Copyright by Mark Brandt, Ph.D. 12

Size: px
Start display at page:

Download "Copyright 1999 2010 by Mark Brandt, Ph.D. 12"

Transcription

1 Introduction to Absorbance Spectroscopy A single beam spectrophotometer is comprised of a light source, a monochromator, a sample holder, and a detector. An ideal instrument has a light source that emits with equal intensity at all wavelengths, a monochromator that is equally efficient in splitting light into narrow groups of wavelength for all wavelengths, and a detector that is sensitive and responds equally to all wavelengths. Light sources Because no single light source with the appropriate characteristics exists, most spectrophotometers use two lamps, with one for the ultraviolet region and one for the visible region. The visible lamp is usually a tungsten lamp, while the ultraviolet lamp is a deuterium lamp. An alternative, relatively rarely used in spectrophotometers, although commonly used in other types of spectroscopic instruments, is a xenon arc lamp. In a xenon arc, the flow of electrons through an electrode gap in a pressurized xenon chamber ionizes the xenon atoms; the binding of electrons to the ionized xenon results in fairly consistent light emission over a large range of wavelengths. However, the light intensity from a xenon arc drops rapidly below 280 nm. Monochromators Although prisms can be used as monochromators, most instruments use diffraction gratings. Light shining on the closely spaced grooves of a diffraction grating at an angle is separated into different wavelengths in a consistent manner, assuming that the grooves are consistently produced. Detectors The most commonly used detector is a photomultiplier tube (PMT). An incoming photon hits a thin metal film inside a vacuum tube. The metal film is maintained at a large negative potential, and emits electrons. These collide with a series of dynodes maintained at progressively lower potentials; each dynode emits several electrons in response to each incoming electron, resulting in a large amplification of the signal. Because the initial photon is required to initiate the process, most PMTs have very little dark current ( dark current is signal without light). Proper functioning of a PMT requires a constant voltage across the PMT; maintaining a constant voltage in the face of a high signal requires a well-designed instrument. PMTs are wavelength dependent, with the degree of dependence being related to the metal used in the thin film; most PMTs exhibit the greatest sensitivity at ~400 nm. Copyright by Mark Brandt, Ph.D. 12

2 An alternative type of detector uses photodiodes. Photodiodes are inexpensive but not very sensitive. Their low cost has allowed arrays of photodiodes to be set up to allow simultaneous detection of many wavelengths. In this type of spectrophotometer, the monochromator is located after the sample, so that it splits the multiwavelength light leaving the sample. A charge coupled device (CCD) is a sensitive array detector. CCDs store charges released in response to photon impacts. Because the stored charges are stable for prolonged periods, a CCD can collect data for considerable time prior to readout of the signal. They are therefore potentially extremely sensitive. They will probably displace PMTs from some uses as their price decreases. CCDs are used in digital cameras and other consumer products and are rapidly becoming less expensive as a result of both economies of scale and the development of improved production techniques. Recall that absorbance is a log function. An absorbance value of 1 is observed when 10% of the incident light reaches the detector. An absorbance value of 2 is observed when only 1% of the incident light reaches the detector. High quality PMT detectors may be able to yield accurate measurements at absorbance values of 5 or higher. Many CCD or photodiode instruments, and lower quality PMT instruments, however, tend to become unreliable at absorbance values above about 2 because too little light is reaching the detector to allow accurate measurements. Although spectrophotometer readings are usually reported as absorbance, the instruments actually measure optical density. In the simplest terms, optical density (OD) has the same definition as absorbance: " OD = log I % 0 $ ' # I & However, optical density result from any process that decreases the light intensity reaching the detector, and therefore has a variety of causes in addition to the quantum mechanical absorbance! phenomenon discussed above. One major cause of optical density is light scattering, by either particles or gas bubbles that are present in the sample. Another major cause of optical density is the sample cuvette. Cuvettes Most samples studied using visible and ultraviolet spectroscopy are liquid. The sample must therefore be placed in a transparent container to allow measurement. These containers are called cuvettes. Cuvettes are generally made from transparent plastic, glass, or quartz. Different cuvettes have different optical properties. Plastic cuvettes are increasingly popular because they do not shatter when dropped, and because their low price makes them disposable. However, plastic cuvettes tend to have considerable absorbance in the ultraviolet. Performing measurements in the far ultraviolet (below ~250 nm) requires relatively expensive (and relatively fragile) quartz cuvettes. The graph below shows absorbance spectra for cuvettes of different composition, where each Copyright by Mark Brandt, Ph.D. 13

