# Estimating Surface Normals in Noisy Point Cloud Data

Save this PDF as:

Size: px
Start display at page:

## Transcription

### STATISTICS: MODULE 12122. Chapter 3 - Bivariate or joint probability distributions

STATISTICS: MODULE Chapte - Bivaiate o joit pobabilit distibutios I this chapte we coside the distibutio of two adom vaiables whee both adom vaiables ae discete (cosideed fist) ad pobabl moe impotatl whee

### Periodic Review Probabilistic Multi-Item Inventory System with Zero Lead Time under Constraints and Varying Order Cost

Ameica Joual of Applied Scieces (8: 3-7, 005 ISS 546-939 005 Sciece Publicatios Peiodic Review Pobabilistic Multi-Item Ivetoy System with Zeo Lead Time ude Costaits ad Vayig Ode Cost Hala A. Fegay Lectue

### Two degree of freedom systems. Equations of motion for forced vibration Free vibration analysis of an undamped system

wo degee of feedom systems Equatios of motio fo foced vibatio Fee vibatio aalysis of a udamped system Itoductio Systems that equie two idepedet d coodiates to descibe thei motio ae called two degee of

### Chi-squared goodness-of-fit test.

Sectio 1 Chi-squaed goodess-of-fit test. Example. Let us stat with a Matlab example. Let us geeate a vecto X of 1 i.i.d. uifom adom vaiables o [, 1] : X=ad(1,1). Paametes (1, 1) hee mea that we geeate

### Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions

Udestadig Fiacial Maagemet: A Pactical Guide Guidelie Aswes to the Cocept Check Questios Chapte 4 The Time Value of Moey Cocept Check 4.. What is the meaig of the tems isk-etu tadeoff ad time value of

### BINOMIAL THEOREM. 1. Introduction. 2. The Binomial Coefficients. ( x + 1), we get. and. When we expand

BINOMIAL THEOREM Itoductio Whe we epad ( + ) ad ( + ), we get ad ( + ) = ( + )( + ) = + + + = + + ( + ) = ( + )( + ) = ( + )( + + ) = + + + + + = + + + 4 5 espectively Howeve, whe we ty to epad ( + ) ad

### Learning Objectives. Chapter 2 Pricing of Bonds. Future Value (FV)

Leaig Objectives Chapte 2 Picig of Bods time value of moey Calculate the pice of a bod estimate the expected cash flows detemie the yield to discout Bod pice chages evesely with the yield 2-1 2-2 Leaig

### Money Math for Teens. Introduction to Earning Interest: 11th and 12th Grades Version

Moey Math fo Tees Itoductio to Eaig Iteest: 11th ad 12th Gades Vesio This Moey Math fo Tees lesso is pat of a seies ceated by Geeatio Moey, a multimedia fiacial liteacy iitiative of the FINRA Ivesto Educatio

### On the Optimality and Interconnection of Valiant Load-Balancing Networks

O the Optimality ad Itecoectio of Valiat Load-Balacig Netwoks Moshe Babaioff ad Joh Chuag School of Ifomatio Uivesity of Califoia at Bekeley Bekeley, Califoia 94720 4600 {moshe,chuag}@sims.bekeley.edu

### Finance Practice Problems

Iteest Fiace Pactice Poblems Iteest is the cost of boowig moey. A iteest ate is the cost stated as a pecet of the amout boowed pe peiod of time, usually oe yea. The pevailig maket ate is composed of: 1.

### Annuities and loan. repayments. Syllabus reference Financial mathematics 5 Annuities and loan. repayments

8 8A Futue value of a auity 8B Peset value of a auity 8C Futue ad peset value tables 8D Loa epaymets Auities ad loa epaymets Syllabus efeece Fiacial mathematics 5 Auities ad loa epaymets Supeauatio (othewise

### CHAPTER 4: NET PRESENT VALUE

EMBA 807 Corporate Fiace Dr. Rodey Boehe CHAPTER 4: NET PRESENT VALUE (Assiged probles are, 2, 7, 8,, 6, 23, 25, 28, 29, 3, 33, 36, 4, 42, 46, 50, ad 52) The title of this chapter ay be Net Preset Value,

