Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics

Size: px
Start display at page:

Download "Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics"

Transcription

1 Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics PART I Geiger Tube: Optimal Operating Voltage and Resolving Time Objective: To become acquainted with the operation and characteristics of the Geiger-Müller (GM) counter. To determine the best operating voltage and the resolving time of a Geiger counter. The resolving or dead time is used to correct for coincidence losses in the counter. Experimental Apparatus: A typical Geiger-Müller counter consists of a cylindrical gas filled tube, a high voltage supply, a counter and timer. A large potential difference is applied between the tube body which acts as a cathode (negative potential) and a wire down the tube axis which acts as an anode (positive potential). The sensitivity of the instrument is such that any particle capable of ionizing a single gas molecule in the GM tube (thus producing an electron-ion pair) will initiate a discharge in the tube. What happens next depends on the voltage across the gas-filled tube. For the lowest applied voltages, only the ions created by direct interaction with the incoming radiation are collected. In this mode, the detector is called an ion chamber. For higher voltages, the ions created are accelerated by the potential difference gaining sufficient energy to create more ion pairs. This results in a localized avalanche of ions reaching the wire. This is the proportional region. The pulse height (or voltage of the signal) is proportional to the number of initial ion pairs created by the incoming radiation. This in turn is proportional to the energy of the incoming radiation. For even higher voltages, the new ions can create additional photons which move out of the local region and further down the tube; essentially the discharge propagates an avalanche of ionization throughout the entire tube, which results in a voltage pulse--typically a volt in amplitude. Since the discharge is an avalanche and not a pulse proportional to the energy deposited, the output pulse amplitude is independent of the energy of the initiating particle and, therefore, gives no information as to the nature of the particle. This is the Geiger-Müller region. In spite of the fact that the GM counter is not a proportional device, it is an extremely versatile instrument in that it may be used for counting alpha particles, beta particles, and gamma rays. Such a large output signal obviates the need for more than a single stage of amplification in the associated electronic counter. Geiger-Mueller tubes exhibit dead time effects due to the recombination time of the internal gas ions after the occurrence of an ionizing event. The actual dead time depends on several factors including the active volume and shape of the detector and can range from a few microseconds for miniature tubes, to over 1000 microseconds for large volume devices. When making absolute measurements it is important to compensate for dead time losses at higher counting rates. Please keep all sources in the lead brick house. Take out only the one you need, and return it as soon as you are done taking a measurement. 1

2 Optimal Operating Voltage: Procedure [This section requires the GM tube from the Tel-X-Ometer X-Ray apparatus. If another group is currently using this detector you will need to negotiate with them for its use. You only need it for 30 minutes or less and you can do this part of the experiment at any time (so go on to the next part if the X-ray GM tube is not currently available).] Using the Geiger tube from the Tel-X-Ometer, with the voltage set at about 400 V, find the most active source among those in the red box in the lead brick enclosure. Simply set the Geiger counter on the table and balance a source right up against the end of it. You will need to determine which side of the source is the most active. Once you ve identified the most active source, use that to measure counting rate versus voltage. Take readings across the full range of voltages available. The counting rates will vary significantly, so watch the number of counts for at least 30 seconds and record what seems to be the average. In particular, you will want to take careful reading around the "turn-on" voltage. Estimate an uncertainty for each reading. Graph counting rate vs. voltage. On your graph, identify the regions from those described in the Introduction. Are all regions present? If not, why do you think they might not be represented? Given your data, identify the optimum operating voltage range for this GM detector. Dead Time: Theory and Procedure As noted above, once a discharge has been initiated in the GM tube a new pulse will not be detected until the previous discharge has extinguished itself. Thus there is a dead time τ associated with each counting event. If we measure a counting rate r in a time interval Δt, the total detector dead time will be T dead = (rδt)τ. Thus the true counting rate R and the measured counting rate r are related by R(Δt T dead ) = r Δt so if we know τ we can correct our measured count rates as follows r R = 1 rτ. (1) We can determine τ by measuring the individual and combined counting rates from two high flux samples. If we call these rate r 1, r, and r c we have the following three equations: r 1 = R 1 (1 r 1 τ) (a) r = R (1 r τ) (b) r c = (R 1 +R )(1 r c τ) (c) with the three unknowns R 1, R, and τ. Solve this set of equations for τ and show that the dead time is approximately given by: τ r 1 + r r c r 1 r. (3) Here we will make such measurements using our two 5µC 137 Cs sources (located in the clear plastic box) and DataStudio to determine the dead time for the PASCO Geiger counter. (Note

