# Using Stata for One Sample Tests

Size: px
Start display at page:

Transcription

1 Using Stata for One Sample Tests All of the one sample problems we have discussed so far can be solved in Stata via either (a) statistical calculator functions, where you provide Stata with the necessary summary statistics for means, standard deviations, and sample sizes; these commands end with an i, where the i stands for immediate (but other commands also sometimes end with an i) (b) modules that directly analyze raw data; or (c) both. Some of these solutions require, or may be easier to solve, if you first add the Stataquest menus and commands; see The commands shown below can all be generated via Stata s pulldown menus if you prefer to use them. A. Single Sample Tests Case I: Sampling distribution of X, Normal parent population (i.e. X is normally distributed), σ is known. Problem. A manufacture of steel rods considers that the manufacturing process is working properly if the mean length of the rods is 8.6. The standard deviation of these rods always runs about 0.3 inches. Suppose a random sample of size n = 36 yields an average length of 8.7 inches. Should the manufacturer conclude the process is working properly or improperly? Use the.05 level of significance. Solution. I don t know of any Stata routine that will do this by directly analyzing raw data. However, the ztesti command (which is installed with Stataquest) will do this when you have the summary statistics. Enter ztesti , level(95) where the 5 parameters are the sample size N, the sample mean, the known population standard deviation, the hypothesized mean (under H 0 ), and the desired CI level (e.g. 95 for 95% confidence interval, 99 for 99% c.i.) The Stata results (which match up perfectly with our earlier analysis) are. ztesti , level(95) Number of obs = 36 Variable Mean Std. Err. z P> z [95% Conf. Interval] x Ho: mean(x) = 8.6 Ha: mean < 8.6 Ha: mean ~= 8.6 Ha: mean > 8.6 z = z = z = P < z = P > z = P > z = Using Stata for one sample tests Page 1

2 As is typical with many Stata commands, the output gives you the probability levels for both possible 1-tailed alternatives as well as for the 2-tailed alternative. In this case, the 2-tailed probability is.0455, which is less than.05, so we reject the null. Also, the 95% confidence interval does not include the hypothesized value of 8.6, so reject the null. B. Case II: Sampling distribution for the binomial parameter p. Problem. The mayor contends that 25% of the city s employees are black. Various left-wing and right-wing critics have claimed that the mayor is either exaggerating or understating the number of black employees. A random sample of 120 employees contains 18 blacks. Test the mayor s claim at the.01 level of significance. Exact Solution. We ve shown how to get approximate solutions using the normal approximation to the binomial. However, with Stata, there is no need to rely on an approximation, as the bitesti and bitest commands can give you the exact answer, i.e. Stata is smart enough to work with the binomial distribution directly. Using the statistical calculator function bitesti, the format is bitesti where the parameters are the number of trials, the observed number of successes, and the predicted probability of success. Stata gives you. bitesti N Observed k Expected k Assumed p Observed p Pr(k >= 18) = (one-sided test) Pr(k <= 18) = (one-sided test) Pr(k <= 18 or k >= 43) = (two-sided test) For a two-tailed test, this result is significant at the.011 level. Since that is slightly more than.01, you stick with the null (barely). If the alternative hypotheses were H 0 : p <.25, you would reject the null using the.01 level of significance, since is less than.01. To get the default Clopper-Pearson (aka exact ) 99% confidence interval, use the cii command: cii , level(99) where the parameters are the number of trials and the number of successes. The level parameter indicates that you want the 99% c.i.; the default is the 95% c.i.. cii , level(99) -- Binomial Exact Again, the mayor s claim of.25 falls within the interval, so the null is not rejected. Using Stata for one sample tests Page 2

3 While widely used, the Clopper-Pearson CI is criticized by some for being too conservative, i.e. it can produces confidence intervals that are very wide. Many therefore prefer Wilson s Confidence Interval or one of the other options (Jeffries, Agresti-Coull) that Stata offers. If you want Wilson s C.I., add the wilson parameter:. cii , level(99) wilson Wilson If you had the raw data, you would have 102 cases coded 0 on a variable called black (meaning 102 employees were not black), and 18 cases coded 1 on the variable black (meaning 18 employees were black.). The bitest command analyzes the raw data:. bitest black=.25 Variable N Observed k Expected k Assumed p Observed p black Pr(k >= 18) = (one-sided test) Pr(k <= 18) = (one-sided test) Pr(k <= 18 or k >= 43) = (two-sided test) The parameters are variable name = hypothesized probability of success. Likewise, to get the socalled exact (Clopper-Pearson) confidence interval, use the ci command with the binomial parameter:. ci black, binomial level(99) -- Binomial Exact -- black To get the Wilson interval instead,. ci black, binomial level(99) wilson Wilson black Note that we get identical results whether we use the immediate or raw data versions of the commands. Using Stata for one sample tests Page 3

