# Computer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Save this PDF as:

Size: px
Start display at page:

Download "Computer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)"

## Transcription

1 Computer Graphics CS 54 Lecture 1 (Part 1) Curves Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI)

2 So Far Dealt with straight lines and flat surfaces Real world objects include curves Need to develop: Representations of curves Tools to render curves

3 Curve Representation: Explicit One variable expressed in terms of another Example: z f ( x, y) Works if one x value for each y value Example: does not work for a sphere z x y Rarely used in CG because of this limitation

4 Curve Representation: Implicit Represent D curve or D surface as zeros of a formula Example: sphere representation x y z 1 0 May limit classes of functions used Polynomial: function which can be expressed as linear combination of integer powers of x, y, z Degree of algebraic function: highest power in function Example: mx 4 has degree of 4

5 Curve Representation: Parametric Represent D curve as functions, 1 parameter D surface as functions, parameters Example: parametric sphere ( x( u), y( u)) ( x( u, v), y( u, v), z( u, v)) x(, ) y(, ) z(, ) cos cos cos sin sin

6 Choosing Representations Different representation suitable for different applications Implicit representations good for: Computing ray intersection with surface Determing if point is inside/outside a surface Parametric representation good for: Breaking surface into small polygonal elements for rendering Subdivide into smaller patches Sometimes possible to convert one representation into another

7 Continuity Consider parametric curve P ( u) ( x( u), y( u), z( u)) T We would like smoothest curves possible Mathematically express smoothness as continuity (no jumps) Defn: if kth derivatives exist, and are continuous, curve has kth order parametric continuity denoted C k

8 Continuity 0 th order means curve is continuous 1 st order means curve tangent vectors vary continuously, etc

9 Interactive Curve Design Mathematical formula unsuitable for designers Prefer to interactively give sequence of points (control points) Write procedure: Input: sequence of points Output: parametric representation of curve

10 Interactive Curve Design 1 approach: curves pass through control points (interpolate) Example: Lagrangian Interpolating Polynomial Difficulty with this approach: Polynomials always have wiggles For straight lines wiggling is a problem Our approach: approximate control points (Bezier, B Splines)

11 De Casteljau Algorithm Consider smooth curve that approximates sequence of control points [p0,p1,.] p( u) up (1 u) p0 1 0 u 1 Blending functions: u and (1 u) are non negative and sum to one

12 De Casteljau Algorithm Now consider points line segments, P0 to P1 and P1 to P p 01 ( u) (1 u) p0 up1 p11 ( u) (1 u) p1 up

13 De Casteljau Algorithm Substituting known values of p ( ) and p ( ) 11 u p( u) (1 u) p01 up11( u) 01 u ( 1 u) p0 (u(1 u)) p1 u p b 0( u ) b ( ) 1 u b ( u) Blending functions for degree Bezier curve b 0 ( u) (1 u) b1( u) u(1 u) b u) ( u Note: blending functions, non-negative, sum to 1

14 De Casteljau Algorithm Extend to 4 control points P0, P1, P, P p ( u) (1 u) p0 (u(1 u) ) p1 (u (1 u)) p u b ( u) b ( u) b ( u 0 1 ) b ( u ) Final result above is Bezier curve of degree

15 De Casteljau Algorithm p ( u) (1 u) p0 (u(1 u) ) p1 (u (1 u)) p u b ( u) b ( u) b ( u 0 1 ) b ( u ) Blending functions are polynomial functions called Bernstein s polynomials b b b b 0 1 ( u) ( u) ( u) ( u) (1 u) u u u(1 u) (1 u)

16 De Casteljau Algorithm p ( u) (1 u) p0 (u(1 u) ) p1 (u (1 u)) p u 1 1 Writing coefficient of blending functions gives Pascal s triangle control points 4 control points control points

17 De Casteljau Algorithm In general, blending function for k Bezier curve has form k k i i bik ( u) (1 u) u i Example b ( u) (1 u) u (1 u)

18 De Casteljau Algorithm Can express cubic parametric curve in matrix form 1 0 ],, [1, ) ( p p p p M u u u u p B where M B

19 Subdividing Bezier Curves OpenGL renders flat objects To render curves, approximate with small linear segments Subdivide surface to polygonal patches Bezier curves useful for elegant, recursive subdivision