3 that the operating voltage for this detector cannot be adjusted). Set up the DataStudio for a 30s counting interval. Devise a way to place the 137 Cs sources so that when both are in place they touch one another, are positioned midway between the ends of the tube, and so that each source can be removed then replaced in exactly the same position. With only one cesium radioactive source in place, take a five-minute count (10 measurements). The count rate should be in the range 10,000-0,000 counts per 30s. Record the count as r 1. Place the second source beside the first (being careful not to disturb the first) and take a fiveminute count of the combined sources. Record this count as r c. Now remove the first source and take a third five-minute count. Record this as r. Repeat with the source positions reversed because these sources are not of equal strength. (Note: If the count rate exceeds 65,000 DataStudio will "reset" its counter). Calculate the dead time τ of the PASCO GM detector for both arrangements using Eq. (3). Now that we know τ for the PASCO GM tube we can use Eq. (1) to correct any counting rates measured with this detector. Apply such a correction (if necessary) for data taken in the next section. PART II Statistics of Nuclear Counting* *[Portions of the Theoretical Background are taken from Experimental γ -Ray Spectroscopy and Investigations of Environmental Radioactivity Experiment 9 by Randolph S. Peterson, Spectrum Techniques, Inc.] Objective: To study the statistical fluctuations which occur in the disintegration rate of an essentially constant radioactive source (one whose half-life is very long compared to the time duration of the experiment). Theoretical Background: We can never know the true value of something through measurement. If we make a large number of measurements under (nearly) identical conditions, then we believe this sample s average to be near the true value. Sometimes the underlying statistics of the randomness in the measurements allows us to express how far our sample average is likely to be from the real value. Such is the situation with radioactive decay, with its probability for decay, λ, that is the same for identical atoms. Radioactive materials disintegrate in a completely random manner. There exists for any radioactive substance a certain probability that any particular nucleus will emit radiation within a given time interval. This probability is the same for all nuclei of the same type and is characteristic of that type of nucleus. There is no way to predict the time at which an individual nucleus will decay. However, when a large number of disintegrations take place, there is a definite average decay rate 3

4 which is characteristic of the particular nuclear type. Measurements of the decay rate taken over small time intervals will yield values which fluctuate randomly about the average value and consequently which follow the laws of statistics. Hence in dealing with data from measurements of radioactivity, the results of the laws of statistics must be applied. Given that λt is the probability of decay for a single nucleus in time interval t (and thus 1 λt is the probability for non-decay), the probability P(n,t) of n nuclei decaying in time t from a sample of N identical atoms is given exactly by the binomial distribution P(n,t) = N! n!(n n)! (λt)n (1 λt) N n. (4) The mean and variance of this distribution are µ = Np and σ = Np(1 p), respectively, where p = λt. If λt is small and N is large such that µ = λtn remains small, this binomial distribution can be approximated by the Poisson distribution P(n,t) = µn n! e µ where µ = λnt is the average number of decays in time interval t. (5) If λt is small and N is large such that µ = λtn is not small (perhaps greater than 100), the binomial distribution can be approximated by the normal (Gaussian) distribution function, P(n,t) = (n µ) 1 πσ e σ. (6) where σ µ is the square of the standard deviation, and gives a measure of the width of the distribution. Experimentally we measure a sources activity or count rate. We expect a large number of independent measurements to be described by the above probability functions where we approximate µ with our sample average A and the standard deviation σ with the square root of A. Thus, given a large number of measurements M of a source's activity, A, the frequency ƒ(a) = MP(A)ΔA with which we measure A (per interval ΔA) is expected to follow Poisson statistics if A is small: P Poisson (A) = A A (7) A! e A and Gaussian statistics if A is large: P Gaussian (A) = 1 ) A. π A (8) Note that ƒ(a) is the number of times our measurement falls in the range A A+ΔA. 4