### = 1. n n 2 )= n n 2 σ2 = σ2

SAMLE STATISTICS A rado saple of size fro a distributio f(x is a set of rado variables x 1,x,,x which are idepedetly ad idetically distributed with x i f(x for all i Thus, the joit pdf of the rado saple

### Asymptotic Growth of Functions

CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

### Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity)

Aity Deivatios 4/4/ Deivatio of Aity ad Pepetity Fomlae A. Peset Vale of a Aity (Defeed Paymet o Odiay Aity 3 4 We have i the show i the lecte otes ad i ompodi ad Discoti that the peset vale of a set of

### ECONOMICS. Calculating loan interest no. 3.758

F A M & A N H S E E S EONOMS alculatig loa iterest o. 3.758 y Nora L. Dalsted ad Paul H. Gutierrez Quick Facts... The aual percetage rate provides a coo basis to copare iterest charges associated with

### THE PRINCIPLE OF THE ACTIVE JMC SCATTERER. Seppo Uosukainen

THE PRINCIPLE OF THE ACTIVE JC SCATTERER Seppo Uoukaie VTT Buildig ad Tapot Ai Hadlig Techology ad Acoutic P. O. Bo 1803, FIN 02044 VTT, Filad Seppo.Uoukaie@vtt.fi ABSTRACT The piciple of fomulatig the

### Breakeven Holding Periods for Tax Advantaged Savings Accounts with Early Withdrawal Penalties

Beakeve Holdig Peiods fo Tax Advataged Savigs Accouts with Ealy Withdawal Pealties Stephe M. Hoa Depatmet of Fiace St. Boavetue Uivesity St. Boavetue, New Yok 4778 Phoe: 76-375-209 Fax: 76-375-29 e-mail:

### The Binomial Multi- Section Transformer

4/15/21 The Bioial Multisectio Matchig Trasforer.doc 1/17 The Bioial Multi- Sectio Trasforer Recall that a ulti-sectio atchig etwork ca be described usig the theory of sall reflectios as: where: Γ ( ω

### Chapter 2 Sequences and Series

Chapte 7 Sequece ad seies Chapte Sequeces ad Seies. Itoductio: The INVENTOR of chess asked the Kig of the Kigdom that he may be ewaded i lieu of his INVENTION with oe gai of wheat fo the fist squae of

### A Comparison of Hypothesis Testing Methods for the Mean of a Log-Normal Distribution

World Applied Scieces Joural (6): 845-849 ISS 88-495 IDOSI Publicatios A Copariso of Hypothesis Testig ethods for the ea of a og-oral Distributio 3 F. egahdari K. Abdollahezhad ad A.A. Jafari Islaic Azad

### Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

### Section IV.5: Recurrence Relations from Algorithms

Sectio IV.5: Recurrece Relatios from Algorithms Give a recursive algorithm with iput size, we wish to fid a Θ (best big O) estimate for its ru time T() either by obtaiig a explicit formula for T() or by

### 580.439 Course Notes: Nonlinear Dynamics and Hodgkin-Huxley Equations

58.439 Couse Notes: Noliea Dyamics ad Hodgki-Huxley Equatios Readig: Hille (3 d ed.), chapts 2,3; Koch ad Segev (2 d ed.), chapt 7 (by Rizel ad Emetout). Fo uthe eadig, S.H. Stogatz, Noliea Dyamics ad

### Soving Recurrence Relations

Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

### Maximum Entropy, Parallel Computation and Lotteries

Maximum Etopy, Paallel Computatio ad Lotteies S.J. Cox Depatmet of Electoics ad Compute Sciece, Uivesity of Southampto, UK. G.J. Daiell Depatmet of Physics ad Astoomy, Uivesity of Southampto, UK. D.A.

