Radiation Detection. Tom Lewellen, PhD

Size: px
Start display at page:

Download "Radiation Detection. Tom Lewellen, PhD"

Transcription

1 Radiation Detection Tom Lewellen, PhD Nuclear Medicine Basic Science Lectures basic-science-resident-lectures September 2011 Fall 2011, Copyright UW Imaging Research Laboratory

2 Main points of last week s lecture: Charged particles Short ranged in tissue ~ mm for betas (predictable, continuously slowing path) ~ µm for alphas (more sporadic path) Interactions Types: Excitation, Ionization, Bremsstrahlung Linear energy transfer (LET) - nearly continual energy transfer Bragg ionization peak (LET peaks as particle slows down) Photons Relatively long ranged (~cm) Local energy deposition - photon deposits much or all of their energy each interaction Interactions Types: Rayleigh, Photoelectric, Compton, Pair Production Compton - dominant process in tissue-equivalent materials for Nuc. Med. energies Beam hardening - polychromatic photon beam Buildup factors - narrow vs. wide beam attenuation Secondary ionization - useful for photon detection Now we shall discuss How interaction of radiation can lead to detection Fall 2011, Copyright UW Imaging Research Laboratory

3 Types of radiation relevant to Nuclear Medicine Particle! Symbol! Mass (MeV/c 2 )! Charge Electron! e-, β -!! 0.511!!! -1 Positron! e+, β+!! 0.511!!! +1 Alpha!! α!! 3700!!! +2 Photon! γ! no rest mass!! none

4 α Particle Range in Matter mono-energetic Loses energy in a more or less continuous slowing down process as it travels through matter. The distance it travels (range) depend only upon its initial energy and its average energy loss rate in the medium. The range for an α particle emitted in tissue is on the order of µm s. α µm s

5 β Particle Range in Matter continuous energy spectrum β particle ranges vary from one electron to the next, even for βs of the same energy in the same material. This is due to different types of scattering events the β encounters (i.e., scattering events, bremsstrahlung-producing collisions, etc.). The β range is often given as the maximum distance the most energetic β can travel in the medium. The range for β particles emitted in tissue is on the order of mm s. β ± mm s -

6 Interactions of Photons with Matter Exponential Penetration: N=N 0 e - λx Photoelectric effect! photon is absorbed! Compton scattering cm s! part of the energy of the photon is absorbed! scattered photon continues on with lower energy N 0 λ N x Pair production! positron-electron pair is created! requires photons above MeV! Coherent (Rayleigh) scattering! photon deflected with very little energy loss! only significant at low photon energies (<50 kev)

7 Basic Radiation Detector System incoming radiation Pulse or Current Amplify & condition Analog -todigital stored to disk

8 Basic Radiation Detector Systems What do you want to know about the radiation? Energy? Position (where did it come from)? How many / how much? Important properties of radiation detectors (depends on application) Energy resolution Spatial resolution Sensitivity Counting Speed

9 Pulse Mode versus Current Mode Pulse mode Detect individual photons Required for NM imaging applications Current mode Measures average rates of photon flux Avoids dead-time losses

10 Types of Radiation Detectors detection modes / functionality Counters Number of interactions Pulse mode Spectrometers Number and energy of interactions Pulse mode Dosimeters Net amount of energy deposited Current mode Imaging Systems CT = current mode NM = pulse mode

11 Types of Radiation Detectors physical composition Gas-filled detectors Solid-state (semiconductor) detectors Organic scintillators (liquid & plastic) Inorganic scintillators scintillators operate with a photo-sensor (i.e. another detector)

12 Gas-filled Detectors Ionizing event in air requires about 34 ev From: Physics in Nuclear Medicine (Sorenson and Phelps)

13 Gas-filled detectors (operates in three ranges) Geiger-Muller counters Proportional counters Ionization chambers Radiation survey meters Dosimeters (dose calibrator) From: Radiation Detection and Measurement (Knoll, GF)

14 Ionization Chambers Ionization chamber region From: Physics in Nuclear Medicine (Sorenson and Phelps) ATOMLAB 200 Dose Calibrator No amplification No dead-time Signal = liberated charge Settings for different isotopes Calibrations

15 Geiger-Muller counters No energy info Long dead-time Thin window probe From: Physics in Nuclear Medicine (Sorenson and Phelps)

16 Dosimeter - Film Badge A) Film pack B) Black (opaque) envelope C) Film D) Plastic film badge F) Teflon filter G) Lead filter H) Copper filter I) Aluminum filter J) Open window Dose calibrator From: The Essential Physics of Medical Imaging (Bushberg, et al) Fall 2011, Copyright UW Imaging Research Laboratory

17 Pocket Dosimeter Dose calibrator From: The Essential Physics of Medical Imaging (Bushberg, et al) Fall 2011, Copyright UW Imaging Research Laboratory

18 Semiconductor Detectors Works on same principle as gas-filled detectors (i.e., production of electron-hole pairs in semiconductor material) Only ~3 ev required for ionization (~34 ev, air) Usually needs to be cooled (thermal noise) Usually requires very high purity materials or introduction of compensating impurities that donate electrons to fill electron traps caused by other impurities

19 Semiconductor Detectors CdZnTe detectors - can operate at room temperature - starting to show up in some dedicated cardiac gamma cameras

20 Organic Liquid Scintillators (liquid scintillator cocktail) Organic solvent - must dissolve scintillator material and radioactive sample Primary scintillator (p-terphenyl and PPO) Secondary solute (wave-shifter) Additives (e.g., solubilizers) Effective for measuring beta particles (e.g., H-3, C-14).

