# Parametric Statistics 1 Nonparametric Statistics

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Parametric Statistics 1 Nonparametric Statistics Timothy C. Bates Assume data are drawn from samples with a certain distribution (usually normal) Compute the likelihood that groups are related/unrelated or same/different given that underlying model t-test, Pearson s correlation, ANOVA Parametric Statistics 2 Assumptions of Parametric statistics 1. Observations are independent 2. Your data are normally distributed 3. Variances are equal across groups Can be modified to cope with unequal 2 Non-parametric Statistics? Non-parametric statistics do not assume any underlying distribution They estimate the distribution AND compute the probability that your groups are the related/the same or unrelated/different Nonparametric No parameters Model structure is not specified a priori but is instead determined from data. The data are parameterised by the analysis Non-parametric Statistics Assumptions of non-parametric statistics 1. Observations are independent AKA: distribution free 1

2 Non-parametric Statistics? Non-parametric statistics do not assume any underlying distribution Estimating or modeling this distribution reduces their power to detect effects Why use a Non-parametric Statistic? Very small samples (<20 replicates) High probability of violating the assumption of normality Leads to spurious Type-1 (false alarm) errors So never use them unless you have to Why use a Non-parametric Statistic? Outliers more often lead to spurious Type-1 (false alarm) errors in parametric statistics. Nonparametric statistics reduce data to an ordinal rank, which reduces the impact or leverage of outliers. Error Type-I error: False Alarm for a bogus effect reject the null hypothesis when it is really true Type-II error: Miss a real effect fail to reject our null hypothesis when it is really false Type-III error: :-) lazy, incompetent, or willful ignorance of the truth Power 1-alpha Non-parametric Choices Data type? continuous discrete Question? χ 2 association Spearman s Rank Different central value Number of groups? Difference in 2 Brown- Forsythe two-groups more than 2 Wilcoxon s Rank Sums Kruskal-Wallis test 2

3 Like a Pearson s R Like Student s t Non-parametric Choices continuous Question? association Spearman s Rank Wilcoxon s Rank Sums Data type? Different central value Number of groups? discrete χ 2 two-groups more than 2 Kruskal-Wallis test No alternative Difference in 2 Like F-test Brown- Forsythe Like ANOVA Chi-Squared (Χ 2 ) χ2 tests the null hypothesis that observed events occur with an expected frequency in large samples frequencies are distributed as Χ 2 e.g. Ho: This six-sided dice is fair Expect all 6 outcomes to occur equally often Assumptions Observations are independent Outcomes mutually exclusive Sample is not small Small samples require exact test:, i.e., binomial test Chi-Squared Χ 2 formula Χ 2 = the sum of each squared difference between the observed and expected frequencies divided its expected frequency Χ 2 and contingency tables Χ 2 essentially tests if each cell in a contingency table has its expected value In a 2-way table, this expectation will be the value of an adjacent cell Example: coin toss Random sample of 100 coin tosses, of a coin believed to be fair We observed number of 45 heads, and and 55 tails Is the coin fair? Coin toss If h o is true, our test statistic is drawn from a Χ 2 distribution with df = 1 (45-50) 2 + (55-50) 2 = = Χ 2 (1) = 1, p > 0.3 3

4 Coin toss Χ 2 in R chisq.test(c(45,55), p=c(.5,.5)) Chi-squared test for given probabilities Χ 2 = 1, df = 1, p = Spearman Rank test (ρ (rho)) Named after Charles Spearman, Non-parametric measure of correlation Assesses how well an arbitrary monotonic function describes the relationship between two variables, Does not require the relationship be linear Does not require interval measurement Spearman Rank test (ρ (rho)) Mathematically, it is simply a Pearson s r computed on ranked data d = difference in rank of a given pair n = number of pairs Alternative test = Kendall's Tau (Kendall's τ) AKA: Wilcoxon rank-sum test Mann & Whitney, 1947; Wilcoxon, 1945 Non-parametric test for difference in the medians of two independent samples Assumptions: Samples are independent Observations can be ranked (ordinal or better) U tests the difference in the medians of two independent samples n 1 = number of obs in sample 1 n 2 = number of obs in sample 2 R = sum of ranks of the lower-ranked sample or t-test? Should you use it over the t-test? Yes if you have a very small sample (<20) (central limit assumptions not met) Possibly if your data are inherently ordinal Otherwise, probably not. It is less prone to type-i error (spurious significance) due to outliers. But does not in fact handle comparisons of samples whose variances differ very well (Use unequal variance t-test with rank data) 4