20 Subdividing Bezier Curves Let (P0 P) denote original sequence of control points Recursively interpolate with u = ½ as below Sequences (P00,P01,P0,P0) and (P0,P1,P1,0) define Bezier curves also Bezier Curves can either be straightened or curved recursively in this way

21 Bezier Surfaces Bezier surfaces: interpolate in two dimensions This called Bilinear interpolation Example: 4 control points, P00, P01, P10, P11, parameters u and v Interpolate between P00 and P01 using u P10 and P11 using u P00 and P10 using v P01 and P11 using v p( u, v) (1 v)((1 u) p00 up01) v((1 u) p10 up11)

22 Bezier Surfaces Expressing in terms of blending functions p( u, v) b p 01 ( v) b01( u) p00 b01( v) b11b01( u) p01 b11( v) b11( u) 11 Generalizing p( u, v) i0 j0 b i, ( v) b j,( u) p i, j

23 Problems with Bezier Curves Bezier curves are elegant but too many control points To achieve smoother curve = more control points = higher order polynomial = more calculations Global support problem: All blending functions are non zero for all values of u All control points contribute to all parts of the curve Means after modelling complex surface (e.g. a ship), if one control point is moves, recalculate everything!

24 B Splines B splines designed to address Bezier shortcomings B Spline given by blending control points Local support: Each spline contributes in limited range Only non zero splines contribute in a given range of u p( u) m i0 B ( u) i p i B-spline blending functions, order

25 NURBS Encompasses both Bezier curves/surfaces and B splines Non uniform Rational B splines (NURBS) Rational function is ratio of two polynomials Some curves can be expressed as rational functions but not as simple polynomials No known exact polynomial for circle Rational parametrization of unit circle on xy plane: 1 u x( u) 1 u u y( u) 1 u z( u) 0

26 NURBS We can apply homogeneous coordinates to bring in w Using w, we get we cleanly integrate rational parametrization Useful property of NURBS: preserved under transformation 1 ) ( 0 ) ( ) ( 1 ) ( u w u u z u u y u u x

27 Tesselation tesselation Far = Less detailed mesh Near = More detailed mesh Simplification Previously: Pre generate mesh versions offline Tesselation shader unit new to GPU in DirectX 10 (007) Subdivide faces to yield finer detail, generate new vertices, primitives Mesh simplification/tesselation on GPU = Real time LoD Tesselation: Demo

28 Tessellation Shaders Can subdivide curves, surfaces on the GPU

29 Where Does Tesselation Shader Fit? Fixed number of vertices in/out Can change number of vertices

30 Step 1: Application Code Tesselation shader can generate new primitive called a patch User defined number of vertices per patch In application, use glpatchparameteri set number of vertices per patch Example: patches, each with 4 vertices 8 vertices total, 4 vertices per patch

31 Step : Tessellation Control Shader Generates output vertices Sometimes pass through: same no. of vertices as input Set how much each patch should be tessellated Outer: how many segments exterior edges broken into Inner: How many inner regions (horizontal & vertical)

32 Step : Tessellation Evaluation Shader Positions vertices output from TCS A function e.g. curve equation can be used to position vertices Teapot made up of tessellated patches Eqn to determine tessellated vertex location from control points

33 Geometry Shader After Tesselation shader. Can Handle whole primitives Generate new primitives Generate no primitives (cull)

34 References Hill and Kelley, chapter 11 Angel and Shreiner, Interactive Computer Graphics, 6 th edition, Chapter 10 Shreiner, OpenGL Programming Guide, 8 th edition

### parametric spline curves

parametric spline curves 1 curves used in many contexts fonts (2D) animation paths (3D) shape modeling (3D) different representation implicit curves parametric curves (mostly used) 2D and 3D curves are

### Curves and Surfaces. Goals. How do we draw surfaces? How do we specify a surface? How do we approximate a surface?

Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] Goals How do we draw surfaces? Approximate with polygons Draw polygons

### Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points

### CSE 167: Lecture 13: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Introduction to Computer Graphics Lecture 13: Bézier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #6 due Friday, Nov 18

### Essential Mathematics for Computer Graphics fast

John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

### We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant

### Surface Modeling. Polygon Surfaces. Types: Generating models: Polygon Tables. Set of surface polygons that enclose an object interior