4 Normal Approximation to the Binomial Solution. You can also get the normal approximation to the binomial using the prtesti and prtest commands. The prtesti format is prtesti , count level(99) where the parameters are N (the number of trials), the observed number of successes, and the predicted probability of success. If you didn t include the count parameter, you would say.15 instead of 18, i.e. you d give the observed probability of success rather than the observed number of successes. The confidence interval is only approximate (and in this case wrong, because it does not include.25). The output is. prtesti , count level(99) One-sample test of proportion x: Number of obs = 120 Variable Mean Std. Err. [99% Conf. Interval] - x Ho: proportion(x) =.25 Ha: x <.25 Ha: x!=.25 Ha: x >.25 z = z = z = P < z = P > z = P > z = Note that Stata does not do the correction for continuity by default. The bintesti command with the normal option, which comes with Stataquest, lets you make the correction by hand, i.e. you can add or subtract.5 from the observed number of successes as is appropriate.. bintesti , normal level(99) Variable Obs Proportion Std. Error x Ho: p = z = Pr > z = % CI = (0.0693,0.2391) Incidentally, in this case, you actually come slightly closer to the correct result by NOT making the correction for continuity. After having tried several problems, my impression (possibly wrong) is that, when p 0 is close to.5, the correction improves accuracy, but as p 0 gets further and further away from.5 it may actually do more harm than good. The moral is that, if it is a very close call, you probably want to get the exact solution rather than rely on the normal approximation. Indeed, the Stata documentation for prtest says Researchers are advised to use bitest when possible, especially for small samples. With raw data, to get the normal approximation (without correction for continuity I m not sure how you would do the correction for continuity using raw data), use the prtest command with parameters varname=predicted probability of success. Using Stata for one sample tests Page 4

5 . prtest black =.25, level(99) One-sample test of proportion black: Number of obs = 120 Variable Mean Std. Err. [99% Conf. Interval] - black Ho: proportion(black) =.25 Ha: black <.25 Ha: black!=.25 Ha: black >.25 z = z = z = P < z = P > z = P > z = C. Case III: Sampling distribution of X, normal parent population, σ unknown. Problem. The Deans contend that the average graduate student makes \$8,000 a year. Zealous administration budget cutters contend that the students are being paid more than that, while the Graduate Student Union contends that the figure is less. A random sample of 6 students has an average income (measured in thousands of dollars) of 6.5 and a sample variance of 2. Using both confidence intervals and significance tests, test the Deans claim at the.10 and.02 levels of significance. Solution. Use the ttesti or the ttest command. If you just have the summary statistics and you want the 90% confidence interval, enter the command ttesti , level(90) The parameters are N, the sample mean, the sample sd, the predicted mean, and the CI level. The results are. ttesti , level(90) Obs Mean Std. Err. Std. Dev. [90% Conf. Interval] x Ho: mean(x) = 8 P < t = P > t = P > t = Using Stata for one sample tests Page 5

6 To get the 98% c.i., just change the level parameter:. ttesti , level(98) Obs Mean Std. Err. Std. Dev. [98% Conf. Interval] x Ho: mean(x) = 8 P < t = P > t = P > t = If you just want the confidence interval, use the cii command, where the parameters are N, the sample mean, the sample sd, and the CI level.. cii , level(90) Variable Obs Mean Std. Err. [90% Conf. Interval] If you are analyzing the original raw data, use the ttest command. In this example, pay is the variable containing salary information, and 8 is the hypothesized mean of pay. The level(90) parameter gives us the 90% confidence interval.. ttest pay = 8, level(90) Variable Obs Mean Std. Err. Std. Dev. [90% Conf. Interval] pay Ho: mean(pay) = 8 P < t = P > t = P > t = Using Stata for one sample tests Page 6