21 Inorganic Scintillators (physical characteristics) Absorption of radiation lifts electrons from valence to conduction band Impurities (activators) create energy levels within the band gap permitting visible light scintillations

22 Inorganic Scintillators (physical characteristics) NaI(Tl) BGO LSO(Ce) GSO(Ce) relevant detector property Density (gm/cm3) Effective Atomic Number Attenuation Coefficient 511 kev, cm -1 ) Light Output (photons/mev) 40K ~8K ~30K ~20K Decay Time 230 ns 300 ns 12 ns 60 ns 40 ns sensitivity energy & spatial resol. counting speed Wavelength 410 nm 480 nm 420 nm 430 nm Index of Refraction Hygroscopy yes no no no Rugged no yes yes no photo-sensor matching manufacturing / cost

23 photo-sensor needed with scintillators Photomultiplier Tube (PMT) - most common photo-sensor currently in use for Nuclear medicine From: Physics in Nuclear Medicine (Sorenson and Phelps)

24 Sample Spectroscopy System Hardware incoming highenergy gamma ray converted to 1000s of visible photons ~20% converted to electrons electron multiplication becomes electric signal larger current or voltage more electrons more scintillation photons higher gamma energy deposited in crystal From: The Essential Physics of Medical Imaging (Bushberg, et al)

25 Silicon Photomultipliers (Geiger-mode APDs) Fall 2011, Copyright UW Imaging Research Laboratory

26 GM-APDs Arrays at the UW Zecotek Photonics Type 3-N 8x8 array with 3.3 mm square elements SensL 4x4 array with 3 mm square elements Fall 2011, Copyright UW Imaging Research Laboratory

27 Interactions of Photons with a Spectrometer A. Photoelectric B. Compton + Photoelectric C. Compton D. Photoelectric with characteristic x-ray escape E. Compton scattered photon from lead shield F. Characteristic x-ray from lead shield From: The Essential Physics of Medical Imaging (Bushberg, et al)

28 Sample Spectroscopy System Output Ideal Energy Spectrum counting mode From: The Essential Physics of Medical Imaging (Bushberg, et al) From: Physics in Nuclear Medicine (Sorenson and Phelps) Remember - you are looking at the energy deposited in the detector!

29 Energy Resolution Realistic Energy Spectrum From: Physics in Nuclear Medicine (Sorenson and Phelps)

30 Sample Spectrum (Cs-137) Detection efficiency (32 kev vs. 662 kev) A. Photopeak B. Compton continuum C. Compton edge D.! Backscatter peak E.! Barium x-ray photopeak F.! Lead x-rays From: The Essential Physics of Medical Imaging (Bushberg, et al)

31 Sample Spectrum (Tc-99m) A. Photopeak B. Photoelectric with iodine K-shell x-ray escape C. Absorption of lead x- rays from shield From: The Essential Physics of Medical Imaging (Bushberg, et al)

32 Sample Spectrum (In-111) source detector From: Physics in Nuclear Medicine (Sorenson and Phelps)

33 Effects of Pulse Pileup (count rate) From: Physics in Nuclear Medicine (Sorenson and Phelps)

34 Interaction Rate and Dead-time Measured rate dead time True rate paralyzable time non-paralyzable = recorded events From: The Essential Physics of Medical Imaging (Bushberg, et al)

35 Calibrations Energy calibration (imaging systems/spectroscopy) Adjust energy windows around a known photopeak Often done with long-lives isotopes for convenience! Cs-137: Eγ= 662 kev (close to PET 511 kev), T 1/2 =30yr! Co-57: Eγ= 122 kev (close to Tc99m 140 kev ), T 1/2 =272d Dose calibration (dose calibrator) Measure activity of know reference samples (e.g., Cs-137 and Co-57) Linearity measured by repeated measurements of a decaying source (e.g., Tc-99m)

36 Raphex Question D58. The window setting used for Tc-99m is set with the center at 140 kev with a width of +/-14 kev i.e., 20%. The reason for this is: A. The energy spread is a consequence of the statistical broadening when amplifying the initial energy deposition event in the NaI(Tl) crystal. B. The 140 kev gamma ray emission of Tc-99m is not truly monoenergetic but the center of a spectrum of emissions. C. The higher and lower Gaussian tails are a consequence of compton scattering within the patient. D. The result of additional scattered photons generated in the collimator. E. A consequence of patient motion during scanning.

37 Raphex Answer D58. The window setting used for Tc-99m is set with the center at 140 kev with a width of +/-14 kev i.e., 20%. The reason for this is: A. Photons, which impinge upon the crystal, lose energy by Compton scattering and the photoelectric effect. Both processes convert the gamma ray energy into electron energy. On average approximately one electron hole pair is produced per 30 ev of g amma ray e nergy deposited in the crystal. These electrons result in the release of visible ligh t when trapped in the crystal. These light quanta are collected and amplified by photomultiplier tubes. The statistical fluctuation in the number of light quanta collected and their amplification is what causes the spread in the detected energy peak, even when most of the Tc-99m photons deposit exactly 140 kev in the NaI(Tl) crystal.