5 Aesop: Example Suppose that Aesop is dissatisfied with his classic experiment in which one tortoise was found to beat one hare in a race. He decides to carry out a significance test to discover whether the results could be extended to tortoises and hares in general Aesop 2: He collects a sample of 6 tortoises and 6 hares, and makes them all run his race. The order in which they reach the finishing post (their rank order) is as follows: tort = c(1, 7, 8, 9, 10,11) hare = c(2, 3, 4, 5, 6, 12) Original tortoise still goes at warp speed, original hare is still lazy, but the others run truer to stereotype. Aesop 3: wilcox.test(tort, hare) Wilcoxon = W = 25, p-value = 0.31 Tortoises are not faster (but neither are hares) tort = c(1, 7, 8, 9, 10,11) (n 2 = 6) hare = c(2, 3, 4, 5, 6, 12) (n 1 = 6, R 1 =32) Aesop 4: Wilcoxon = W = 25, p-value = 0.31 Tortoises are not faster (but neither are hares). Welch Two Sample t-test t = , df = 10, p-value = 0.28 Alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: ~ 6.91 sample estimates: mean of x = 7.6 mean of y = 5.3 Power comparison with continuous normal data tort = hare = Wilcoxon W = 25, p = 0.31 t.test t.test(tort, hare, var.equal = TRUE) t(10) = 1.5, p = 0.16 Wilcoxon signed-rank test (related samples) Same idea as MW U, generalized to matched samples Equivalent to non-independent sample t- test 5

6 Kruskall-Wallis Non-parametric one-way analysis of variance by ranks (named after William Kruskal and W. Allen Wallis) tests equality of medians across groups. It is an extension of the test to 3 or more groups. Does not assume a normal population, Assumes population variances among groups are equal. 6

### Module 9: Nonparametric Tests. The Applied Research Center

Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } One-Sample Chi-Square Test

### Statistical tests for SPSS

Statistical tests for SPSS Paolo Coletti A.Y. 2010/11 Free University of Bolzano Bozen Premise This book is a very quick, rough and fast description of statistical tests and their usage. It is explicitly

### UNIVERSITY OF NAIROBI

UNIVERSITY OF NAIROBI MASTERS IN PROJECT PLANNING AND MANAGEMENT NAME: SARU CAROLYNN ELIZABETH REGISTRATION NO: L50/61646/2013 COURSE CODE: LDP 603 COURSE TITLE: RESEARCH METHODS LECTURER: GAKUU CHRISTOPHER

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### Non-parametric tests I

Non-parametric tests I Objectives Mann-Whitney Wilcoxon Signed Rank Relation of Parametric to Non-parametric tests 1 the problem Our testing procedures thus far have relied on assumptions of independence,

### Study Guide for the Final Exam

Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

### Data Analysis. Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) SS Analysis of Experiments - Introduction

Data Analysis Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) Prof. Dr. Dr. h.c. Dieter Rombach Dr. Andreas Jedlitschka SS 2014 Analysis of Experiments - Introduction

### QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS

QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.