Surface Modeling Types: Polygon surfaces Curved surfaces Volumes Generating models: Interactive Procedural Polygon Surfaces Set of surface polygons that enclose an object interior Slide 1 Slide 2 Polygon

On-Line Geometric Modeling Notes QUADRATIC BÉZIER CURVES Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview The Bézier curve

### Geometric Modelling & Curves

Geometric Modelling & Curves Geometric Modeling Creating symbolic models of the physical world has long been a goal of mathematicians, scientists, engineers, etc. Recently technology has advanced sufficiently

### CHAPTER 1 Splines and B-splines an Introduction

CHAPTER 1 Splines and B-splines an Introduction In this first chapter, we consider the following fundamental problem: Given a set of points in the plane, determine a smooth curve that approximates the

### Modeling Curves and Surfaces

Modeling Curves and Surfaces Graphics I Modeling for Computer Graphics!? 1 How can we generate this kind of objects? Umm!? Mathematical Modeling! S Do not worry too much about your difficulties in mathematics,

### We want to define smooth curves: - for defining paths of cameras or objects. - for defining 1D shapes of objects

lecture 10 - cubic curves - cubic splines - bicubic surfaces We want to define smooth curves: - for defining paths of cameras or objects - for defining 1D shapes of objects We want to define smooth surfaces

### Figure 2.1: Center of mass of four points.

Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would

### Chapter 3-3D Modeling

Chapter 3-3D Modeling Polygon Meshes Geometric Primitives Interpolation Curves Levels Of Detail (LOD) Constructive Solid Geometry (CSG) Extrusion & Rotation Volume- and Point-based Graphics 1 The 3D rendering

### Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11

Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter

### BEZIER CURVES AND SURFACES

Department of Applied Mathematics and Computational Sciences University of Cantabria UC-CAGD Group COMPUTER-AIDED GEOMETRIC DESIGN AND COMPUTER GRAPHICS: BEZIER CURVES AND SURFACES Andrés Iglesias e-mail:

### Computer Graphics (CS 543) Lecture 1 (Part 1): Introduction to Computer Graphics

Computer Graphics (CS 543) Lecture 1 (Part 1): Introduction to Computer Graphics Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) What is Computer Graphics (CG)? Computer

### H.Calculating Normal Vectors

Appendix H H.Calculating Normal Vectors This appendix describes how to calculate normal vectors for surfaces. You need to define normals to use the OpenGL lighting facility, which is described in Chapter

### 5. GEOMETRIC MODELING

5. GEOMETRIC MODELING Types of Curves and Their Mathematical Representation Types of Surfaces and Their Mathematical Representation Types of Solids and Their Mathematical Representation CAD/CAM Data Exchange

### (Refer Slide Time: 1:42)

Introduction to Computer Graphics Dr. Prem Kalra Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture - 10 Curves So today we are going to have a new topic. So far

### 4. Factor polynomials over complex numbers, describe geometrically, and apply to real-world situations. 5. Determine and apply relationships among syn

I The Real and Complex Number Systems 1. Identify subsets of complex numbers, and compare their structural characteristics. 2. Compare and contrast the properties of real numbers with the properties of

### Degree Reduction of Interval SB Curves

International Journal of Video&Image Processing and Network Security IJVIPNS-IJENS Vol:13 No:04 1 Degree Reduction of Interval SB Curves O. Ismail, Senior Member, IEEE Abstract Ball basis was introduced

### Books. CS155b Computer Graphics. Homework. Additional References. Syllabus. Goals

CS155b Computer Graphics Instructor: Giovanni Motta (gim@ieee.org) Volen, Room #255. Phone: x62718 Class: Mon. and Wed. from 5 to 6:30pm Abelson #131 Teaching Assistants: Anthony Bucci (abucci@cs) John

### Dhiren Bhatia Carnegie Mellon University

Dhiren Bhatia Carnegie Mellon University University Course Evaluations available online Please Fill! December 4 : In-class final exam Held during class time All students expected to give final this date

### A Short Introduction to Computer Graphics

A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical

### Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

### Computer Animation: Art, Science and Criticism

Computer Animation: Art, Science and Criticism Tom Ellman Harry Roseman Lecture 4 Parametric Curve A procedure for distorting a straight line into a (possibly) curved line. The procedure lives in a black

### Computer Graphics. 2.1 Mathematics

2 Computer Graphics What You Will Learn: The objectives of this chapter are quite ambitious; you should refer to the references cited in each Section to get a deeper explanation of the topics presented.