3 cuvette only contained water. It is apparent that the plastic cuvettes become opaque in the ultraviolet, and that only the quartz cuvette is useful below about 260 nm. Glass cuvettes are also opaque in the ultraviolet; unlike plastic cuvettes, glass cuvettes are effectively identical in physical appearance to quartz cuvettes. An important control experiment therefore involves measuring the absorbance properties of the cuvette to ensure that these properties are appropriate for the experiment. One issue with most spectrophotometers is that the acquisition software allows zeroing of the instrument with a sample present. Note, however, that the optical density of the sample is still present: an optical density measurement of zero may result fomr a sample with a high optical density if the instrument is zeroed to the opaque sample. While generating an instrument baseline using air as a sample will alleviate this issue, it must be remembered that air absorbs light at wavelengths shorter than about 210 nm. A second potential problem with cuvettes is that not all cuvettes have the same pathlength in all orientations. In the spectrophotometer layout below, note that the cuvette has a 1 cm pathlength as drawn. However, if the cuvette were inserted into the instrument in a different orientation, the pathlength would be considerably shorter (about 0.3 cm). Since absorbance depends on pathlength (the l in A = εcl), the absorbance will also be smaller than expected for a sample of a given concentration. In addition to interference by the cuvette, solution components may absorb. Molecules containing disulfide bonds generally absorb at ~ nm, which Copyright by Mark Brandt, Ph.D. 14

4 means that molecules such as oxidized β-mercaptoethanol or dithiothreitol will interfere with some measurements of proteins. In addition, nearly all molecules absorb light below 210 nm. Oxygen absorbance increases rapidly below 200 nm, and nitrogen absorbance is significant below 190 nm. Experiments requiring measurements below 200 nm are generally performed in an instrument purged with nitrogen; measurements below 185 nm generally require instruments in which the sample compartment and optical path are located in a vacuum chamber. Advantages of absorbance spectroscopy Optical density is measured as a ratio between the measured intensities of the incident light and light passing through the sample. Because this ratio can be measured at any desired wavelength, absorbance instruments automatically compensate for wavelength-dependent variations in lamp output, monochromator efficiency, or detector efficiency. Assuming that: 1) the lamp output and detector efficiency are constant during the measurement (a generally good assumption as long as the instrument had been running for more than about 15 to 30 minutes), 2) the monochromator wavelength output is calibrated properly and 3) the optical density value is within the dynamic range of the detector, any spectrophotometer will yield identical measurements for identical samples. Types of absorbance spectroscopic experiments: Absorbance spectroscopy is frequently used to measure concentration. According to the Beer-Lambert law measurements of absorbance for molecules of known ε allow calculation of concentration. Alternatively, if the concentration of the absorbing species is known, the ε can be determined. Absorbance is used to determine properties of the chromophore, such as the dipole strength. For proteins, because the chromophores are generally well characterized, absorbance spectroscopy is frequently used as a method for probing the environment around the chromophore. As an example, the absorbance spectra of tryptophan changes as a result of transfer from an organic to an aqueous environment. The change in absorbance spectra for a molecule in different environments or upon addition of a second molecule that may interact with the first is more apparent when difference spectra are measured. Although a difference spectrum can be obtained by sequentially measuring absorbance properties for two samples, and Copyright by Mark Brandt, Ph.D. 15

5 mathematically subtracting the first data set from the second, difference spectra are much more readily measured using dual beam instruments. The layout of dual beam instruments varies. The two main methods of comparing the absorbance of the sample to the reference involve dual beam in space in which the instrument has two matched detectors, or dual beam in time in which the instrument uses a beam chopper to automatically monitor the sample and reference signals sequentially with short intervals between measurements. An example of an experiment measuring absorbance spectra and a difference spectrum for tryptophan in solvents (ethanol and water) is shown below. Notice how much more clearly the difference spectrum emphasizes the effects of the solvent environment. Copyright by Mark Brandt, Ph.D. 16