7 To get the 98% c.i.,. ttest pay = 8, level(98) Variable Obs Mean Std. Err. Std. Dev. [98% Conf. Interval] pay Ho: mean(pay) = 8 P < t = P > t = P > t = If you just wanted to get the 90% confidence interval without the t-test, use the ci command specifying whatever level you want:. ci pay, level(90) Variable Obs Mean Std. Err. [90% Conf. Interval] pay For the 98% c.i.,. ci pay, level(98) Variable Obs Mean Std. Err. [98% Conf. Interval] pay As before, the output from ttest and ttesti is pretty much identical; if you did see any differences, it would be because of rounding error in the summary statistics. Using Stata for one sample tests Page 7

### In the general population of 0 to 4-year-olds, the annual incidence of asthma is 1.4%

Hypothesis Testing for a Proportion Example: We are interested in the probability of developing asthma over a given one-year period for children 0 to 4 years of age whose mothers smoke in the home In the

### Syntax Menu Description Options Remarks and examples Stored results Methods and formulas References Also see. level(#) , options2

Title stata.com ttest t tests (mean-comparison tests) Syntax Syntax Menu Description Options Remarks and examples Stored results Methods and formulas References Also see One-sample t test ttest varname

### Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing

Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters

### THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.

THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM

### Hypothesis testing - Steps

Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

### Normal distribution. ) 2 /2σ. 2π σ

Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

### Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

### Introduction to Hypothesis Testing

I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters - they must be estimated. However, we do have hypotheses about what the true

### Name: Date: Use the following to answer questions 3-4:

Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin

### Estimation of σ 2, the variance of ɛ

Estimation of σ 2, the variance of ɛ The variance of the errors σ 2 indicates how much observations deviate from the fitted surface. If σ 2 is small, parameters β 0, β 1,..., β k will be reliably estimated

### Using Stata for Categorical Data Analysis

Using Stata for Categorical Data Analysis NOTE: These problems make extensive use of Nick Cox s tab_chi, which is actually a collection of routines, and Adrian Mander s ipf command. From within Stata,

### HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

### How To Test For Significance On A Data Set

Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.

### Standard Deviation Estimator

CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of

### Odds ratio, Odds ratio test for independence, chi-squared statistic.

Odds ratio, Odds ratio test for independence, chi-squared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review

### Confidence Intervals for One Standard Deviation Using Standard Deviation

Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from

### Confidence Intervals for Cp

Chapter 296 Confidence Intervals for Cp Introduction This routine calculates the sample size needed to obtain a specified width of a Cp confidence interval at a stated confidence level. Cp is a process

### Two Related Samples t Test

Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person

### Confidence Intervals

Confidence Intervals I. Interval estimation. The particular value chosen as most likely for a population parameter is called the point estimate. Because of sampling error, we know the point estimate probably

### HYPOTHESIS TESTING WITH SPSS:

HYPOTHESIS TESTING WITH SPSS: A NON-STATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER

### Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)

Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption

### LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

### Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

### Chapter 2 Probability Topics SPSS T tests

Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the One-Sample T test has been explained. In this handout, we also give the SPSS methods to perform

### Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

### MULTIPLE REGRESSION EXAMPLE

MULTIPLE REGRESSION EXAMPLE For a sample of n = 166 college students, the following variables were measured: Y = height X 1 = mother s height ( momheight ) X 2 = father s height ( dadheight ) X 3 = 1 if

### Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

### 3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

### Confidence Intervals for the Difference Between Two Means

Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means

### Confidence Intervals for Cpk

Chapter 297 Confidence Intervals for Cpk Introduction This routine calculates the sample size needed to obtain a specified width of a Cpk confidence interval at a stated confidence level. Cpk is a process

### BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test

### Tests for Two Proportions

Chapter 200 Tests for Two Proportions Introduction This module computes power and sample size for hypothesis tests of the difference, ratio, or odds ratio of two independent proportions. The test statistics

### NCSS Statistical Software. One-Sample T-Test

Chapter 205 Introduction This procedure provides several reports for making inference about a population mean based on a single sample. These reports include confidence intervals of the mean or median,

### HYPOTHESIS TESTING: POWER OF THE TEST

HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,

### HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

### Chapter 2. Hypothesis testing in one population

Chapter 2. Hypothesis testing in one population Contents Introduction, the null and alternative hypotheses Hypothesis testing process Type I and Type II errors, power Test statistic, level of significance

### CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

### Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

### t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

STT315 Practice Ch 5-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) The length of time a traffic signal stays green (nicknamed