38 The count rate for a 1 µci source is measured as 25 kcps by a well counter. Assuming no corrections are applied, the measured count rate for a 10 µci source will be: a. 250 kcps Question b. Less than 250 kcps c. Greater than 250 kcps Because of deadtime effects Fall 2011, Copyright UW Imaging Research Laboratory

39 How many peaks would you expect for a 99m-Tc sample placed outside a well counter? 1 1 Question What about inside a well counter? Is your answer dose dependent? At higher doses you will get distortion of the photopeak and a high end tail on the energy spectra due to pileup. See slide 31 from lecture. Fall 2011, Copyright UW Imaging Research Laboratory

40 How many peaks would you expect for a 68-Ge sample placed outside a well counter? What about inside a well counter? Outside, 1 Inside, 2 Question 68-Ge is a positron emitter (e.g., PET) Fall 2011, Copyright UW Imaging Research Laboratory

41 Question Of the following, the most efficient detector for x-rays is: a. Geiger counter b. NaI(Tl) detector c. Single channel analyzer d. Ionization chamber e. Pocket (self-reading) dosimeter NaI(Tl) is an inorganic scintillator and is much more efficient at detecting x-rays than gas filled detectors. From: The Essential Physics of Medical Imaging (Bushberg, et al) Fall 2011, Copyright UW Imaging Research Laboratory

42 Question Gas multiplication occurs in: a. Geiger-Mueller counters b. Scintillation detectors c. Semiconductor detectors d. Ionization chambers e. Dose calibrators From: The Essential Physics of Medical Imaging (Bushberg, et al) Fall 2011, Copyright UW Imaging Research Laboratory

43 Question (True or False) In a photomultiplier tube, the photocathode is at a positive voltage with respect to the first dynode. False Small changes to the voltage applied to an ionization chamber have a large effect upon the charge collected from each interaction with ionizing radiation. False From: The Essential Physics of Medical Imaging (Bushberg, et al) Fall 2011, Copyright UW Imaging Research Laboratory

44 Question (True or False) A 1 MeV beta particle produces a pulse of the same amplitude in a G-M detector as a 200 kev beta particle. True From: The Essential Physics of Medical Imaging (Bushberg, et al) Fall 2011, Copyright UW Imaging Research Laboratory

45 Question Which detector system is most appropriate and accurate for the measurement of a pure beta source: a. Ionization chamber b. Geiger Muller tube c. NaI(Tl) well scintillation counter d. Thermoluminescent dosimeter e. Liquid scintillation counter From: Raphex Fall 2011, Copyright UW Imaging Research Laboratory

46 Question A pulse height analyzer (PHA) window can be used to: a. Identify the energy of a radionuclide b. Reject Compton scattered photons c. Separate a mixture of radionuclides d. Alter the sensitivity or resolution of the system e. All of the above From: Raphex Fall 2011, Copyright UW Imaging Research Laboratory

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

Introduction to Geiger Counters

Introduction to Geiger Counters Introduction to Geiger Counters A Geiger counter (Geiger-Muller tube) is a device used for the detection and measurement of all types of radiation: alpha, beta and gamma radiation. Basically it consists

More information

GAMMA-RAY SPECTRA REFERENCES

GAMMA-RAY SPECTRA REFERENCES GAMMA-RAY SPECTRA REFERENCES 1. K. Siegbahn, Alpha, Beta and Gamma-Ray Spectroscopy, Vol. I, particularly Chapts. 5, 8A. 2. Nucleonics Data Sheets, Nos. 1-45 (available from the Resource Centre) 3. H.E.

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

Gamma and X-Ray Detection

Gamma and X-Ray Detection Gamma and X-Ray Detection DETECTOR OVERVIEW The kinds of detectors commonly used can be categorized as: a. Gas-filled Detectors b. Scintillation Detectors c. Semiconductor Detectors The choice of a particular

More information

Tutorial 4.6 Gamma Spectrum Analysis

Tutorial 4.6 Gamma Spectrum Analysis Tutorial 4.6 Gamma Spectrum Analysis Slide 1. Gamma Spectrum Analysis In this module, we will apply the concepts that were discussed in Tutorial 4.1, Interactions of Radiation with Matter. Slide 2. Learning

More information

Gamma Rays OBJECT: READINGS: APPARATUS: BACKGROUND:

Gamma Rays OBJECT: READINGS: APPARATUS: BACKGROUND: Gamma Rays OBJECT: To understand the various interactions of gamma rays with matter. To calibrate a gamma ray scintillation spectrometer, using gamma rays of known energy, and use it to measure the energy

More information

CHAPTER 7 SCINTILLATION COUNTING

CHAPTER 7 SCINTILLATION COUNTING CHAPTER 7 SCINTILLATION COUNTING Radiation of various types is widely utilized for non-destructive inspection and testing such as in medical diagnosis, industrial inspection, material analysis and other

More information

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies (Ci), where 1 Ci = 3.7x10 10 disintegrations per second.

