of our course would be organized: Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

More information

The Normal Distribution

The Normal Distribution Chapter 6 The Normal Distribution 6.1 The Normal Distribution 1 6.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize the normal probability distribution

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Math 201: Statistics November 30, 2006

Math 201: Statistics November 30, 2006 Math 201: Statistics November 30, 2006 Fall 2006 MidTerm #2 Closed book & notes; only an A4-size formula sheet and a calculator allowed; 90 mins. No questions accepted! Instructions: There are eleven pages

More information

Two-sample inference: Continuous data

Two-sample inference: Continuous data Two-sample inference: Continuous data Patrick Breheny April 5 Patrick Breheny STA 580: Biostatistics I 1/32 Introduction Our next two lectures will deal with two-sample inference for continuous data As

More information

USING A TI-83 OR TI-84 SERIES GRAPHING CALCULATOR IN AN INTRODUCTORY STATISTICS CLASS

USING A TI-83 OR TI-84 SERIES GRAPHING CALCULATOR IN AN INTRODUCTORY STATISTICS CLASS USING A TI-83 OR TI-84 SERIES GRAPHING CALCULATOR IN AN INTRODUCTORY STATISTICS CLASS W. SCOTT STREET, IV DEPARTMENT OF STATISTICAL SCIENCES & OPERATIONS RESEARCH VIRGINIA COMMONWEALTH UNIVERSITY Table

More information

NCC5010: Data Analytics and Modeling Spring 2015 Practice Exemption Exam

NCC5010: Data Analytics and Modeling Spring 2015 Practice Exemption Exam NCC5010: Data Analytics and Modeling Spring 2015 Practice Exemption Exam Do not look at other pages until instructed to do so. The time limit is two hours. This exam consists of 6 problems. Do all of your

More information

Key Issues in Use of Social Networking in Hospitality Industry:

Key Issues in Use of Social Networking in Hospitality Industry: Key Issues in Use of Social Networking in Hospitality Industry: 2009 Parisa Salkhordeh University of Delaware Introduction The number of the Internet users increases every day. Tourism & hospitality are

More information

Exact Confidence Intervals

Exact Confidence Intervals Math 541: Statistical Theory II Instructor: Songfeng Zheng Exact Confidence Intervals Confidence intervals provide an alternative to using an estimator ˆθ when we wish to estimate an unknown parameter

More information

Chapter 2. Hypothesis testing in one population

Chapter 2. Hypothesis testing in one population Chapter 2. Hypothesis testing in one population Contents Introduction, the null and alternative hypotheses Hypothesis testing process Type I and Type II errors, power Test statistic, level of significance

More information

Simple linear regression

Simple linear regression Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

More information

Chapter 7 - Practice Problems 1

Chapter 7 - Practice Problems 1 Chapter 7 - Practice Problems 1 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) Define a point estimate. What is the

More information

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

More information

Confidence Intervals for Exponential Reliability

Confidence Intervals for Exponential Reliability Chapter 408 Confidence Intervals for Exponential Reliability Introduction This routine calculates the number of events needed to obtain a specified width of a confidence interval for the reliability (proportion

More information

TI 83/84 Calculator The Basics of Statistical Functions

TI 83/84 Calculator The Basics of Statistical Functions What you want to do How to start What to do next Put Data in Lists STAT EDIT 1: EDIT ENTER Clear numbers already in a list: Arrow up to L1, then hit CLEAR, ENTER. Then just type the numbers into the appropriate

More information

Means, standard deviations and. and standard errors

Means, standard deviations and. and standard errors CHAPTER 4 Means, standard deviations and standard errors 4.1 Introduction Change of units 4.2 Mean, median and mode Coefficient of variation 4.3 Measures of variation 4.4 Calculating the mean and standard

More information

Capital Market Theory: An Overview. Return Measures

Capital Market Theory: An Overview. Return Measures Capital Market Theory: An Overview (Text reference: Chapter 9) Topics return measures measuring index returns (not in text) holding period returns return statistics risk statistics AFM 271 - Capital Market

More information

Chapter 3. The Normal Distribution

Chapter 3. The Normal Distribution Chapter 3. The Normal Distribution Topics covered in this chapter: Z-scores Normal Probabilities Normal Percentiles Z-scores Example 3.6: The standard normal table The Problem: What proportion of observations