### Statistics. One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples

Statistics One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples February 3, 00 Jobayer Hossain, Ph.D. & Tim Bunnell, Ph.D. Nemours

### Difference tests (2): nonparametric

NST 1B Experimental Psychology Statistics practical 3 Difference tests (): nonparametric Rudolf Cardinal & Mike Aitken 10 / 11 February 005; Department of Experimental Psychology University of Cambridge

### Nonparametric Statistics

Nonparametric Statistics J. Lozano University of Goettingen Department of Genetic Epidemiology Interdisciplinary PhD Program in Applied Statistics & Empirical Methods Graduate Seminar in Applied Statistics

### CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY

CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY The hypothesis testing statistics detailed thus far in this text have all been designed to allow comparison of the means of two or more samples

### NONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem)

NONPARAMETRIC STATISTICS 1 PREVIOUSLY parametric statistics in estimation and hypothesis testing... construction of confidence intervals computing of p-values classical significance testing depend on assumptions

### 3. Nonparametric methods

3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### Research Methods & Experimental Design

Research Methods & Experimental Design 16.422 Human Supervisory Control April 2004 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and

### Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 2000: Page 1:

Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 000: Page 1: NON-PARAMETRIC TESTS: What are non-parametric tests? Statistical tests fall into two kinds: parametric tests assume that

### Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS

Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS About Omega Statistics Private practice consultancy based in Southern California, Medical and Clinical

### Using Excel for inferential statistics

FACT SHEET Using Excel for inferential statistics Introduction When you collect data, you expect a certain amount of variation, just caused by chance. A wide variety of statistical tests can be applied

### Variables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test.

The Analysis of Research Data The design of any project will determine what sort of statistical tests you should perform on your data and how successful the data analysis will be. For example if you decide

### THE KRUSKAL WALLLIS TEST

THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON

### SPSS Tests for Versions 9 to 13

SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list

### INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

### Tutorial 5: Hypothesis Testing

Tutorial 5: Hypothesis Testing Rob Nicholls nicholls@mrc-lmb.cam.ac.uk MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................

### business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel

### Nonparametric Statistics

Nonparametric Statistics References Some good references for the topics in this course are 1. Higgins, James (2004), Introduction to Nonparametric Statistics 2. Hollander and Wolfe, (1999), Nonparametric

### Nonparametric Two-Sample Tests. Nonparametric Tests. Sign Test

Nonparametric Two-Sample Tests Sign test Mann-Whitney U-test (a.k.a. Wilcoxon two-sample test) Kolmogorov-Smirnov Test Wilcoxon Signed-Rank Test Tukey-Duckworth Test 1 Nonparametric Tests Recall, nonparametric

### Statistics for Sports Medicine

Statistics for Sports Medicine Suzanne Hecht, MD University of Minnesota (suzanne.hecht@gmail.com) Fellow s Research Conference July 2012: Philadelphia GOALS Try not to bore you to death!! Try to teach

### EPS 625 INTERMEDIATE STATISTICS FRIEDMAN TEST

EPS 625 INTERMEDIATE STATISTICS The Friedman test is an extension of the Wilcoxon test. The Wilcoxon test can be applied to repeated-measures data if participants are assessed on two occasions or conditions

### II. DISTRIBUTIONS distribution normal distribution. standard scores

Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

### 1 Nonparametric Statistics

1 Nonparametric Statistics When finding confidence intervals or conducting tests so far, we always described the population with a model, which includes a set of parameters. Then we could make decisions

### Rank-Based Non-Parametric Tests

Rank-Based Non-Parametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs

### COMPARING DATA ANALYSIS TECHNIQUES FOR EVALUATION DESIGNS WITH NON -NORMAL POFULP_TIOKS Elaine S. Jeffers, University of Maryland, Eastern Shore*

COMPARING DATA ANALYSIS TECHNIQUES FOR EVALUATION DESIGNS WITH NON -NORMAL POFULP_TIOKS Elaine S. Jeffers, University of Maryland, Eastern Shore* The data collection phases for evaluation designs may involve

### Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association

Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association This information is adapted from and draws heavily on: Sheskin, David J. 2000. Handbook of Parametric and

### PASS Sample Size Software

Chapter 250 Introduction The Chi-square test is often used to test whether sets of frequencies or proportions follow certain patterns. The two most common instances are tests of goodness of fit using multinomial