More information

Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008.

Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008. Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008. X-Ray Fluorescence (XRF) is a very simple analytical technique: X-rays excite atoms

More information

Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics

Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics PART I Geiger Tube: Optimal Operating Voltage and Resolving Time Objective: To become acquainted with the operation and characteristics

More information

ABSORPTION OF BETA AND GAMMA RADIATION

ABSORPTION OF BETA AND GAMMA RADIATION ABSORPTION OF BETA AND GAMMA RADIATION The purpose of this experiment is to understand the interaction of radiation and matter, and the application to radiation detection and shielding Apparatus: 137 Cs

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission Principles of Imaging Science I (RAD119) X-ray Production & Emission X-ray Production X-rays are produced inside the x-ray tube when high energy projectile electrons from the filament interact with the

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

ORTEC AN34 Experiment 7 High-Resolution Gamma-Ray Spectroscopy

ORTEC AN34 Experiment 7 High-Resolution Gamma-Ray Spectroscopy Equipment Needed from ORTEC GEM10P4/CFG-PV4/DWR-30 Coaxial Detector System (Includes detector, cryostat, dewar, preamplifier, and 12-ft. cable pack); typical specifications: 10% relative efficiency, 1.75

More information

INFO-0545 RADIOISOTOPE SAFETY MONITORING FOR RADIOACTIVE CONTAMINATION

INFO-0545 RADIOISOTOPE SAFETY MONITORING FOR RADIOACTIVE CONTAMINATION INFO-0545 RADIOISOTOPE SAFETY MONITORING FOR RADIOACTIVE CONTAMINATION 1. INTRODUCTION This document provides general guidance for monitoring and controlling radioactive contamination, and relating the

More information

Radiation Strip Thickness Measurement Systems

Radiation Strip Thickness Measurement Systems Radiation Strip Thickness Measurement Systems During the past years we have increased our sales of radiometric Vollmer strip thickness measurement systems, i.e. X-ray or isotope gauges, dramatically. Now,

More information

EDS system. CRF Oxford Instruments INCA CRF EDAX Genesis EVEX- NanoAnalysis Table top system

EDS system. CRF Oxford Instruments INCA CRF EDAX Genesis EVEX- NanoAnalysis Table top system EDS system Most common X-Ray measurement system in the SEM lab. Major elements (10 wt% or greater) identified in ~10 secs. Minor elements identifiable in ~100 secs. Rapid qualitative and accurate quantitative

More information

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (no PiN and pinned Diodes) Peter Fischer P. Fischer, ziti, Uni Heidelberg, Seite 1 Overview Reminder: Classical Photomultiplier

More information

ENERGY LOSS OF ALPHA PARTICLES IN GASES

ENERGY LOSS OF ALPHA PARTICLES IN GASES Vilnius University Faculty of Physics Department of Solid State Electronics Laboratory of Applied Nuclear Physics Experiment No. ENERGY LOSS OF ALPHA PARTICLES IN GASES by Andrius Poškus (e-mail: andrius.poskus@ff.vu.lt)

More information

EDXRF of Used Automotive Catalytic Converters

EDXRF of Used Automotive Catalytic Converters EDXRF of Used Automotive Catalytic Converters Energy Dispersive X-Ray Fluorescence (EDXRF) is a very powerful technique for measuring the concentration of elements in a sample. It is fast, nondestructive,

More information

Medical Applications of radiation physics. Riccardo Faccini Universita di Roma La Sapienza

Medical Applications of radiation physics. Riccardo Faccini Universita di Roma La Sapienza Medical Applications of radiation physics Riccardo Faccini Universita di Roma La Sapienza Outlook Introduction to radiation which one? how does it interact with matter? how is it generated? Diagnostics

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

Outline. Dosimetry by Pulse-Mode Detectors. Gas multiplication. Introduction. Cylindrical counter. Gas multiplication 4/27/2011

Outline. Dosimetry by Pulse-Mode Detectors. Gas multiplication. Introduction. Cylindrical counter. Gas multiplication 4/27/2011 Outline Dosimetry by Pulse-Mode Detectors Chapter 15 F.A. Attix, Introduction to Radiological Physics and Radiation Dosimetry Problem statement Scintillators Summary Introduction Integrating dosimeters

More information

Gamma-Ray Spectroscopy Dan Amidei and Ramón Torres-Isea

Gamma-Ray Spectroscopy Dan Amidei and Ramón Torres-Isea University of Michigan Phys 441-442 Advanced Physics Laboratory Gamma-Ray Spectroscopy Dan Amidei and Ramón Torres-Isea Gamma rays are high energy photons created in the decay transitions of radioactive

More information

A VERSATILE COUNTER FOR CONVERSION MÖSSBAUER SPECTROSCOPY

A VERSATILE COUNTER FOR CONVERSION MÖSSBAUER SPECTROSCOPY A VERSATILE COUNTER FOR CONVERSION MÖSSBAUER SPECTROSCOPY I. BIBICU 1, G. NICOLESCU 2, L. CIOLACU 2, L. SERBINA 2 1 National Institute for Materials Physics, Bucharest 77125, Romania, bibicu@infim.ro 2