### Testing a claim about a population mean

Introductory Statistics Lectures Testing a claim about a population mean One sample hypothesis test of the mean Department of Mathematics Pima Community College Redistribution of this material is prohibited

### One-Way Analysis of Variance

One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We

### Nonparametric Two-Sample Tests. Nonparametric Tests. Sign Test

Nonparametric Two-Sample Tests Sign test Mann-Whitney U-test (a.k.a. Wilcoxon two-sample test) Kolmogorov-Smirnov Test Wilcoxon Signed-Rank Test Tukey-Duckworth Test 1 Nonparametric Tests Recall, nonparametric

### Comparing Means in Two Populations

Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we

### Pearson's Correlation Tests

Chapter 800 Pearson's Correlation Tests Introduction The correlation coefficient, ρ (rho), is a popular statistic for describing the strength of the relationship between two variables. The correlation

### Non-Inferiority Tests for Two Proportions

Chapter 0 Non-Inferiority Tests for Two Proportions Introduction This module provides power analysis and sample size calculation for non-inferiority and superiority tests in twosample designs in which

### Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

### 22. HYPOTHESIS TESTING

22. HYPOTHESIS TESTING Often, we need to make decisions based on incomplete information. Do the data support some belief ( hypothesis ) about the value of a population parameter? Is OJ Simpson guilty?

### Sample Size Calculation for Longitudinal Studies

Sample Size Calculation for Longitudinal Studies Phil Schumm Department of Health Studies University of Chicago August 23, 2004 (Supported by National Institute on Aging grant P01 AG18911-01A1) Introduction

### Stat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015

Stat 411/511 THE RANDOMIZATION TEST Oct 16 2015 Charlotte Wickham stat511.cwick.co.nz Today Review randomization model Conduct randomization test What about CIs? Using a t-distribution as an approximation

### 2 Precision-based sample size calculations

Statistics: An introduction to sample size calculations Rosie Cornish. 2006. 1 Introduction One crucial aspect of study design is deciding how big your sample should be. If you increase your sample size

### BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete

### Part 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217

Part 3 Comparing Groups Chapter 7 Comparing Paired Groups 189 Chapter 8 Comparing Two Independent Groups 217 Chapter 9 Comparing More Than Two Groups 257 188 Elementary Statistics Using SAS Chapter 7 Comparing

### Practice problems for Homework 12 - confidence intervals and hypothesis testing. Open the Homework Assignment 12 and solve the problems.

Practice problems for Homework 1 - confidence intervals and hypothesis testing. Read sections 10..3 and 10.3 of the text. Solve the practice problems below. Open the Homework Assignment 1 and solve the

### Hypothesis Test for Mean Using Given Data (Standard Deviation Known-z-test)

Hypothesis Test for Mean Using Given Data (Standard Deviation Known-z-test) A hypothesis test is conducted when trying to find out if a claim is true or not. And if the claim is true, is it significant.

### NCSS Statistical Software

Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

### Two-sample hypothesis testing, II 9.07 3/16/2004

Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,

### Paired T-Test. Chapter 208. Introduction. Technical Details. Research Questions

Chapter 208 Introduction This procedure provides several reports for making inference about the difference between two population means based on a paired sample. These reports include confidence intervals

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS

The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice

### 4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

### Chapter 7 Section 1 Homework Set A

Chapter 7 Section 1 Homework Set A 7.15 Finding the critical value t *. What critical value t * from Table D (use software, go to the web and type t distribution applet) should be used to calculate the

### Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:

Chapter 7 Notes - Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a

### The normal approximation to the binomial

The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

### Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples

Comparing Two Groups Chapter 7 describes two ways to compare two populations on the basis of independent samples: a confidence interval for the difference in population means and a hypothesis test. The

### Tests for One Proportion

Chapter 100 Tests for One Proportion Introduction The One-Sample Proportion Test is used to assess whether a population proportion (P1) is significantly different from a hypothesized value (P0). This is

### Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption

Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular

### Once saved, if the file was zipped you will need to unzip it. For the files that I will be posting you need to change the preferences.