### Introduction to Computer Graphics

Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 torsten@sfu.ca www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics

### NURBS Drawing Week 5, Lecture 10

CS 430/536 Computer Graphics I NURBS Drawing Week 5, Lecture 10 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

### Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Parametric Curves (Com S 477/577 Notes) Yan-Bin Jia Oct 8, 2015 1 Introduction A curve in R 2 (or R 3 ) is a differentiable function α : [a,b] R 2 (or R 3 ). The initial point is α[a] and the final point

### Computer Applications in Textile Engineering. Computer Applications in Textile Engineering

3. Computer Graphics Sungmin Kim http://latam.jnu.ac.kr Computer Graphics Definition Introduction Research field related to the activities that includes graphics as input and output Importance Interactive

### DesignMentor: A Pedagogical Tool for Computer Graphics and Computer Aided Design

DesignMentor: A Pedagogical Tool for Computer Graphics and Computer Aided Design John L. Lowther and Ching Kuang Shene Programmers: Yuan Zhao and Yan Zhou (ver 1) Budirijanto Purnomo (ver 2) Michigan Technological

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### Tessellation of Trimmed NURBS Surfaces using Multipass Shader Algorithms on the GPU BACHELOR THESIS. Mark Geiger

Tessellation of Trimmed NURBS Surfaces using Multipass Shader Algorithms on the GPU BACHELOR THESIS Mark Geiger Duale Hochschule Baden-Württemberg Bachelor Thesis Tessellation of Trimmed NURBS Surfaces

### Engineering Geometry

Engineering Geometry Objectives Describe the importance of engineering geometry in design process. Describe coordinate geometry and coordinate systems and apply them to CAD. Review the right-hand rule.

### 1/25/16. Polygon Meshes and Implicit Surfaces. Shape Representations. Modeling Complex Shapes. What do we need from shapes in Computer Graphics?

CSCI 420 Computer Graphics Lecture 8 and Constructive Solid Geometry [Angel Ch. 10] Jernej Barbic University of Southern California Modeling Complex Shapes An equation for a sphere is possible, but how

### Polygon Clipping and Filling Week 3, Lecture 5

CS 430/536 Computer Graphics I Polygon Clipping and Filling Week 3, Lecture 5 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science

### NURBS Drawing Week 5, Lecture 10

CS 430/536 Computer Graphics I NURBS Drawing Week 5, Lecture 10 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

### Parametric Representation of Curves and Surfaces

Parametric Representation of Crves and Srfaces How does the compter compte crves and srfaces? MAE 455 Compter-Aided Design and Drafting Types of Crve Eqations Implicit Form Explicit Form Parametric Form

### Interactive Math Glossary Terms and Definitions

Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Additive Property of Area the process of finding an the area of a shape by totaling the areas

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### REVISED GCSE Scheme of Work Mathematics Higher Unit 6. For First Teaching September 2010 For First Examination Summer 2011 This Unit Summer 2012

REVISED GCSE Scheme of Work Mathematics Higher Unit 6 For First Teaching September 2010 For First Examination Summer 2011 This Unit Summer 2012 Version 1: 28 April 10 Version 1: 28 April 10 Unit T6 Unit

### Computer Graphics: Visualisation Lecture 3. Taku Komura Institute for Perception, Action & Behaviour

Computer Graphics: Visualisation Lecture 3 Taku Komura tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour Taku Komura Computer Graphics & VTK 1 Last lecture... Visualisation can be greatly

### Interactive Computer Graphics

Interactive Computer Graphics A Top-Down Approach Using OpenGL FIFTH EDITION EDWARD ANGEL UNIVERSITY OF NEW MEXICO PEARSON Addison Wesley Boston San Francisco New York London Toronto Sydney Tokyo Singapore

### COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg September 28, 2016 ii T. W. Sederberg iii Preface I have taught a course at Brigham Young University titled Computer Aided Geometric Design since 1983.