More information

How Does One Obtain Spectral +Imaging Data

How Does One Obtain Spectral +Imaging Data How Does One Obtain Spectral +Imaging Data What we observe depends on the instruments that one observes with! In x and γ-ray spectroscopy we have a wide variety of instruments with different properties

More information

Selection, use and maintenance of portable monitoring instruments

Selection, use and maintenance of portable monitoring instruments HSE information sheet Selection, use and maintenance of portable monitoring instruments Ionising Radiation Protection Series No 7 Introduction The Ionising Radiations Regulations 1999 (IRR99) 1 require

More information

Jorge E. Fernández Laboratory of Montecuccolino (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli, 16, 40136 Bologna, Italy

Jorge E. Fernández Laboratory of Montecuccolino (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli, 16, 40136 Bologna, Italy Information technology (IT) for teaching X- and gamma-ray transport: the computer codes MUPLOT and SHAPE, and the web site dedicated to photon transport Jorge E. Fernández Laboratory of Montecuccolino

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

Information about the T9 beam line and experimental facilities

Information about the T9 beam line and experimental facilities Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions

More information

Energy Dispersive Spectroscopy on the SEM: A Primer

Energy Dispersive Spectroscopy on the SEM: A Primer Energy Dispersive Spectroscopy on the SEM: A Primer Bob Hafner This primer is intended as background for the EDS Analysis on the SEM course offered by the University of Minnesota s Characterization Facility.

More information

Copyright 1999 2010 by Mark Brandt, Ph.D. 12

Copyright 1999 2010 by Mark Brandt, Ph.D. 12 Introduction to Absorbance Spectroscopy A single beam spectrophotometer is comprised of a light source, a monochromator, a sample holder, and a detector. An ideal instrument has a light source that emits

More information

Advanced Physics Laboratory. XRF X-Ray Fluorescence: Energy-Dispersive analysis (EDXRF)

Advanced Physics Laboratory. XRF X-Ray Fluorescence: Energy-Dispersive analysis (EDXRF) Advanced Physics Laboratory XRF X-Ray Fluorescence: Energy-Dispersive analysis (EDXRF) Bahia Arezki Contents 1. INTRODUCTION... 2 2. FUNDAMENTALS... 2 2.1 X-RAY PRODUCTION... 2 2. 1. 1 Continuous radiation...

More information

Calculating particle properties of a wave

Calculating particle properties of a wave Calculating particle properties of a wave A light wave consists of particles (photons): The energy E of the particle is calculated from the frequency f of the wave via Planck: E = h f (1) A particle can

More information

Laue lens for Nuclear Medicine

Laue lens for Nuclear Medicine Laue lens for Nuclear Medicine PhD in Physics Gianfranco Paternò Ferrara, 6-11-013 Supervisor: prof. Vincenzo Guidi Sensors and Semiconductors Lab, Department of Physics and Earth Science, University of

More information

A Review of Emerging Gamma Detector Technologies for Airborne. Radiation Monitoring

A Review of Emerging Gamma Detector Technologies for Airborne. Radiation Monitoring A Review of Emerging Gamma Detector Technologies for Airborne Steven Bell ANSRI Dublin 2015 12-14 January Radiation Monitoring Airborne radiation Particulates: sub-μm to sub-mm contaminated with fission

More information

Environmental Health and Safety Radiation Safety. Module 1. Radiation Safety Fundamentals

Environmental Health and Safety Radiation Safety. Module 1. Radiation Safety Fundamentals Environmental Health and Safety Radiation Safety Module 1 Radiation Safety Fundamentals Atomic Structure Atoms are composed of a variety of subatomic particles. The three of interest to Health Physics

More information

GAMMA AND X-RAYS DETECTION

GAMMA AND X-RAYS DETECTION Chapter 9 GAMMA AND X-RAYS DETECTION M. Ragheb 10/1/2014 9.1 INTRODUCTION Selecting a particular type of radiation detection approach for a given application depends upon the photons energy range of interest

More information

X Ray Flourescence (XRF)

X Ray Flourescence (XRF) X Ray Flourescence (XRF) Aspiring Geologist XRF Technique XRF is a rapid, relatively non destructive process that produces chemical analysis of rocks, minerals, sediments, fluids, and soils It s purpose

More information

X-ray Spectroscopy. 1. Introduction. 2. X-Ray Spectra of the Elements. Physics 441-442 Advanced Physics Laboratory

X-ray Spectroscopy. 1. Introduction. 2. X-Ray Spectra of the Elements. Physics 441-442 Advanced Physics Laboratory University of Michigan February 2005 Physics 441-442 Advanced Physics Laboratory X-ray Spectroscopy 1. Introduction X-rays are KeV photons. Atomic X-rays are emitted during electronic transitions to the

More information

1090 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 50, NO. 4, AUGUST 2003. Intelligent Gamma-Ray Spectroscopy Using 3-D Position-Sensitive Detectors

1090 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 50, NO. 4, AUGUST 2003. Intelligent Gamma-Ray Spectroscopy Using 3-D Position-Sensitive Detectors 1090 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 50, NO. 4, AUGUST 2003 Intelligent Gamma-Ray Spectroscopy Using 3-D Position-Sensitive Detectors Carolyn E. Lehner, Student Member, IEEE, Zhong He, Senior

More information

Production of X-rays and Interactions of X-rays with Matter

Production of X-rays and Interactions of X-rays with Matter Production of X-rays and Interactions of X-rays with Matter Goaz and Pharoah. Pages 11-20. Neill Serman Electrons traveling from the filament ( cathode) to the target (anode) convert a small percentage

More information

RADIATION DETECTION & ANALYSIS SYSTEMS FOR WATER

RADIATION DETECTION & ANALYSIS SYSTEMS FOR WATER RADIATION DETECTION & ANALYSIS SYSTEMS FOR WATER On Line Remote Sensing Systems On-line remote monitoring of gamma radiation in seawater using spectroscopy and gross monitoring detectors with remote command

More information

Radioactivity III: Measurement of Half Life.