1 Commands in JMP and Statcrunch Below are a set of commands in JMP and Statcrunch which facilitate a basic statistical analysis. The first part concerns commands in JMP, the second part is for analysis

### Confidence Intervals for Exponential Reliability

Chapter 408 Confidence Intervals for Exponential Reliability Introduction This routine calculates the number of events needed to obtain a specified width of a confidence interval for the reliability (proportion

### Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses

Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the

### STA 130 (Winter 2016): An Introduction to Statistical Reasoning and Data Science

STA 130 (Winter 2016): An Introduction to Statistical Reasoning and Data Science Mondays 2:10 4:00 (GB 220) and Wednesdays 2:10 4:00 (various) Jeffrey Rosenthal Professor of Statistics, University of Toronto

### Analysis of Variance ANOVA

Analysis of Variance ANOVA Overview We ve used the t -test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.

### Multicollinearity Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015

Multicollinearity Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015 Stata Example (See appendices for full example).. use http://www.nd.edu/~rwilliam/stats2/statafiles/multicoll.dta,

### Hypothesis Testing. Steps for a hypothesis test:

Hypothesis Testing Steps for a hypothesis test: 1. State the claim H 0 and the alternative, H a 2. Choose a significance level or use the given one. 3. Draw the sampling distribution based on the assumption

### Basic Statistical and Modeling Procedures Using SAS

Basic Statistical and Modeling Procedures Using SAS One-Sample Tests The statistical procedures illustrated in this handout use two datasets. The first, Pulse, has information collected in a classroom

### Module 2 Probability and Statistics

Module 2 Probability and Statistics BASIC CONCEPTS Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The standard deviation of a standard normal distribution

### Guide to Microsoft Excel for calculations, statistics, and plotting data

Page 1/47 Guide to Microsoft Excel for calculations, statistics, and plotting data Topic Page A. Writing equations and text 2 1. Writing equations with mathematical operations 2 2. Writing equations with

### Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011

Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this

### 16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of

### The normal approximation to the binomial

The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There

### Introduction. Statistics Toolbox

Introduction A hypothesis test is a procedure for determining if an assertion about a characteristic of a population is reasonable. For example, suppose that someone says that the average price of a gallon

### Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation

Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.

### Two Correlated Proportions (McNemar Test)

Chapter 50 Two Correlated Proportions (Mcemar Test) Introduction This procedure computes confidence intervals and hypothesis tests for the comparison of the marginal frequencies of two factors (each with

### Lecture Notes Module 1

Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific

### Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

### Hypothesis Testing --- One Mean

Hypothesis Testing --- One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis

### Social Studies 201 Notes for November 19, 2003

1 Social Studies 201 Notes for November 19, 2003 Determining sample size for estimation of a population proportion Section 8.6.2, p. 541. As indicated in the notes for November 17, when sample size is

### QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS

QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.

### Confidence intervals

Confidence intervals Today, we re going to start talking about confidence intervals. We use confidence intervals as a tool in inferential statistics. What this means is that given some sample statistics,

### Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing

Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing 1) Hypothesis testing and confidence interval estimation are essentially two totally different statistical procedures

### Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)

Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis

### 5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives

C H 8A P T E R Outline 8 1 Steps in Traditional Method 8 2 z Test for a Mean 8 3 t Test for a Mean 8 4 z Test for a Proportion 8 6 Confidence Intervals and Copyright 2013 The McGraw Hill Companies, Inc.

### C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.

Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample

### Statistiek I. Proportions aka Sign Tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. http://www.let.rug.nl/nerbonne/teach/statistiek-i/

Statistiek I Proportions aka Sign Tests John Nerbonne CLCG, Rijksuniversiteit Groningen http://www.let.rug.nl/nerbonne/teach/statistiek-i/ John Nerbonne 1/34 Proportions aka Sign Test The relative frequency

### Binary Diagnostic Tests Two Independent Samples

Chapter 537 Binary Diagnostic Tests Two Independent Samples Introduction An important task in diagnostic medicine is to measure the accuracy of two diagnostic tests. This can be done by comparing summary

### Need for Sampling. Very large populations Destructive testing Continuous production process

Chapter 4 Sampling and Estimation Need for Sampling Very large populations Destructive testing Continuous production process The objective of sampling is to draw a valid inference about a population. 4-

### Principles of Hypothesis Testing for Public Health

Principles of Hypothesis Testing for Public Health Laura Lee Johnson, Ph.D. Statistician National Center for Complementary and Alternative Medicine johnslau@mail.nih.gov Fall 2011 Answers to Questions

### Normal distributions in SPSS

Normal distributions in SPSS Bro. David E. Brown, BYU Idaho Department of Mathematics February 2, 2012 1 Calculating probabilities and percents from measurements: The CDF.NORMAL command 1. Go to the Variable