### The Dummy s Guide to Data Analysis Using SPSS

The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests

### Analysis of Questionnaires and Qualitative Data Non-parametric Tests

Analysis of Questionnaires and Qualitative Data Non-parametric Tests JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Lecture SE 2013, Poznań Recalling Basics Measurment Scales Four scales

### Biostatistics: Types of Data Analysis

Biostatistics: Types of Data Analysis Theresa A Scott, MS Vanderbilt University Department of Biostatistics theresa.scott@vanderbilt.edu http://biostat.mc.vanderbilt.edu/theresascott Theresa A Scott, MS

### Research Variables. Measurement. Scales of Measurement. Chapter 4: Data & the Nature of Measurement

Chapter 4: Data & the Nature of Graziano, Raulin. Research Methods, a Process of Inquiry Presented by Dustin Adams Research Variables Variable Any characteristic that can take more than one form or value.

### Introduction to Minitab and basic commands. Manipulating data in Minitab Describing data; calculating statistics; transformation.

Computer Workshop 1 Part I Introduction to Minitab and basic commands. Manipulating data in Minitab Describing data; calculating statistics; transformation. Outlier testing Problem: 1. Five months of nickel

### SPSS Explore procedure

SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stem-and-leaf plots and extensive descriptive statistics. To run the Explore procedure,

### CHAPTER 14 ORDINAL MEASURES OF CORRELATION: SPEARMAN'S RHO AND GAMMA

CHAPTER 14 ORDINAL MEASURES OF CORRELATION: SPEARMAN'S RHO AND GAMMA Chapter 13 introduced the concept of correlation statistics and explained the use of Pearson's Correlation Coefficient when working

### Statistics Review PSY379

Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

### X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

### Projects Involving Statistics (& SPSS)

Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,

### Intro to Parametric & Nonparametric Statistics

Intro to Parametric & Nonparametric Statistics Kinds & definitions of nonparametric statistics Where parametric stats come from Consequences of parametric assumptions Organizing the models we will cover

### The Statistics Tutor s

statstutor community project encouraging academics to share statistics support resources All stcp resources are released under a Creative Commons licence Stcp-marshallowen-7 The Statistics Tutor s www.statstutor.ac.uk

### Chris Slaughter, DrPH. GI Research Conference June 19, 2008

Chris Slaughter, DrPH Assistant Professor, Department of Biostatistics Vanderbilt University School of Medicine GI Research Conference June 19, 2008 Outline 1 2 3 Factors that Impact Power 4 5 6 Conclusions

### Basic Statistics and Data Analysis for Health Researchers from Foreign Countries

Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association

### Parametric and non-parametric statistical methods for the life sciences - Session I

Why nonparametric methods What test to use? Rank Tests Parametric and non-parametric statistical methods for the life sciences - Session I Liesbeth Bruckers Geert Molenberghs Interuniversity Institute

### CREIGHTON UNIVERSITY GRADUATE COLLEGE Fall Semester 2014. Biostatistics & Analysis of Clinical Data for Evidence-based Practice

CREIGHTON UNIVERSITY GRADUATE COLLEGE Fall Semester 2014 Course Number: Course Title: Credit Allocation: Placement: CTS 601 Biostatistics & Analysis of Clinical Data for Evidence-based Practice 3 semester

### DATA INTERPRETATION AND STATISTICS

PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE

### One Way ANOVA. A method for comparing several means along a single variable

Analysis of Variance (ANOVA) One Way ANOVA A method for comparing several means along a single variable It is the same as an independent samples t test, test but for 3 or more samples Called one way when

### Statistical basics for Biology: p s, alphas, and measurement scales.

334 Volume 25: Mini Workshops Statistical basics for Biology: p s, alphas, and measurement scales. Catherine Teare Ketter School of Marine Programs University of Georgia Athens Georgia 30602-3636 (706)