5 FIGURE 1. Gaussian fit to counting frequency (using a 10 cps bin width) for 60 Co. A plot of experimental counting data, binned using ΔA = 10cps, and the fit ƒ(a) = M ΔA P Gaussian (A) are shown in Fig. 1. The data in Fig. 1 are compiled from M=1,04 consecutive measurements of the number of detected gammas per second emitted by a 60 Co source. The frequency of the measured counting rates is well represented by the Gaussian distribution curve of Eq (8) with A = 7,540. Note that only the sample average and the total number of samples are necessary to calculate the distribution curve. In principle, Eq. (4) could also be used to model the data of Fig. 1, however, application of Eq. (4) is extremely cumbersome when dealing with large numbers. In an actual experiment, there is always some background radiation present. This background is mostly due to cosmic radiation reaching the earth, but is also composed of radiation from very small amounts of radioactive material present in the walls, floor, and tables of the laboratory. If the intensity of radiation from the radioactive material being used is very large compared to the background, then the background may be ignored. If, however, a weak radiation source is being used, it is important to subtract the background in order to determine the decay rate of the radioactive material itself. In this experiment, correction for the background will not be necessary. However, the background radiation will be used as a very low intensity source of radiation, hence the Poisson distribution will best approximate the data. In this experiment on statistics of nuclear counting, the rate at which radiation reaches a detector from a long lived radioactive source is determined by measuring the number of events occurring in the detector during a specified time interval (we will use 10s). Many measurements are made and the average is calculated from the values obtained. Even though each value represents the measurement of the same quantity, the values will be different. The cause for the differences is the statistical fluctuation in the amount of radiation reaching the detector. A careful study is then 5

6 made of the fluctuations, and the precision of the measurement is determined. A similar procedure is followed for background radiation, and the results of the two studies are compared. Procedure: Collect count rate data for the 5µC 137 Cs and the 1µC Na sources using the PASCO Geiger tube and Data Studio. Acquire a series of at least 00 measurements (more is better) of the number of counts using a time interval of ten seconds. Place each of the sources back in the lead brick housing when you are done with them. With no sources out, take a series of at least 00 measurements (more is better) of the number of room background counts using the same time interval. In the same manner, take a "shielded background" count rate by using lead bricks to shield the top of the detector (but do not set the bricks on the detector!). Data Analysis: For each of the four data sets, use the DataStudio statistics functions to determine the sample average A and standard deviation σ. In each case compare the actual standard deviation with the approximation σ A. Do you find agreement? Do you expect to? Copy the Data Studio data to Excel or KaleidaGraph and construct a frequency distribution curve for each data set. You will need to bin your data to create these plots. You have to do this manually in Excel. Thus, it is recommended that you use KG where data can be automatically binned using the "bin data" function. For each data set, determine the fraction of data points that are within the range A ± σ. Make similar determinations for the fraction of measurements within the ranges A ± σ and A ± 3σ. Numerically integrate the Gaussian probability function (Eq. (6); let µ = 0) to determine what fraction of normally distributed data is expected to fall within each of the above ranges. Do your data sets appear to be normally distributed? Compare each experimental frequency graph with a plot of the theoretical Gaussian (for all data sets) and Poisson (for background data only) distributions by plotting these distributions on the graph along with your data (as done in Fig. 1). You can construct these functions in KG using the "Formula Entry" window. The Gaussian distribution should be symmetric about A while the Poisson distribution should be skewed slightly toward the lower counts. How well is your data described by these distribution functions? Questions: 1. Do any of the counts in this part (i.e., Part II) of the lab need to be corrected for coincidence (i.e., dead-time) losses? Why or why not?. Are the half-lives of 137 Cs and Na "long" compared to your counting times? Could you have carried out the same type of analysis using 116 In as the source? 6