### 1 Correlation and Regression Analysis

1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

### Logistic Regression, AdaBoost and Bregman Distances

A exteded abstact of this joual submissio appeaed ipoceedigs of the Thiteeth Aual Cofeece o ComputatioalLeaig Theoy, 2000 Logistic Regessio, Adaoost ad egma istaces Michael Collis AT&T Labs Reseach Shao

### I. Chi-squared Distributions

1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

### Chapter 3. Compound Interest. Section 2 Compound and Continuous Compound Interest. Solution. Example

Chapter 3 Matheatics of Fiace Sectio 2 Copoud ad Cotiuous Copoud Iterest Copoud Iterest Ulike siple iterest, copoud iterest o a aout accuulates at a faster rate tha siple iterest. The basic idea is that

### Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

### between Modern Degree Model Logistics Industry in Gansu Province 2. Measurement Model 1. Introduction 2.1 Synergetic Degree

www.ijcsi.og 385 Calculatio adaalysis alysis of the Syegetic Degee Model betwee Mode Logistics ad Taspotatio Idusty i Gasu Povice Ya Ya 1, Yogsheg Qia, Yogzhog Yag 3,Juwei Zeg 4 ad Mi Wag 5 1 School of

### In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

### ECE 340 Lecture 13 : Optical Absorption and Luminescence 2/19/14 ( ) Class Outline: Band Bending Optical Absorption

/9/4 ECE 34 Lectue 3 : Optical Absoptio ad Lumiescece Class Outlie: Thigs you should kow whe you leave Key Questios How do I calculate kietic ad potetial eegy fom the bads? What is diect ecombiatio? How

### Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

### Volume 1: Distribution and Recovery of Petroleum Hydrocarbon Liquids in Porous Media

LNAPL Distibutio ad Recovey Model (LDRM) Volume 1: Distibutio ad Recovey of Petoleum Hydocabo Liquids i Poous Media Regulatoy ad Scietific Affais Depatmet API PUBLICATION 4760 JANUARY 007 3 Satuatio, Relative

### A Gentle Introduction to Algorithms: Part II

A Getle Itroductio to Algorithms: Part II Cotets of Part I:. Merge: (to merge two sorted lists ito a sigle sorted list.) 2. Bubble Sort 3. Merge Sort: 4. The Big-O, Big-Θ, Big-Ω otatios: asymptotic bouds

### Mechanics 1: Motion in a Central Force Field

Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

### Chapter 7 Methods of Finding Estimators

Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

### Laminar and non-laminar flow in geosynthetic and granular drains

Geosythetics Iteatioal, 2012, 19, No. 2 Lamia ad o-lamia flow i geosythetic ad gaula dais J. P. Gioud 1, J. P. Gouc 2 ad E. Kavazajia, J. 1 Cosultig Egiee, JP Gioud, Ic., 587 Noth Ocea Blvd, Ocea Ridge,

### Long-Term Trend Analysis of Online Trading --A Stochastic Order Switching Model

Asia Pacific Maagemet Review (24) 9(5), 893-924 Log-Tem Ted Aalysis of Olie Tadig --A Stochastic Ode Switchig Model Shalig Li * ad Zili Ouyag ** Abstact Olie bokeages ae eplacig bokes ad telephoes with

### AP Calculus BC 2003 Scoring Guidelines Form B

AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet

### CHPATER 5 THE SIGMA NOTATION AND NUMBER BASES

5A SUNS AND THE SIGMA NOTATION CHPATER 5 THE SIGMA NOTATION AND NUMBER BASES I the last chapte e fod ad poved a fola fo the s of a fiite be of tes of soe seqeces. A hady otatio fo itig ss ses the Geek

### 9.5 Amortization. Objectives

9.5 Aotization Objectives 1. Calculate the payent to pay off an aotized loan. 2. Constuct an aotization schedule. 3. Find the pesent value of an annuity. 4. Calculate the unpaid balance on a loan. Congatulations!

### Module 4: Mathematical Induction

Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

### Spectra of Digital Waveform

Specta o Digital Waveom time-domai ad equecy-domai Po. Tzog-Li Wu Depatmet o Electical Egieeig ad Gaduate Istitute o Commuicatio Egieeig Natioal Taiwa Uivesity Basic Popeties o Fouie Tasom 1. peiodic xt

### Strategic Remanufacturing Decision in a Supply Chain with an External Local Remanufacturer

Assoiatio fo Ifomatio Systems AIS Eletoi Libay (AISeL) WHICEB 013 Poeedigs Wuha Iteatioal Cofeee o e-busiess 5-5-013 Stategi Remaufatuig Deisio i a Supply Chai with a Exteal Loal Remaufatue Xu Tiatia Shool