### A Guide for a Selection of SPSS Functions

A Guide for a Selection of SPSS Functions IBM SPSS Statistics 19 Compiled by Beth Gaedy, Math Specialist, Viterbo University - 2012 Using documents prepared by Drs. Sheldon Lee, Marcus Saegrove, Jennifer

### NCSS Statistical Software

Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

### Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam

Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests

### Chapter 3: Nonparametric Tests

B. Weaver (15-Feb-00) Nonparametric Tests... 1 Chapter 3: Nonparametric Tests 3.1 Introduction Nonparametric, or distribution free tests are so-called because the assumptions underlying their use are fewer

There are three kinds of people in the world those who are good at math and those who are not. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 Positive Views The record of a month

### Statistical Significance and Bivariate Tests

Statistical Significance and Bivariate Tests BUS 735: Business Decision Making and Research 1 1.1 Goals Goals Specific goals: Re-familiarize ourselves with basic statistics ideas: sampling distributions,

### Using SPSS version 14 Joel Elliott, Jennifer Burnaford, Stacey Weiss

Using SPSS version 14 Joel Elliott, Jennifer Burnaford, Stacey Weiss SPSS is a program that is very easy to learn and is also very powerful. This manual is designed to introduce you to the program however,

### Bivariate Statistics Session 2: Measuring Associations Chi-Square Test

Bivariate Statistics Session 2: Measuring Associations Chi-Square Test Features Of The Chi-Square Statistic The chi-square test is non-parametric. That is, it makes no assumptions about the distribution

### Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only

### Inferential Statistics. Probability. From Samples to Populations. Katie Rommel-Esham Education 504

Inferential Statistics Katie Rommel-Esham Education 504 Probability Probability is the scientific way of stating the degree of confidence we have in predicting something Tossing coins and rolling dice

### Chapter G08 Nonparametric Statistics

G08 Nonparametric Statistics Chapter G08 Nonparametric Statistics Contents 1 Scope of the Chapter 2 2 Background to the Problems 2 2.1 Parametric and Nonparametric Hypothesis Testing......................

### Descriptive Analysis

Research Methods William G. Zikmund Basic Data Analysis: Descriptive Statistics Descriptive Analysis The transformation of raw data into a form that will make them easy to understand and interpret; rearranging,

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology Step-by-Step - Excel Microsoft Excel is a spreadsheet software application

### Analysis of Variance ANOVA

Analysis of Variance ANOVA Overview We ve used the t -test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.

### Introduction to Statistics and Quantitative Research Methods

Introduction to Statistics and Quantitative Research Methods Purpose of Presentation To aid in the understanding of basic statistics, including terminology, common terms, and common statistical methods.

### Chi-Square Test. Contingency Tables. Contingency Tables. Chi-Square Test for Independence. Chi-Square Tests for Goodnessof-Fit

Chi-Square Tests 15 Chapter Chi-Square Test for Independence Chi-Square Tests for Goodness Uniform Goodness- Poisson Goodness- Goodness Test ECDF Tests (Optional) McGraw-Hill/Irwin Copyright 2009 by The

### CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont

CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont To most people studying statistics a contingency table is a contingency table. We tend to forget, if we ever knew, that contingency

### DATA ANALYSIS. QEM Network HBCU-UP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. Howard University

DATA ANALYSIS QEM Network HBCU-UP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. Howard University Quantitative Research What is Statistics? Statistics (as a subject) is the science

### Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test

The t-test Outline Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test - Dependent (related) groups t-test - Independent (unrelated) groups t-test Comparing means Correlation

### Biodiversity Data Analysis: Testing Statistical Hypotheses By Joanna Weremijewicz, Simeon Yurek, Steven Green, Ph. D. and Dana Krempels, Ph. D.

Biodiversity Data Analysis: Testing Statistical Hypotheses By Joanna Weremijewicz, Simeon Yurek, Steven Green, Ph. D. and Dana Krempels, Ph. D. In biological science, investigators often collect biological

### Nonparametric tests these test hypotheses that are not statements about population parameters (e.g.,

CHAPTER 13 Nonparametric and Distribution-Free Statistics Nonparametric tests these test hypotheses that are not statements about population parameters (e.g., 2 tests for goodness of fit and independence).