Introduction to Geiger Counters

Introduction to Geiger Counters Introduction to Geiger Counters A Geiger counter (Geiger-Muller tube) is a device used for the detection and measurement of all types of radiation: alpha, beta and gamma radiation. Basically it consists

More information

ARTIFICIAL RADIOACTIVITY

ARTIFICIAL RADIOACTIVITY Vilnius University Faculty of Physics Department of Solid State Electronics Laboratory of Atomic and Nuclear Physics Experiment No. 8 ARTIFICIAL RADIOACTIVITY by Andrius Poškus (e-mail: andrius.poskus@ff.vu.lt)

More information

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies (Ci), where 1 Ci = 3.7x10 10 disintegrations per second.

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

Radioactivity III: Measurement of Half Life.

Radioactivity III: Measurement of Half Life. PHY 192 Half Life 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity as a function

More information

CHI-SQUARE: TESTING FOR GOODNESS OF FIT

CHI-SQUARE: TESTING FOR GOODNESS OF FIT CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity

More information

GAMMA-RAY SPECTRA REFERENCES

GAMMA-RAY SPECTRA REFERENCES GAMMA-RAY SPECTRA REFERENCES 1. K. Siegbahn, Alpha, Beta and Gamma-Ray Spectroscopy, Vol. I, particularly Chapts. 5, 8A. 2. Nucleonics Data Sheets, Nos. 1-45 (available from the Resource Centre) 3. H.E.

More information

Gamma and X-Ray Detection

Gamma and X-Ray Detection Gamma and X-Ray Detection DETECTOR OVERVIEW The kinds of detectors commonly used can be categorized as: a. Gas-filled Detectors b. Scintillation Detectors c. Semiconductor Detectors The choice of a particular

More information

Gamma Rays OBJECT: READINGS: APPARATUS: BACKGROUND:

Gamma Rays OBJECT: READINGS: APPARATUS: BACKGROUND: Gamma Rays OBJECT: To understand the various interactions of gamma rays with matter. To calibrate a gamma ray scintillation spectrometer, using gamma rays of known energy, and use it to measure the energy

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

THE STATISTICAL TREATMENT OF EXPERIMENTAL DATA 1

THE STATISTICAL TREATMENT OF EXPERIMENTAL DATA 1 THE STATISTICAL TREATMET OF EXPERIMETAL DATA Introduction The subject of statistical data analysis is regarded as crucial by most scientists, since error-free measurement is impossible in virtually all

More information

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is. Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

More information

BETA DECAY. transition probability/time

BETA DECAY. transition probability/time Beta Decay 1 BETA DECAY Introduction Beta particles are positrons and electrons released in a weak nuclear decays. The study of beta-decay spectra led to discovery of the neutrino. This experiment is concerned

More information

Main properties of atoms and nucleus

Main properties of atoms and nucleus Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

Experiment 10. Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Experiment 10. Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado 1 Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Introduction Some radioactive isotopes formed billions of years ago have half- lives so long that they are

More information

Experiment #4, Ohmic Heat

Experiment #4, Ohmic Heat Experiment #4, Ohmic Heat 1 Purpose Physics 18 - Fall 013 - Experiment #4 1 1. To demonstrate the conversion of the electric energy into heat.. To demonstrate that the rate of heat generation in an electrical

More information

E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

More information

Electron Charge to Mass Ratio Matthew Norton, Chris Bush, Brian Atinaja, Becker Steven. Norton 0

Electron Charge to Mass Ratio Matthew Norton, Chris Bush, Brian Atinaja, Becker Steven. Norton 0 Electron Charge to Mass Ratio Matthew Norton, Chris Bush, Brian Atinaja, Becker Steven Norton 0 Norton 1 Abstract The electron charge to mass ratio was an experiment that was used to calculate the ratio

More information

Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

More information

ABSORPTION OF BETA AND GAMMA RADIATION

ABSORPTION OF BETA AND GAMMA RADIATION ABSORPTION OF BETA AND GAMMA RADIATION The purpose of this experiment is to understand the interaction of radiation and matter, and the application to radiation detection and shielding Apparatus: 137 Cs

More information

The Time Constant of an RC Circuit

The Time Constant of an RC Circuit The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?