### The Not-Formula Book for C1

Not The Not-Formula Book for C1 Everything you need to know for Core 1 that won t be in the formula book Examination Board: AQA Brief This document is intended as an aid for revision. Although it includes

### A matrix method for degree-raising of B-spline curves *

VOI. 40 NO. 1 SCIENCE IN CHINA (Series E) February 1997 A matrix method for degree-raising of B-spline curves * QIN Kaihuai (%*>/\$) (Department of Computer Science and Technology, Tsinghua University,

### INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y).

INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 =0, x 1 = π 4, x

### Course Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics

Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)

### Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

### Middle Grades Mathematics 5 9

Middle Grades Mathematics 5 9 Section 25 1 Knowledge of mathematics through problem solving 1. Identify appropriate mathematical problems from real-world situations. 2. Apply problem-solving strategies

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### Lecture 3. Mathematical Induction

Lecture 3 Mathematical Induction Induction is a fundamental reasoning process in which general conclusion is based on particular cases It contrasts with deduction, the reasoning process in which conclusion

### Senior Secondary Australian Curriculum

Senior Secondary Australian Curriculum Mathematical Methods Glossary Unit 1 Functions and graphs Asymptote A line is an asymptote to a curve if the distance between the line and the curve approaches zero

### The distance of a curve to its control polygon J. M. Carnicer, M. S. Floater and J. M. Peña

The distance of a curve to its control polygon J. M. Carnicer, M. S. Floater and J. M. Peña Abstract. Recently, Nairn, Peters, and Lutterkort bounded the distance between a Bézier curve and its control

### Corollary. (f є C n+1 [a,b]). Proof: This follows directly from the preceding theorem using the inequality

Corollary For equidistant knots, i.e., u i = a + i (b-a)/n, we obtain with (f є C n+1 [a,b]). Proof: This follows directly from the preceding theorem using the inequality 120202: ESM4A - Numerical Methods

### Parametric Curves (Part 1)

Parametric Curves (Part 1) Jason Lawrence CS445: Graphics Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin Parametric Curves and Surfaces Part 1:

### Chapter 1 Quadratic Equations in One Unknown (I)

Tin Ka Ping Secondary School 015-016 F. Mathematics Compulsory Part Teaching Syllabus Chapter 1 Quadratic in One Unknown (I) 1 1.1 Real Number System A Integers B nal Numbers C Irrational Numbers D Real

### MATH Activities ver3

MATH Activities ver3 This content summary list is for the 2011-12 school year. Detailed Content Alignment Documents to State & Common Core Standards are posted on www.pendalearning.com NOTE: Penda continues

### Number Sense and Operations

Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

### GAME ENGINE DESIGN. A Practical Approach to Real-Time Computer Graphics. ahhb. DAVID H. EBERLY Geometrie Tools, Inc.

3D GAME ENGINE DESIGN A Practical Approach to Real-Time Computer Graphics SECOND EDITION DAVID H. EBERLY Geometrie Tools, Inc. ahhb _ jfw H NEW YORK-OXFORD-PARIS-SAN DIEGO fl^^h ' 4M arfcrgsbjlilhg, SAN

### We have learnt that the order of how we draw objects in 3D can have an influence on how the final image looks

Review: Last Week We have learnt that the order of how we draw objects in 3D can have an influence on how the final image looks Depth-sort Z-buffer Transparency Orientation of triangle (order of vertices)

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

### Exact Values of the Sine and Cosine Functions in Increments of 3 degrees

Exact Values of the Sine and Cosine Functions in Increments of 3 degrees The sine and cosine values for all angle measurements in multiples of 3 degrees can be determined exactly, represented in terms

### Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small

### Example Degree Clip Impl. Int Sub. 1 3 2.5 1 10 15 2 3 1.8 1 5 6 3 5 1 1.7 3 5 4 10 1 na 2 4. Table 7.1: Relative computation times

Chapter 7 Curve Intersection Several algorithms address the problem of computing the points at which two curves intersect. Predominant approaches are the Bézier subdivision algorithm [LR80], the interval

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### Polygon Scan Conversion & Shading

3D Rendering Pipeline (for direct illumination) Polygon Scan Conversion & Shading Greg Humphreys CS445: Intro Graphics University of Virginia, Fall 2004 3D Primitives 3D Modeling Coordinates Modeling Transformation

### The Essentials of CAGD

The Essentials of CAGD Chapter 2: Lines and Planes Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd c 2000 Farin & Hansford

### Introduction. The Aims & Objectives of the Mathematical Portion of the IBA Entry Test

Introduction The career world is competitive. The competition and the opportunities in the career world become a serious problem for students if they do not do well in Mathematics, because then they are

### North Carolina Math 1

Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively 3. Construct viable arguments and critique the reasoning of others 4.