RADICALS AND SOLVING QUADRATIC EQUATIONS Evaluate Roots Overview of Objectives, studets should be able to:. Evaluate roots a. Siplify expressios of the for a b. Siplify expressios of the for a. Evaluate

### AN APPROXIMATE ISOPERIMETRIC INEQUALITY FOR r-sets

AN APPROXIMATE ISOPERIMETRIC INEQUALITY FOR -SETS DEMETRES CHRISTOFIDES, DAVID ELLIS AND PETER KEEVASH Abstact. We pove a vetex-isopeimetic iequality fo [], the set of all -elemet subsets of {1, 2,...,

### CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

### 4.1 Sigma Notation and Riemann Sums

0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

Potfolio Pefoance Attibution Alia Biglova, Svetloa Rachev 2 Abstact In this pape, we povide futhe insight into the pefoance attibution by developent of statistical odels based on iniiing ETL pefoance isk

### UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

### Sequences II. Chapter 3. 3.1 Convergent Sequences

Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,

### Confidence Intervals for One Mean with Tolerance Probability

Chapter 421 Cofidece Itervals for Oe Mea with Tolerace Probability Itroductio This procedure calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) with

### Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

### Department of Computer Science, University of Otago

Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

### A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length

Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 49-60 A Faster Clause-Shorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece

### Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.

Gaphs of Equations CHAT Pe-Calculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such

### LECTURE 13: Cross-validation

LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M

### Throughput and Delay Analysis of Hybrid Wireless Networks with Multi-Hop Uplinks

This paper was preseted as part of the ai techical progra at IEEE INFOCOM 0 Throughput ad Delay Aalysis of Hybrid Wireless Networks with Multi-Hop Upliks Devu Maikata Shila, Yu Cheg ad Tricha Ajali Dept.

### Tracking/Fusion and Deghosting with Doppler Frequency from Two Passive Acoustic Sensors

Tacking/Fusion and Deghosting with Dopple Fequency fom Two Passive Acoustic Sensos Rong Yang, Gee Wah Ng DSO National Laboatoies 2 Science Pak Dive Singapoe 11823 Emails: yong@dso.og.sg, ngeewah@dso.og.sg

### Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

### Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 )

Chapter : Liear Equatios Chapter Liear Equatios Lie i coordiate geometr I Cartesia coordiate sstems ( 卡 笛 兒 坐 標 系 統 ), a lie ca be represeted b a liear equatio, i.e., a polomial with degree. But before

### 7. Sample Covariance and Correlation

1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y

### if A S, then X \ A S, and if (A n ) n is a sequence of sets in S, then n A n S,

Lecture 5: Borel Sets Topologically, the Borel sets i a topological space are the σ-algebra geerated by the ope sets. Oe ca build up the Borel sets from the ope sets by iteratig the operatios of complemetatio

### 0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

### Convexity, Inequalities, and Norms

Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

### 9.8: THE POWER OF A TEST

9.8: The Power of a Test CD9-1 9.8: THE POWER OF A TEST I the iitial discussio of statistical hypothesis testig, the two types of risks that are take whe decisios are made about populatio parameters based

### Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

### Supplementary Material for EpiDiff

Supplementay Mateial fo EpiDiff Supplementay Text S1. Pocessing of aw chomatin modification data In ode to obtain the chomatin modification levels in each of the egions submitted by the use QDCMR module

### Properties of MLE: consistency, asymptotic normality. Fisher information.

Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

### The dinner table problem: the rectangular case

The ie table poblem: the ectagula case axiv:math/009v [mathco] Jul 00 Itouctio Robeto Tauaso Dipatimeto i Matematica Uivesità i Roma To Vegata 00 Roma, Italy tauaso@matuiomait Decembe, 0 Assume that people

### 5 Boolean Decision Trees (February 11)

5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

### Chapter 5: Inner Product Spaces

Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

### Hadoop Performance Modeling for Job Estimation and Resource Provisioning

his aticle has been accepted fo publication in a futue issue of this jounal, but has not been fully edited. Content ay change pio to final publication. Citation infoation: DOI 0.09/PDS.05.40555, IEEE ansactions

### Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

### Cycloidal Areas without Calculus

TOM M APOSTOL ad MAMIKON A MNATSAKANIAN Cycloidal Areas without Calculus Itroductio For ceturies atheaticias have bee iterested i curves that ca be costructed by siple echaical istruets Aog these curves