More information

An Innovative Method for Dead Time Correction in Nuclear Spectroscopy

An Innovative Method for Dead Time Correction in Nuclear Spectroscopy An Innovative Method for Dead Time Correction in Nuclear Spectroscopy Upp, Daniel L.; Keyser, Ronald M.; Gedcke, Dale A.; Twomey, Timothy R.; and Bingham, Russell D. PerkinElmer Instruments, Inc. ORTEC,

More information

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics 13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Tutorial 4.6 Gamma Spectrum Analysis

Tutorial 4.6 Gamma Spectrum Analysis Tutorial 4.6 Gamma Spectrum Analysis Slide 1. Gamma Spectrum Analysis In this module, we will apply the concepts that were discussed in Tutorial 4.1, Interactions of Radiation with Matter. Slide 2. Learning

More information

An example: helium isotopes. An example: helium isotopes. Limits to Detection/Measurement. Lecture 14 Measurements II: Mass spectrometry

An example: helium isotopes. An example: helium isotopes. Limits to Detection/Measurement. Lecture 14 Measurements II: Mass spectrometry Limits to Detection/Measurement Ionization is fundamentally a Probabilistic Process Just like radioactive decay So is transmission through the analyzer There is an intrinsic statistical uncertainty Proportional

More information

ELECTRON SPIN RESONANCE Last Revised: July 2007

ELECTRON SPIN RESONANCE Last Revised: July 2007 QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron

More information

Millikan Oil Drop Experiment Matthew Norton, Jurasits Christopher, Heyduck William, Nick Chumbley. Norton 0

Millikan Oil Drop Experiment Matthew Norton, Jurasits Christopher, Heyduck William, Nick Chumbley. Norton 0 Millikan Oil Drop Experiment Matthew Norton, Jurasits Christopher, Heyduck William, Nick Chumbley Norton 0 Norton 1 Abstract The charge of an electron can be experimentally measured by observing an oil

More information

= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy.

= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy. ERROR PROPAGATION For sums, differences, products, and quotients, propagation of errors is done as follows. (These formulas can easily be calculated using calculus, using the differential as the associated

More information

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,

More information

Calculation of Source-detector Solid Angle, Using Monte Carlo Method, for Radioactive Sources with Various Geometries and Cylindrical Detector

Calculation of Source-detector Solid Angle, Using Monte Carlo Method, for Radioactive Sources with Various Geometries and Cylindrical Detector International Journal of Pure and Applied Physics ISSN 0973-1776 Volume 3, Number 2 (2007), pp. 201 208 Research India Publications http://www.ripublication.com/ijpap.htm Calculation of Source-detector

More information

Standard Deviation Estimator

Standard Deviation Estimator CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of

More information

NOTES ON The Structure of the Atom

NOTES ON The Structure of the Atom NOTES ON The Structure of the Atom Chemistry is the study of matter and its properties. Those properties can be explained by examining the atoms that compose the matter. An atom is the smallest particle

More information

Infrared Spectroscopy: Theory

Infrared Spectroscopy: Theory u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

More information

Lecture 5 : The Poisson Distribution

Lecture 5 : The Poisson Distribution Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,

More information

6.4 Normal Distribution

6.4 Normal Distribution Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

More information

99.37, 99.38, 99.38, 99.39, 99.39, 99.39, 99.39, 99.40, 99.41, 99.42 cm

99.37, 99.38, 99.38, 99.39, 99.39, 99.39, 99.39, 99.40, 99.41, 99.42 cm Error Analysis and the Gaussian Distribution In experimental science theory lives or dies based on the results of experimental evidence and thus the analysis of this evidence is a critical part of the