Radioactivity III: Measurement of Half Life. PHY 192 Half Life 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity as a function

More information

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

More information

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts Electron Microscopy 3. SEM Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts 3-1 SEM is easy! Just focus and shoot "Photo"!!! Please comment this picture... Any

More information

Unit 1 Practice Test. Matching

Unit 1 Practice Test. Matching Unit 1 Practice Test Matching Match each item with the correct statement below. a. proton d. electron b. nucleus e. neutron c. atom 1. the smallest particle of an element that retains the properties of

More information

ENERGY PER PHOTOELECTRON IN A COINCIDENCE LIQUID SCINTILLATION COUNTER AS A FUNCTION OF ELECTRON ENERGY. Donald L. Horrocks

ENERGY PER PHOTOELECTRON IN A COINCIDENCE LIQUID SCINTILLATION COUNTER AS A FUNCTION OF ELECTRON ENERGY. Donald L. Horrocks ENERGY PER PHOTOELECTRON IN A COINCIDENCE LIQUID SCINTILLATION COUNTER AS A FUNCTION OF ELECTRON ENERGY Donald L. Horrocks Nuclear Systems Operations Beckman Instruments, Inc. SmithKlirie Beckman Irvine,

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission

Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission MAVEN Science Community Workshop December 2, 2012 Particles and Fields Package Solar Energetic Particle Instrument (SEP) Davin Larson and the SEP

More information

BRUKER ADVANCED X-RAY SOLUTIONS GUIDE TO XRF BASICS

BRUKER ADVANCED X-RAY SOLUTIONS GUIDE TO XRF BASICS BRUKER ADVANCED X-RAY SOLUTIONS GUIDE TO XRF BASICS This guide was first published in West Germany under the title Introduction to X-ray Fluorescence Analysis (XRF). 2000-2006 Bruker AXS GmbH, Karlruhe,

More information

BETA DECAY. transition probability/time

BETA DECAY. transition probability/time Beta Decay 1 BETA DECAY Introduction Beta particles are positrons and electrons released in a weak nuclear decays. The study of beta-decay spectra led to discovery of the neutrino. This experiment is concerned

More information

Lectures about XRF (X-Ray Fluorescence)

Lectures about XRF (X-Ray Fluorescence) 1 / 38 Lectures about XRF (X-Ray Fluorescence) Advanced Physics Laboratory Laurea Magistrale in Fisica year 2013 - Camerino 2 / 38 X-ray Fluorescence XRF is an acronym for X-Ray Fluorescence. The XRF technique

More information

Introduction to the Monte Carlo method

Introduction to the Monte Carlo method Some history Simple applications Radiation transport modelling Flux and Dose calculations Variance reduction Easy Monte Carlo Pioneers of the Monte Carlo Simulation Method: Stanisław Ulam (1909 1984) Stanislaw

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

TOF-PET DETECTOR CONCEPT BASED ON ORGANIC SCINTILLATORS

TOF-PET DETECTOR CONCEPT BASED ON ORGANIC SCINTILLATORS TOF-PET DETECTOR CONCEPT BASED ON ORGANIC SCINTILLATORS P. Moskal, T. Bednarski, P. Białas, M. Ciszewska, E. Czerwiński, A. Heczko, M. Kajetanowicz, Ł. Kapłon, A. Kochanowski, G. Konopka-Cupiał, G. Korcyl,

More information

Truly digital PET imaging

Truly digital PET imaging Advanced Molecular Imaging Vereos PET/CT Truly digital PET imaging Philips proprietary Digital Photon Counting technology Vereos PET/CT is the first commercially available scanner to offer truly digital

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity 1. The number of electrons in an atom of atomic number Z and mass number A is 1) A 2) Z 3) A+Z 4) A-Z 2. The repulsive force between the positively charged protons does

More information

Main properties of atoms and nucleus

Main properties of atoms and nucleus Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom

More information

Gamma Ray Spectroscopy

Gamma Ray Spectroscopy Gamma Ray Spectroscopy Experiment GRS University of Florida Department of Physics PHY4803L Advanced Physics Laboratory Objective Techniques in gamma ray spectroscopy using a NaI scintillation detector

More information

The accurate calibration of all detectors is crucial for the subsequent data

The accurate calibration of all detectors is crucial for the subsequent data Chapter 4 Calibration The accurate calibration of all detectors is crucial for the subsequent data analysis. The stability of the gain and offset for energy and time calibration of all detectors involved