6 Absorbance Spectroscopy for Proteins The peptide bond has a π π* transition with a maximum at 190 nm. It also has a forbidden n π* transition at nm. Secondary structure can result in coupling of the dipoles, and somewhat altered spectra. However, many side-chains also absorb in this region, which makes interpretation difficult. For proteins without prosthetic groups, the only absorbance at wavelengths above ~250 nm is due to aromatic amino acids (and disulfide bonds, but these are fairly rare and have ε of only ~300). Tyrosine undergoes a large red-shift when deprotonated; because the pk a of tyrosine is ~10.5 deprotonation is rare in native proteins. However, for proteins in high ph solutions, observation of spectral changes can yield information regarding the degree of tyrosine side-chain solvent exposure. The extinction coefficient of tryptophan and tyrosine are fairly insensitive to environment. The ε is usually ~100 for tyrosine and ~200 for tryptophan. This means that the extinction coefficient for a protein can be calculated based on the amino acid content: " 280 = W 5615 (M cm) 1 + Y 1380 (M cm) 1 In the equation above, W is the number of tryptophan residues, and Y is the number of tyrosine residues in the protein. 4! Difference spectra can be used to assess binding of small molecules to the protein, or to assess the environment near aromatic residues. Some prosthetic groups have characteristic difference spectra. An example is the carbon monoxide difference spectrum for cytochrome P450 enzymes. The spectral shift (similar to the one shown 4 The values given are the average values from those published in Gill and von Hippel (1989) Anal. Biochem. 182, , and Mach, Middaugh, and Lewis (1992) Anal. Biochem. 200, Copyright by Mark Brandt, Ph.D. 17

7 below) is the source of the name for the enzyme: the difference spectrum (protein with carbon monoxide minus protein without carbon monoxide) has a large positive peak at 450 nm, although the absorbance peak is ~408 nm. Many compounds exhibit spectral changes. If a single chromophore within the compound is changing its spectrum, the spectra will exhibit an isosbestic point, an unchanging point where the different spectra meet. The isosbestic point has a difference of zero on a difference spectrum. In addition to measuring spectral properties intrinsic to a molecule, in many cases, spectroscopic probes can be attached to the molecule of interest. This is especially widely used for proteins. As an example, 5, 5 -dithio-bis-(2-nitrobenzoic acid) (DTNB) changes its absorbance spectrum dramatically upon forming a disulfide bond to another molecule. It therefore can be used to measure the number of free cysteine sulfhydryl groups in a protein. O HO HO O O 2 N S S NO 2 5, 5 -dithiobis-(2-nitrobenzoic acid) (DTNB) Similarly, fluorescent probes are widely used to monitor changes in environment in the close proximity to the probe binding site. Photochemistry The excited state of many molecules has altered reactivity. An intense light source may result in large numbers of molecules in excited states. If these molecules decompose or react with other molecules in solution, the absorbance spectrum will eventually change. This phenomenon is especially noticeable for very intense light sources such as xenon arcs. In some cases, the photochemistry is a useful phenomenon, which allows a better understanding of the parent molecule. In other cases, the photochemistry results in degradation of the sample, and may require alterations in experimental design, or a decrease in the incident light intensity to reduce the decomposition. Copyright by Mark Brandt, Ph.D. 18

8 Photochemistry is occasionally a problem in absorbance spectroscopy. However, it is more frequently a problem in other types of spectroscopy, and can be a significant problem when performing fluorescence spectroscopy experiments for reasons that will be discussed in the sections on fluorescence spectroscopy. Copyright by Mark Brandt, Ph.D. 19

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

Molecular Spectroscopy

Molecular Spectroscopy Molecular Spectroscopy UV-Vis Spectroscopy Absorption Characteristics of Some Common Chromophores UV-Vis Spectroscopy Absorption Characteristics of Aromatic Compounds UV-Vis Spectroscopy Effect of extended

More information

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare

More information

The photoionization detector (PID) utilizes ultraviolet

The photoionization detector (PID) utilizes ultraviolet Chapter 6 Photoionization Detectors The photoionization detector (PID) utilizes ultraviolet light to ionize gas molecules, and is commonly employed in the detection of volatile organic compounds (VOCs).