More information

INFO-0545 RADIOISOTOPE SAFETY MONITORING FOR RADIOACTIVE CONTAMINATION

INFO-0545 RADIOISOTOPE SAFETY MONITORING FOR RADIOACTIVE CONTAMINATION INFO-0545 RADIOISOTOPE SAFETY MONITORING FOR RADIOACTIVE CONTAMINATION 1. INTRODUCTION This document provides general guidance for monitoring and controlling radioactive contamination, and relating the

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

ENERGY LOSS OF ALPHA PARTICLES IN GASES

ENERGY LOSS OF ALPHA PARTICLES IN GASES Vilnius University Faculty of Physics Department of Solid State Electronics Laboratory of Applied Nuclear Physics Experiment No. ENERGY LOSS OF ALPHA PARTICLES IN GASES by Andrius Poškus (e-mail: andrius.poskus@ff.vu.lt)

More information

Ramon 2.2 Radon-Monitor

Ramon 2.2 Radon-Monitor Ramon 2.2 Radon-Monitor Applications Measurement Modes - Technology - Quality 1 1) Application of the Ramon 2.2: The Ramon2.2 Radon monitor is a unique device and it can be best described as an automatic,

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

PROBABILITY AND SAMPLING DISTRIBUTIONS

PROBABILITY AND SAMPLING DISTRIBUTIONS PROBABILITY AND SAMPLING DISTRIBUTIONS SEEMA JAGGI AND P.K. BATRA Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 0 0 seema@iasri.res.in. Introduction The concept of probability

More information

Descriptive Statistics

Descriptive Statistics Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

More information

Homework #10 (749508)

Homework #10 (749508) Homework #10 (749508) Current Score: 0 out of 100 Description Homework on quantum physics and radioactivity Instructions Answer all the questions as best you can. 1. Hewitt10 32.E.001. [481697] 0/5 points

More information

KAZAN FEDERAL UNIVERSITY INSTITUTE OF PHYSICS DETECTING RADIOACTIVITY RECORDING THE CHARACTERISTIC OF A GEIGER-MÜLLER COUNTER TUBE

KAZAN FEDERAL UNIVERSITY INSTITUTE OF PHYSICS DETECTING RADIOACTIVITY RECORDING THE CHARACTERISTIC OF A GEIGER-MÜLLER COUNTER TUBE KAZAN FEDERAL UNIVERSITY INSTITUTE OF PHYSICS DETECTING RADIOACTIVITY RECORDING THE CHARACTERISTIC OF A GEIGER-MÜLLER COUNTER TUBE Kazan 2013 UDK 539.164 BBK 22.38 Approved by the Editorial Board of Kazan

More information

O6: The Diffraction Grating Spectrometer

O6: The Diffraction Grating Spectrometer 2B30: PRACTICAL ASTROPHYSICS FORMAL REPORT: O6: The Diffraction Grating Spectrometer Adam Hill Lab partner: G. Evans Tutor: Dr. Peter Storey 1 Abstract The calibration of a diffraction grating spectrometer

More information

NUCLEAR MAGNETIC RESONANCE. Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706

NUCLEAR MAGNETIC RESONANCE. Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706 (revised 4/21/03) NUCLEAR MAGNETIC RESONANCE Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706 Abstract This experiment studies the Nuclear Magnetic Resonance of protons

More information

Lab #11: Determination of a Chemical Equilibrium Constant

Lab #11: Determination of a Chemical Equilibrium Constant Lab #11: Determination of a Chemical Equilibrium Constant Objectives: 1. Determine the equilibrium constant of the formation of the thiocyanatoiron (III) ions. 2. Understand the application of using a

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

Radioactivity & Particles

Radioactivity & Particles Radioactivity & Particles Introduction... 2 Atomic structure... 2 How are these particles arranged?... 2 Atomic notation... 4 Isotopes... 4 What is radioactivity?... 5 Types of Radiation: alpha, beta and

More information

Magnetic Field of a Circular Coil Lab 12

Magnetic Field of a Circular Coil Lab 12 HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,

More information

PHYA5/1. General Certificate of Education Advanced Level Examination June 2012. Unit 5 Nuclear and Thermal Physics Section A

PHYA5/1. General Certificate of Education Advanced Level Examination June 2012. Unit 5 Nuclear and Thermal Physics Section A Centre Number Surname Candidate Number For Examinerʼs Use Other Names Candidate Signature Examinerʼs Initials General Certificate of Education Advanced Level Examination June 2012 Question 1 2 Mark Physics

More information

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives. The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq.