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Components for Infrared Spectroscopy. Dispersive IR Spectroscopy

Components for Infrared Spectroscopy. Dispersive IR Spectroscopy Components for Infrared Spectroscopy Mid-IR light: 00-000 cm - (5.5 m wavelength) Sources: Blackbody emitters Globar metal oxides Nernst Glower: Silicon Carbide Detectors: Not enough energy for photoelectric

More information

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010 Lecture 2 Macroscopic Interactions 22.106 Neutron Interactions and Applications Spring 2010 Objectives Macroscopic Interactions Atom Density Mean Free Path Moderation in Bulk Matter Neutron Shielding Effective

More information

AN INVESTIGATION INTO THE USEFULNESS OF THE ISOCS MATHEMATICAL EFFICIENCY CALIBRATION FOR LARGE RECTANGULAR 3 x5 x16 NAI DETECTORS

AN INVESTIGATION INTO THE USEFULNESS OF THE ISOCS MATHEMATICAL EFFICIENCY CALIBRATION FOR LARGE RECTANGULAR 3 x5 x16 NAI DETECTORS AN INVESTIGATION INTO THE USEFULNESS OF THE ISOCS MATHEMATICAL EFFICIENCY CALIBRATION FOR LARGE RECTANGULAR 3 x5 x16 NAI DETECTORS Frazier L. Bronson CHP Canberra Industries, Inc. 800 Research Parkway,

More information

The photoionization detector (PID) utilizes ultraviolet

The photoionization detector (PID) utilizes ultraviolet Chapter 6 Photoionization Detectors The photoionization detector (PID) utilizes ultraviolet light to ionize gas molecules, and is commonly employed in the detection of volatile organic compounds (VOCs).

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

C1 Medical Imaging Modalities & Characteristics. 4005-759 Linwei Wang

C1 Medical Imaging Modalities & Characteristics. 4005-759 Linwei Wang C1 Medical Imaging Modalities & Characteristics 4005-759 Linwei Wang Major Types of Medical Imaging Modalities X-ray Imaging Computed Tomography (CT) Magnetic Resonance Imaging (MRI) Nuclear Imaging Positron

More information

X-Ray Fluorescence Analytical Techniques

X-Ray Fluorescence Analytical Techniques X-Ray Fluorescence Analytical Techniques Moussa Bounakhla & Mounia Tahri CNESTEN CONTENT SECTION I: Basic in X-Ray Fluorescence I. History of X-Ray Fluorescence II. Introduction III. Physics of X-Rays

More information

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance:

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance: Problem Set 6 UV-Vis Absorption Spectroscopy 13-1. Express the following absorbances in terms of percent transmittance: a 0.051 b 0.918 c 0.379 d 0.261 e 0.485 f 0.072 A = log P o /P = log1/t = - log T

More information

Exploitation of geometric occlusion and covariance spectroscopy in a gamma sensor array

Exploitation of geometric occlusion and covariance spectroscopy in a gamma sensor array DOE/NV/25946-1846 SPIE ' # Optics+Photonics Exploitation of geometric occlusion and covariance spectroscopy in a gamma sensor array Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff, Stephen Mitchell,

More information

Energy. Mechanical Energy

Energy. Mechanical Energy Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

More information

ACCELERATORS AND MEDICAL PHYSICS 2

ACCELERATORS AND MEDICAL PHYSICS 2 ACCELERATORS AND MEDICAL PHYSICS 2 Ugo Amaldi University of Milano Bicocca and TERA Foundation EPFL 2-28.10.10 - U. Amaldi 1 The icone of radiation therapy Radiation beam in matter EPFL 2-28.10.10 - U.

More information

16th International Toki Conference on Advanced Imaging and Plasma Diagnostics

16th International Toki Conference on Advanced Imaging and Plasma Diagnostics 16th International Toki Conference on Advanced Imaging and Plasma Diagnostics Temperature Diagnostics for Field-Reversed Configuration Plasmas on the Pulsed High Density (PHD) Experiment Hiroshi Gota,

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

ON-STREAM XRF ANALYSIS OF HEAVY METALS AT PPM CONCENTRATIONS

ON-STREAM XRF ANALYSIS OF HEAVY METALS AT PPM CONCENTRATIONS Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 130 ABSTRACT ON-STREAM XRF ANALYSIS OF HEAVY METALS AT PPM CONCENTRATIONS G Roach and J Tickner

More information

Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

More information

Radiation Monitoring System DLMon

Radiation Monitoring System DLMon Radiation Monitoring System DLMon Fields of Application: Dose rate monitoring system for use in nuclear medicine Area monitoring ( e.g. manufacturing of radionuclides, laboratories, nuclear power plants,

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

Chapter 3 SYSTEM SCANNING HARDWARE OVERVIEW

Chapter 3 SYSTEM SCANNING HARDWARE OVERVIEW Qiang Lu Chapter 3. System Scanning Hardware Overview 79 Chapter 3 SYSTEM SCANNING HARDWARE OVERVIEW Since all the image data need in this research were collected from the highly modified AS&E 101ZZ system,

More information

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 8: Optical Absorption Spring 2002 Yan Zhang and Ali Shakouri, 05/22/2002 (Based