More information

Section 3-7. Marginal Analysis in Business and Economics. Marginal Cost, Revenue, and Profit. 202 Chapter 3 The Derivative

Section 3-7. Marginal Analysis in Business and Economics. Marginal Cost, Revenue, and Profit. 202 Chapter 3 The Derivative 202 Chapter 3 The Derivative Section 3-7 Marginal Analysis in Business and Economics Marginal Cost, Revenue, and Profit Application Marginal Average Cost, Revenue, and Profit Marginal Cost, Revenue, and

More information

of course the mean is p. That is just saying the average sample would have 82% answering

of course the mean is p. That is just saying the average sample would have 82% answering Sampling Distribution for a Proportion Start with a population, adult Americans and a binary variable, whether they believe in God. The key parameter is the population proportion p. In this case let us

More information

Final Exam Practice Problem Answers

Final Exam Practice Problem Answers Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

More information

Comparing Means in Two Populations

Comparing Means in Two Populations Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we

More information

Estimation of σ 2, the variance of ɛ

Estimation of σ 2, the variance of ɛ Estimation of σ 2, the variance of ɛ The variance of the errors σ 2 indicates how much observations deviate from the fitted surface. If σ 2 is small, parameters β 0, β 1,..., β k will be reliably estimated

More information

7 Literal Equations and

7 Literal Equations and CHAPTER 7 Literal Equations and Inequalities Chapter Outline 7.1 LITERAL EQUATIONS 7.2 INEQUALITIES 7.3 INEQUALITIES USING MULTIPLICATION AND DIVISION 7.4 MULTI-STEP INEQUALITIES 113 7.1. Literal Equations

More information

Confidence Intervals for Spearman s Rank Correlation

Confidence Intervals for Spearman s Rank Correlation Chapter 808 Confidence Intervals for Spearman s Rank Correlation Introduction This routine calculates the sample size needed to obtain a specified width of Spearman s rank correlation coefficient confidence

More information

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

More information

PERPETUITIES NARRATIVE SCRIPT 2004 SOUTH-WESTERN, A THOMSON BUSINESS

PERPETUITIES NARRATIVE SCRIPT 2004 SOUTH-WESTERN, A THOMSON BUSINESS NARRATIVE SCRIPT 2004 SOUTH-WESTERN, A THOMSON BUSINESS NARRATIVE SCRIPT: SLIDE 2 A good understanding of the time value of money is crucial for anybody who wants to deal in financial markets. It does

More information

Using Stata for One Sample Tests

Using Stata for One Sample Tests Using Stata for One Sample Tests All of the one sample problems we have discussed so far can be solved in Stata via either (a) statistical calculator functions, where you provide Stata with the necessary

More information

Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test

Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely

More information

Binomial Probability Distribution

Binomial Probability Distribution Binomial Probability Distribution In a binomial setting, we can compute probabilities of certain outcomes. This used to be done with tables, but with graphing calculator technology, these problems are

More information

Name: (b) Find the minimum sample size you should use in order for your estimate to be within 0.03 of p when the confidence level is 95%.

Name: (b) Find the minimum sample size you should use in order for your estimate to be within 0.03 of p when the confidence level is 95%. Chapter 7-8 Exam Name: Answer the questions in the spaces provided. If you run out of room, show your work on a separate paper clearly numbered and attached to this exam. Please indicate which program

More information

Math 108 Exam 3 Solutions Spring 00

Math 108 Exam 3 Solutions Spring 00 Math 108 Exam 3 Solutions Spring 00 1. An ecologist studying acid rain takes measurements of the ph in 12 randomly selected Adirondack lakes. The results are as follows: 3.0 6.5 5.0 4.2 5.5 4.7 3.4 6.8

More information

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

More information

Chapter 14: Repeated Measures Analysis of Variance (ANOVA)

Chapter 14: Repeated Measures Analysis of Variance (ANOVA) Chapter 14: Repeated Measures Analysis of Variance (ANOVA) First of all, you need to recognize the difference between a repeated measures (or dependent groups) design and the between groups (or independent

More information

CHAPTER 1: SPREADSHEET BASICS. AMZN Stock Prices Date Price 2003 54.43 2004 34.13 2005 39.86 2006 38.09 2007 89.15 2008 69.58