More information

Raman Spectroscopy Basics

Raman Spectroscopy Basics Raman Spectroscopy Basics Introduction Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light, usually from a laser source. Inelastic scattering means that

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

MCAL Spectrophotometry. Spectrophotometry

MCAL Spectrophotometry. Spectrophotometry MCAL Spectrophotometry Instruments include: Cary 50 UV-vis Spectrophotometer Eclipse Spectrofluorometer HPLC Diode Array and Fluorescence ICP-OES with CCD detection Spectrophotometry The instruments all

More information

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance:

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance: Problem Set 6 UV-Vis Absorption Spectroscopy 13-1. Express the following absorbances in terms of percent transmittance: a 0.051 b 0.918 c 0.379 d 0.261 e 0.485 f 0.072 A = log P o /P = log1/t = - log T

More information

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES SEPTEMBER 2012, V 1.1 4878 RONSON CT STE K SAN DIEGO, CA 92111 858-565 - 4227 NANOCOMPOSIX.COM Note to the Reader: We at nanocomposix have published this

More information

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control

More information

Calculating Nucleic Acid or Protein Concentration Using the GloMax Multi+ Microplate Instrument

Calculating Nucleic Acid or Protein Concentration Using the GloMax Multi+ Microplate Instrument Calculating Nucleic Acid or Protein Concentration Using the GloMax Multi+ Microplate Instrument Technical Note INTRODUCTION Direct measurements of nucleic acid samples at OD 260 or protein samples at OD

More information

Reaction Stoichiometry and the Formation of a Metal Ion Complex

Reaction Stoichiometry and the Formation of a Metal Ion Complex Reaction Stoichiometry and the Formation of a Metal Ion Complex Objectives The objectives of this laboratory are as follows: To use the method of continuous variation to determine the reaction stoichiometry

More information

Quantitation of Peptides and Amino Acids with a Synergy HT using UV Fluorescence

Quantitation of Peptides and Amino Acids with a Synergy HT using UV Fluorescence Quantitation of Peptides and Amino Acids with a Synergy HT using UV Fluorescence Introduction Eukaryotic and prokaryotic cells contain a number of compounds that are fluorescent with UV light excitation.

More information

3 - Atomic Absorption Spectroscopy

3 - Atomic Absorption Spectroscopy 3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,

More information

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

Colorimetry Extinction coefficient (ε) Lambda max (λ max ) Qualitative vs. quantitative analysis

Colorimetry Extinction coefficient (ε) Lambda max (λ max ) Qualitative vs. quantitative analysis Lab Week 2 - Spectrophotometry Purpose: Introduce students to the use of spectrophotometry for qualitative (what is it) and quantitative (how much is there of it) analysis of biological samples and molecules.

More information

Ultraviolet Spectroscopy

Ultraviolet Spectroscopy Ultraviolet Spectroscopy The wavelength of UV and visible light are substantially shorter than the wavelength of infrared radiation. The UV spectrum ranges from 100 to 400 nm. A UV-Vis spectrophotometer

More information

Time out states and transitions

Time out states and transitions Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between

More information

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 SPECTROPHOTOMETRY Absorption Measurements & their Application to Quantitative Analysis study of the interaction of light (or other electromagnetic

More information

SPECTROSCOPY. Light interacting with matter as an analytical tool

SPECTROSCOPY. Light interacting with matter as an analytical tool SPECTROSCOPY Light interacting with matter as an analytical tool Electronic Excitation by UV/Vis Spectroscopy : X-ray: core electron excitation UV: valance electronic excitation IR: molecular vibrations

More information

Raman spectroscopy Lecture

Raman spectroscopy Lecture Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy

More information

Lab #11: Determination of a Chemical Equilibrium Constant

Lab #11: Determination of a Chemical Equilibrium Constant Lab #11: Determination of a Chemical Equilibrium Constant Objectives: 1. Determine the equilibrium constant of the formation of the thiocyanatoiron (III) ions. 2. Understand the application of using a

More information

where h = 6.62 10-34 J s

where h = 6.62 10-34 J s Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena

More information

Using the Spectrophotometer

Using the Spectrophotometer Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to

More information

Nucleic Acid Purity Assessment using A 260 /A 280 Ratios

Nucleic Acid Purity Assessment using A 260 /A 280 Ratios Nucleic Acid Purity Assessment using A 260 /A 280 Ratios A common practice in molecular biology is to perform a quick assessment of the purity of nucleic acid samples by determining the ratio of spectrophotometric

More information

UV-Visible Spectroscopy

UV-Visible Spectroscopy UV-Visible Spectroscopy UV-Visible Spectroscopy What is UV-Visible Spectroscopy? Molecular spectroscopy that involves study of the interaction of Ultra violet (UV)-Visible radiation with molecules What