### Planar Curve Intersection

Chapter 7 Planar Curve Intersection Curve intersection involves finding the points at which two planar curves intersect. If the two curves are parametric, the solution also identifies the parameter values

### CSE 564: Visualization. GPU Programming (First Steps) GPU Generations. Klaus Mueller. Computer Science Department Stony Brook University

GPU Generations CSE 564: Visualization GPU Programming (First Steps) Klaus Mueller Computer Science Department Stony Brook University For the labs, 4th generation is desirable Graphics Hardware Pipeline

### Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

### Mean Value Coordinates

Mean Value Coordinates Michael S. Floater Abstract: We derive a generalization of barycentric coordinates which allows a vertex in a planar triangulation to be expressed as a convex combination of its

### INTRODUCTION TO RENDERING TECHNIQUES

INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature

### AQA Level 2 Certificate FURTHER MATHEMATICS

AQA Qualifications AQA Level 2 Certificate FURTHER MATHEMATICS Level 2 (8360) Our specification is published on our website (www.aqa.org.uk). We will let centres know in writing about any changes to the

### MATHEMATICS (CLASSES XI XII)

MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)

### CS 543: Computer Graphics Lecture 5: 3D Modeling: Polygonal Meshes. Emmanuel Agu

CS 543: Computer Graphics Lecture 5: 3D Modeling: Polygonal Meshes Emmanuel Agu 3D Modeling Previously Introduced 3D modeling Previously introduced GLUT models (wireframe/solid) and Scene Description Language

### Clipping polygons the Sutherland-Hodgman algorithm

Clipping polygons would seem to be quite complex. Clipping polygons would seem to be quite complex. single Clipping polygons would seem to be quite complex. single Clipping polygons would seem to be quite

### KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007

KEANSBURG HIGH SCHOOL Mathematics Department HSPA 10 Curriculum September 2007 Written by: Karen Egan Mathematics Supervisor: Ann Gagliardi 7 days Sample and Display Data (Chapter 1 pp. 4-47) Surveys and

### Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Questions 2007 INSTRUCTIONS: Answer all questions. Spend approximately 1 minute per mark. Question 1 30 Marks Total

### A Mathematica Package for CAGD and Computer Graphics

A Mathematica Package for CAGD and Computer Graphics Andrés Iglesias 1, Flabio Gutiérrez 1,2 and Akemi Gálvez 1 1 Departament of Applied Mathematics and Computational Sciences University of Cantabria,

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies

COMP175: Computer Graphics Lecture 1 Introduction and Display Technologies Course mechanics Number: COMP 175-01, Fall 2009 Meetings: TR 1:30-2:45pm Instructor: Sara Su (sarasu@cs.tufts.edu) TA: Matt Menke

### Spatial Deformations: FFDs, wires, wraps. Karan Singh

Spatial Deformations: FFDs, wires, wraps Karan Singh What are spatial deformations? Functional mapping from. Affine Transformations Nonlinear Deformations Axial Deformations Free-form Deformations Wires

### GRADES 7, 8, AND 9 BIG IDEAS

Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for

### South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

### Utah Core Curriculum for Mathematics

Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions

### Georgia Standards of Excellence Curriculum Map. Mathematics. GSE 8 th Grade

Georgia Standards of Excellence Curriculum Map Mathematics GSE 8 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. GSE Eighth Grade

### CAMI Education linked to CAPS: Mathematics

- 1 - TOPIC 1.1 Whole numbers _CAPS Curriculum TERM 1 CONTENT Properties of numbers Describe the real number system by recognizing, defining and distinguishing properties of: Natural numbers Whole numbers

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### with functions, expressions and equations which follow in units 3 and 4.

Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

### Domain Essential Question Common Core Standards Resources

Middle School Math 2016-2017 Domain Essential Question Common Core Standards First Ratios and Proportional Relationships How can you use mathematics to describe change and model real world solutions? How