CHAPTER 1: SPREADSHEET BASICS. AMZN Stock Prices Date Price 2003 54.43 2004 34.13 2005 39.86 2006 38.09 2007 89.15 2008 69.58 1. Suppose that at the beginning of October 2003 you purchased shares in Amazon.com (NASDAQ: AMZN). It is now five years later and you decide to evaluate your holdings to see if you have done well with

More information

Workplace Pension Reform: Multiple Jobholders

Workplace Pension Reform: Multiple Jobholders Workplace Pension Reform: Multiple Jobholders July 2013 1 Introduction The analysis presented in this paper is intended to support the passage of the 2013-14 Pensions Bill through Parliament. It provides

More information

Simple Linear Regression

Simple Linear Regression STAT 101 Dr. Kari Lock Morgan Simple Linear Regression SECTIONS 9.3 Confidence and prediction intervals (9.3) Conditions for inference (9.1) Want More Stats??? If you have enjoyed learning how to analyze

More information

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test

More information

Name: Date: Use the following to answer questions 3-4:

Name: Date: Use the following to answer questions 3-4: Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin

More information

Using a Scientific Calculator

Using a Scientific Calculator 1 Using a Scientific Calculator In this course, we will be using a scientific calculator to do all of our computations. So, in this section, we want to get use to some of the features of a scientific calculator.

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1) CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

More information

Opgaven Onderzoeksmethoden, Onderdeel Statistiek

Opgaven Onderzoeksmethoden, Onderdeel Statistiek Opgaven Onderzoeksmethoden, Onderdeel Statistiek 1. What is the measurement scale of the following variables? a Shoe size b Religion c Car brand d Score in a tennis game e Number of work hours per week

More information

Largest Fixed-Aspect, Axis-Aligned Rectangle

Largest Fixed-Aspect, Axis-Aligned Rectangle Largest Fixed-Aspect, Axis-Aligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: February 21, 2004 Last Modified: February

More information

3. What is the difference between variance and standard deviation? 5. If I add 2 to all my observations, how variance and mean will vary?

3. What is the difference between variance and standard deviation? 5. If I add 2 to all my observations, how variance and mean will vary? Variance, Standard deviation Exercises: 1. What does variance measure? 2. How do we compute a variance? 3. What is the difference between variance and standard deviation? 4. What is the meaning of the

More information

GCSE Business Studies. Ratios. For first teaching from September 2009 For first award in Summer 2011

GCSE Business Studies. Ratios. For first teaching from September 2009 For first award in Summer 2011 GCSE Business Studies Ratios For first teaching from September 2009 For first award in Summer 2011 Ratios At the end of this unit students should be able to: Interpret and analyse final accounts and balance

More information

Chapter 19 Confidence Intervals for Proportions

Chapter 19 Confidence Intervals for Proportions Chapter 19 Confidence Intervals for Proportions Use your TI calculator to find the confidence interval. You must know the number of successes, the sample size and confidence level. Under STAT go to TESTS.

More information

3. Time value of money. We will review some tools for discounting cash flows.

3. Time value of money. We will review some tools for discounting cash flows. 1 3. Time value of money We will review some tools for discounting cash flows. Simple interest 2 With simple interest, the amount earned each period is always the same: i = rp o where i = interest earned

More information

Normal Probability Distribution

Normal Probability Distribution Normal Probability Distribution The Normal Distribution functions: #1: normalpdf pdf = Probability Density Function This function returns the probability of a single value of the random variable x. Use

More information

c. Given your answer in part (b), what do you anticipate will happen in this market in the long-run?

c. Given your answer in part (b), what do you anticipate will happen in this market in the long-run? Perfect Competition Questions Question 1 Suppose there is a perfectly competitive industry where all the firms are identical with identical cost curves. Furthermore, suppose that a representative firm

More information

13: Additional ANOVA Topics. Post hoc Comparisons

13: Additional ANOVA Topics. Post hoc Comparisons 13: Additional ANOVA Topics Post hoc Comparisons ANOVA Assumptions Assessing Group Variances When Distributional Assumptions are Severely Violated Kruskal-Wallis Test Post hoc Comparisons In the prior

More information