### Skewed Data and Non-parametric Methods

0 2 4 6 8 10 12 14 Skewed Data and Non-parametric Methods Comparing two groups: t-test assumes data are: 1. Normally distributed, and 2. both samples have the same SD (i.e. one sample is simply shifted

### The Statistics Tutor s Quick Guide to

statstutor community project encouraging academics to share statistics support resources All stcp resources are released under a Creative Commons licence The Statistics Tutor s Quick Guide to Stcp-marshallowen-7

### Hypothesis Testing & Data Analysis. Statistics. Descriptive Statistics. What is the difference between descriptive and inferential statistics?

2 Hypothesis Testing & Data Analysis 5 What is the difference between descriptive and inferential statistics? Statistics 8 Tools to help us understand our data. Makes a complicated mess simple to understand.

### MEASURES OF LOCATION AND SPREAD

Paper TU04 An Overview of Non-parametric Tests in SAS : When, Why, and How Paul A. Pappas and Venita DePuy Durham, North Carolina, USA ABSTRACT Most commonly used statistical procedures are based on the

### Statistics in Medicine Research Lecture Series CSMC Fall 2014

Catherine Bresee, MS Senior Biostatistician Biostatistics & Bioinformatics Research Institute Statistics in Medicine Research Lecture Series CSMC Fall 2014 Overview Review concept of statistical power

### MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance

### Recall this chart that showed how most of our course would be organized:

Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

### NAG C Library Chapter Introduction. g08 Nonparametric Statistics

g08 Nonparametric Statistics Introduction g08 NAG C Library Chapter Introduction g08 Nonparametric Statistics Contents 1 Scope of the Chapter... 2 2 Background to the Problems... 2 2.1 Parametric and Nonparametric

### When to Use Which Statistical Test

When to Use Which Statistical Test Rachel Lovell, Ph.D., Senior Research Associate Begun Center for Violence Prevention Research and Education Jack, Joseph, and Morton Mandel School of Applied Social Sciences

### Course on Microarray Gene Expression Analysis

Course on Microarray Gene Expression Analysis ::: Differential Expression Analysis Daniel Rico drico@cnio.es Bioinformatics Unit CNIO Upregulation or No Change Downregulation Image analysis comparison

### Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)

Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption

### Fairfield Public Schools

Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

### NCSS Statistical Software

Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

### Outline of Topics. Statistical Methods I. Types of Data. Descriptive Statistics

Statistical Methods I Tamekia L. Jones, Ph.D. (tjones@cog.ufl.edu) Research Assistant Professor Children s Oncology Group Statistics & Data Center Department of Biostatistics Colleges of Medicine and Public

### Tests of relationships between variables Chi-square Test Binomial Test Run Test for Randomness One-Sample Kolmogorov-Smirnov Test.

N. Uttam Singh, Aniruddha Roy & A. K. Tripathi ICAR Research Complex for NEH Region, Umiam, Meghalaya uttamba@gmail.com, aniruddhaubkv@gmail.com, aktripathi2020@yahoo.co.in Non Parametric Tests: Hands

### Nonparametric Statistics

1 14.1 Using the Binomial Table Nonparametric Statistics In this chapter, we will survey several methods of inference from Nonparametric Statistics. These methods will introduce us to several new tables

### INTRODUCTORY STATISTICS

INTRODUCTORY STATISTICS FIFTH EDITION Thomas H. Wonnacott University of Western Ontario Ronald J. Wonnacott University of Western Ontario WILEY JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore

### T-test & factor analysis

Parametric tests T-test & factor analysis Better than non parametric tests Stringent assumptions More strings attached Assumes population distribution of sample is normal Major problem Alternatives Continue

### SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES

SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR

### Normality Testing in Excel

Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com

### Permutation Tests for Comparing Two Populations

Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. Jae-Wan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of

### UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)