### 428 CHAPTER 12 MULTIPLE LINEAR REGRESSION

48 CHAPTER 1 MULTIPLE LINEAR REGRESSION Table 1-8 Team Wis Pts GF GA PPG PPcT SHG PPGA PKPcT SHGA Chicago 47 104 338 68 86 7. 4 71 76.6 6 Miesota 40 96 31 90 91 6.4 17 67 80.7 0 Toroto 8 68 3 330 79.3

### B1. Fourier Analysis of Discrete Time Signals

B. Fourier Aalysis of Discrete Time Sigals Objectives Itroduce discrete time periodic sigals Defie the Discrete Fourier Series (DFS) expasio of periodic sigals Defie the Discrete Fourier Trasform (DFT)

### Geometric Sequences. Definition: A geometric sequence is a sequence of the form

Geometic equeces Aothe simple wy of geetig sequece is to stt with umbe d epetedly multiply it by fixed ozeo costt. This type of sequece is clled geometic sequece. Defiitio: A geometic sequece is sequece

### ORDERS OF GROWTH KEITH CONRAD

ORDERS OF GROWTH KEITH CONRAD Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really wat to uderstad their behavior It also helps you better grasp topics i calculus

### An Introduction to Omega

An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei isk-ewad chaacteistics? The Finance Development Cente 2002 1 Fom

### Ant Colony Algorithm Based Scheduling for Handling Software Project Delay

At Coloy Algorith Based Schedulig for Hadlig Software Project Delay Wei Zhag 1,2, Yu Yag 3, Juchao Xiao 4, Xiao Liu 5, Muhaad Ali Babar 6 1 School of Coputer Sciece ad Techology, Ahui Uiversity, Hefei,

### The Stable Marriage Problem

The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,

### CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

### Chapter 3 Savings, Present Value and Ricardian Equivalence

Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,

### Divide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016

CS 6, Lecture 3 Divide ad Coquer, Solvig Recurreces, Iteger Multiplicatio Scribe: Juliaa Cook (05, V Williams Date: April 6, 06 Itroductio Today we will cotiue to talk about divide ad coquer, ad go ito

### SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

### THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

### 9.4 Annuities. Objectives. 1. Calculate the future value of an ordinary annuity. 2. Perform calculations regarding sinking funds.

9.4 Annuities Objectives 1. Calculate the futue value of an odinay annuity. 2. Pefo calculations egading sinking funds. Soewhee ove the ainbow... skies ae blue,... and the deas that you dae to dea...eally

### Convex Bodies of Minimal Volume, Surface Area and Mean Width with Respect to Thin Shells

Caad. J. Math. Vol. 60 (1), 2008 pp. 3 32 Covex Bodies of Miimal Volume, Surface Area ad Mea Width with Respect to Thi Shells Károly Böröczky, Károly J. Böröczky, Carste Schütt, ad Gergely Witsche Abstract.

### Controller Area Network (CAN) Schedulability Analysis with FIFO queues

Cotroller Area Network (CAN) Schedulability Aalysis with FIFO queues Robert I. Davis Real-Tie Systes Research Group, Departet of Coputer Sciece, Uiversity of York, YO10 5DD, York, UK rob.davis@cs.york.ac.uk

### 4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then

SECTION 2.6 THE RATIO TEST 79 2.6. THE RATIO TEST We ow kow how to hadle series which we ca itegrate (the Itegral Test), ad series which are similar to geometric or p-series (the Compariso Test), but of

### Incremental calculation of weighted mean and variance

Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

### Simple way of teaching transistor amplifiers

ession 793 iple way of teaching tansisto aplifies ogdan M. Wilaowski Uniesity of Wyoing bstact Fo sall signal analysis a siple change fo coonly used tanconductance g to tansesistance /g leads to a significant

### 8.3 POLAR FORM AND DEMOIVRE S THEOREM

SECTION 8. POLAR FORM AND DEMOIVRE S THEOREM 48 8. POLAR FORM AND DEMOIVRE S THEOREM Figure 8.6 (a, b) b r a 0 θ Complex Number: a + bi Rectagular Form: (a, b) Polar Form: (r, θ) At this poit you ca add,