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq. 1 Strontium-90 decays with the emission of a β-particle to form Yttrium-90. The reaction is represented by the equation 90 38 The decay constant is 0.025 year 1. 90 39 0 1 Sr Y + e + 0.55 MeV. (a) Suggest,

More information

Part 5 of 9 Radiological Control Technician Training Site Academic Training Instructor s Guide Phase I

Part 5 of 9 Radiological Control Technician Training Site Academic Training Instructor s Guide Phase I Part 5 of 9 Radiological Control Technician Training Site Academic Training Phase I Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy Radiological Control

More information

The photoionization detector (PID) utilizes ultraviolet

The photoionization detector (PID) utilizes ultraviolet Chapter 6 Photoionization Detectors The photoionization detector (PID) utilizes ultraviolet light to ionize gas molecules, and is commonly employed in the detection of volatile organic compounds (VOCs).

More information

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

Chapter 4. Probability and Probability Distributions

Chapter 4. Probability and Probability Distributions Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

More information

Radiation and the Universe Higher Exam revision questions and answers

Radiation and the Universe Higher Exam revision questions and answers Radiation and the Universe Higher Exam revision questions and answers Madeley High School Q.The names of three different processes are given in List A. Where these processes happen is given in List B.

More information

Electrical Resonance

Electrical Resonance Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

More information

Structure and Properties of Atoms

Structure and Properties of Atoms PS-2.1 Compare the subatomic particles (protons, neutrons, electrons) of an atom with regard to mass, location, and charge, and explain how these particles affect the properties of an atom (including identity,

More information

Objectives 404 CHAPTER 9 RADIATION

Objectives 404 CHAPTER 9 RADIATION Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

More information

Measurement of Muon Lifetime and Mass Using Cosmic Ray Showers

Measurement of Muon Lifetime and Mass Using Cosmic Ray Showers Measurement of Muon Lifetime and Mass Using Cosmic Ray Showers Angela Hansen Physics 4052 School of Physics and Astronomy, University of Minnesota May 4, 2001 Abstract In this experiment, we used a scintillation

More information

MEASURES OF VARIATION

MEASURES OF VARIATION NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

More information

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freely-falling body varies with time to investigate whether the velocity

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

Confidence Intervals for One Standard Deviation Using Standard Deviation

Confidence Intervals for One Standard Deviation Using Standard Deviation Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from

More information

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

More information

Introduction to Nuclear Physics

Introduction to Nuclear Physics Introduction to Nuclear Physics 1. Atomic Structure and the Periodic Table According to the Bohr-Rutherford model of the atom, also called the solar system model, the atom consists of a central nucleus

More information

Radiation Strip Thickness Measurement Systems

Radiation Strip Thickness Measurement Systems Radiation Strip Thickness Measurement Systems During the past years we have increased our sales of radiometric Vollmer strip thickness measurement systems, i.e. X-ray or isotope gauges, dramatically. Now,

More information

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & de-excitation Ionisation Molecules Constituents

More information

Carbon Dioxide and an Argon + Nitrogen Mixture. Measurement of C p /C v for Argon, Nitrogen, Stephen Lucas 05/11/10

Carbon Dioxide and an Argon + Nitrogen Mixture. Measurement of C p /C v for Argon, Nitrogen, Stephen Lucas 05/11/10 Carbon Dioxide and an Argon + Nitrogen Mixture Measurement of C p /C v for Argon, Nitrogen, Stephen Lucas 05/11/10 Measurement of C p /C v for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Author: James Dragan Lab Partner: Stefan Evans Physics Department, Stony Brook University, Stony Brook, NY 794. (Dated: December 5, 23) We study the principles behind Nuclear