More information

Cyclotron Centre in Poland and 2D thermoluminescence dosimetry

Cyclotron Centre in Poland and 2D thermoluminescence dosimetry Cyclotron Centre in Poland and 2D thermoluminescence dosimetry Jan Gajewski Institute of Nuclear Physics, Kraków, Poland Department of Radiation Dosimetry Nuclear Physics Institute Academy of Science of

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

TOF FUNDAMENTALS TUTORIAL

TOF FUNDAMENTALS TUTORIAL TOF FUNDAMENTALS TUTORIAL Presented By: JORDAN TOF PRODUCTS, INC. 990 Golden Gate Terrace Grass Valley, CA 95945 530-272-4580 / 530-272-2955 [fax] www.rmjordan.com [web] info@rmjordan.com [e-mail] This

More information

Gamma Ray Scintillation Spectroscopy

Gamma Ray Scintillation Spectroscopy γ scintillation 1 Gamma Ray Scintillation Spectroscopy '86, rev'94 (THK) Object To understand the various interactions of gamma rays with matter. To calibrate a gamma ray scintillation spectrometer, using

More information

Construction of an Alpha- Beta and Gamma-Sensitive Radiation Detector on the Basis of a Low-Cost PIN-Diode

Construction of an Alpha- Beta and Gamma-Sensitive Radiation Detector on the Basis of a Low-Cost PIN-Diode Construction of an Alpha- Beta and Gamma-Sensitive Radiation Detector on the Basis of a Low-Cost PIN-Diode Bernd Laquai, 12.6.2012 Encouraged by the observation, that the Am241 alpha source of an old smoke

More information

THEORY OF XRF. Getting acquainted with the principles. Peter Brouwer

THEORY OF XRF. Getting acquainted with the principles. Peter Brouwer THEORY OF XRF Getting acquainted with the principles Peter Brouwer THEORY OF XRF Getting acquainted with the principles Peter Brouwer First published in The Netherlands under the title Theory of XRF. Copyright

More information

This course is one of the electives in a new graduate certificate program in radiation protection.

This course is one of the electives in a new graduate certificate program in radiation protection. ENVR SCI 520 Radiation Instrumentation. 3 Credits (2 lecture, 1 lab) Lecture m, W, 1615 to 1705 Lab TBD (1 block of 2 h 50 min) This course is one of the electives in a new graduate certificate program

More information

Objectives 404 CHAPTER 9 RADIATION

Objectives 404 CHAPTER 9 RADIATION Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

More information

Fiber Optics: Fiber Basics

Fiber Optics: Fiber Basics Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded

More information

Energy band diagrams. Single atom. Crystal. Excited electrons cannot move. Excited electrons can move (free electrons)

Energy band diagrams. Single atom. Crystal. Excited electrons cannot move. Excited electrons can move (free electrons) Energy band diagrams In the atoms, the larger the radius, the higher the electron potential energy Hence, electron position can be described either by radius or by its potential energy In the semiconductor

More information

An Innovative Method for Dead Time Correction in Nuclear Spectroscopy

An Innovative Method for Dead Time Correction in Nuclear Spectroscopy An Innovative Method for Dead Time Correction in Nuclear Spectroscopy Upp, Daniel L.; Keyser, Ronald M.; Gedcke, Dale A.; Twomey, Timothy R.; and Bingham, Russell D. PerkinElmer Instruments, Inc. ORTEC,

More information

Characteristics of an Integrated Germanium Detector Based Gamma-Ray Spectrometer for Monitoring Systems

Characteristics of an Integrated Germanium Detector Based Gamma-Ray Spectrometer for Monitoring Systems Characteristics of an Integrated Germanium Detector Based Gamma-Ray Spectrometer for Monitoring Systems Ronald M. Keyser, Timothy R. Twomey, Sam Hitch ORTEC 801 South Illinois Avenue Oak Ridge, TN, 37831

More information

Flow cytometry basics fluidics, optics, electronics...

Flow cytometry basics fluidics, optics, electronics... Title Flow cytometry basics fluidics, optics, electronics... RNDr. Jan Svoboda, Ph.D. Cytometry and Microscopy Core Facility IMB, CAS, v.v.i Vídeňská 1083 Fluorescence Fluorescence occurs when a valence

More information

Study of 3D position determination of the interaction point in monolithic scintillator blocks for PET

Study of 3D position determination of the interaction point in monolithic scintillator blocks for PET FACULTY OF SCIENCE Department of Physics Study of 3D position determination of the interaction point in monolithic scintillator blocks for PET Thesis submitted in the fulfillment of the requirements for

More information

Truly digital PET imaging

Truly digital PET imaging Truly digital PET imaging Philips proprietary Digital Photon Counting technology Vereos PET/CT is the first commercially available scanner to offer truly digital PET, resulting in significantly improved

More information

Monte Carlo simulation of a scanning whole body counter and the effect of BOMAB phantom size on the calibration.

Monte Carlo simulation of a scanning whole body counter and the effect of BOMAB phantom size on the calibration. Monte Carlo simulation of a scanning whole body counter and the effect of BOMAB phantom size on the calibration. Gary H. Kramer, Linda C. Burns and Steven Guerriere Human Monitoring Laboratory, Radiation

More information