More information

Electricity. Investigating spontaneous gas discharge in air as a function of pressure. LD Physics Leaflets P3.9.2.1. 0210-Sel

Electricity. Investigating spontaneous gas discharge in air as a function of pressure. LD Physics Leaflets P3.9.2.1. 0210-Sel Electricity Electrical conduction in gases Gas discharge at reduced pressure LD Physics Leaflets P3.9.2.1 Investigating spontaneous gas discharge in air as a function of pressure Objects of the experiments

More information

Environmental Health and Safety Radiation Safety. Module 1. Radiation Safety Fundamentals

Environmental Health and Safety Radiation Safety. Module 1. Radiation Safety Fundamentals Environmental Health and Safety Radiation Safety Module 1 Radiation Safety Fundamentals Atomic Structure Atoms are composed of a variety of subatomic particles. The three of interest to Health Physics

More information

CHAPTER 6 INSTRUMENTATION AND MEASUREMENTS 6.1 MEASUREMENTS

CHAPTER 6 INSTRUMENTATION AND MEASUREMENTS 6.1 MEASUREMENTS CHAPTER 6 INSTRUMENTATION AND MEASUREMENTS 6.1 MEASUREMENTS Atmospheric electricity is a field that is very easy to get into because it does not require a large capital investment for measuring equipment.

More information

Physics 1104 Midterm 2 Review: Solutions

Physics 1104 Midterm 2 Review: Solutions Physics 114 Midterm 2 Review: Solutions These review sheets cover only selected topics from the chemical and nuclear energy chapters and are not meant to be a comprehensive review. Topics covered in these

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 2011 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. To observe interference phenomena

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle?

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle? 1. In the general symbol cleus, which of the three letters Z A X for a nu represents the atomic number? 2. What is the mass number of an alpha particle? 3. What is the mass number of a beta particle? 4.

More information

Physics 3 Summer 1989 Lab 7 - Elasticity

Physics 3 Summer 1989 Lab 7 - Elasticity Physics 3 Summer 1989 Lab 7 - Elasticity Theory All materials deform to some extent when subjected to a stress (a force per unit area). Elastic materials have internal forces which restore the size and

More information

Rotational Motion: Moment of Inertia

Rotational Motion: Moment of Inertia Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body

More information

Upon completion of this lab, the student will be able to:

Upon completion of this lab, the student will be able to: 1 Learning Outcomes EXPERIMENT B4: CHEMICAL EQUILIBRIUM Upon completion of this lab, the student will be able to: 1) Analyze the absorbance spectrum of a sample. 2) Calculate the equilibrium constant for

More information

AN51 APPLICATION NOTE Revision 1

AN51 APPLICATION NOTE Revision 1 ORTEC AN51 APPLICATION NOTE Revision 1 Pulse-Processing Electronics for Single-Photon Counting with Counting Rates from 10 to 10 7 Counts/Second Summary Single-photon counting is a powerful measurement

More information

2 Binomial, Poisson, Normal Distribution

2 Binomial, Poisson, Normal Distribution 2 Binomial, Poisson, Normal Distribution Binomial Distribution ): We are interested in the number of times an event A occurs in n independent trials. In each trial the event A has the same probability

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

Unit 1 Practice Test. Matching

Unit 1 Practice Test. Matching Unit 1 Practice Test Matching Match each item with the correct statement below. a. proton d. electron b. nucleus e. neutron c. atom 1. the smallest particle of an element that retains the properties of

More information

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum Wave Function, ψ Chapter 28 Atomic Physics The Hydrogen Atom The Bohr Model Electron Waves in the Atom The value of Ψ 2 for a particular object at a certain place and time is proportional to the probability

More information

Archimedes Principle. Biological Systems

Archimedes Principle. Biological Systems Archimedes Principle Introduction Many of the substances we encounter in our every day lives do not have rigid structure or form. Such substances are called fluids and can be divided into two categories:

More information