More information

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

More information

Agilent Cary 4000/5000/6000i Series UV-Vis-NIR

Agilent Cary 4000/5000/6000i Series UV-Vis-NIR Agilent Cary 4000/5000/6000i Series UV-Vis-NIR Guaranteed specifications Design overview Double beam, ratio recording, double out-of-plane Littrow monochromator UV-Vis-NIR spectrophotometer (Agilent Cary

More information

University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence)

University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence) University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence) For this laboratory exercise, you will explore a variety of spectroscopic methods used in an analytical

More information

2 Spectrophotometry and the Analysis of Riboflavin

2 Spectrophotometry and the Analysis of Riboflavin 2 Spectrophotometry and the Analysis of Riboflavin Objectives: A) To become familiar with operating the Platereader; B) to learn how to use the Platereader in determining the absorption spectrum of a compound

More information

Uses of Derivative Spectroscopy

Uses of Derivative Spectroscopy Uses of Derivative Spectroscopy Application Note UV-Visible Spectroscopy Anthony J. Owen Derivative spectroscopy uses first or higher derivatives of absorbance with respect to wavelength for qualitative

More information

UVC LEDs for. Environmental Monitoring

UVC LEDs for. Environmental Monitoring UVC LEDs for Environmental Monitoring Environmental monitoring relies extensively on molecular spectroscopy for tracking air quality, water and wastewater quality, and detecting hazardous substances. Advances

More information

www.gbo.com/bioscience

www.gbo.com/bioscience Application Note UV/VIS Spectroscopy in Microplates UV-Star, µclear, MICROLON and CELLSTAR 1. Introduction to UV/VIS spectroscopy Transparent microplates (CELLSTAR, MICROLON ) or microplates with a clear

More information

Chem 405 Biochemistry Lab I Experiment 2 Quantitation of an unknown protein solution.

Chem 405 Biochemistry Lab I Experiment 2 Quantitation of an unknown protein solution. Chem 405 Biochemistry Lab I Experiment 2 Quantitation of an unknown protein solution. Introduction: The determination of protein concentration is frequently required in biochemical work. Several methods

More information

What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher)

What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher) What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher) Introduction: There is more to a color than a name. Color can tell us lots of information. In this lab you will use a spectrophotometer

More information

Lecture 1: Basic Concepts on Absorption and Fluorescence

Lecture 1: Basic Concepts on Absorption and Fluorescence Lecture 1: Basic Concepts on Absorption and Fluorescence Nicholas G. James Cell and Molecular Biology University of Hawaii at Manoa, Honolulu The Goal The emission of light after absorption of an outside

More information

Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY (VERSION 1.

Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY (VERSION 1. Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY I. BACKGROUND (VERSION 1.0) Atomic absorption spectroscopy (AAS) is a widely used

More information

Reprint (R22) Avoiding Errors in UV Radiation Measurements. By Thomas C. Larason July 2001. Reprinted from Photonics Spectra, Laurin Publishing

Reprint (R22) Avoiding Errors in UV Radiation Measurements. By Thomas C. Larason July 2001. Reprinted from Photonics Spectra, Laurin Publishing Reprint (R22) Avoiding Errors in UV Radiation Measurements By Thomas C. Larason July 2001 Reprinted from Photonics Spectra, Laurin Publishing Gooch & Housego 4632 36 th Street, Orlando, FL 32811 Tel: 1

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

FTIR Instrumentation

FTIR Instrumentation FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation

More information

Introduction to Geiger Counters

Introduction to Geiger Counters Introduction to Geiger Counters A Geiger counter (Geiger-Muller tube) is a device used for the detection and measurement of all types of radiation: alpha, beta and gamma radiation. Basically it consists

More information

Blackbody Radiation References INTRODUCTION

Blackbody Radiation References INTRODUCTION Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

QUANTITATIVE INFRARED SPECTROSCOPY. Willard et. al. Instrumental Methods of Analysis, 7th edition, Wadsworth Publishing Co., Belmont, CA 1988, Ch 11.

QUANTITATIVE INFRARED SPECTROSCOPY. Willard et. al. Instrumental Methods of Analysis, 7th edition, Wadsworth Publishing Co., Belmont, CA 1988, Ch 11. QUANTITATIVE INFRARED SPECTROSCOPY Objective: The objectives of this experiment are: (1) to learn proper sample handling procedures for acquiring infrared spectra. (2) to determine the percentage composition

More information

Laboratory 5: Properties of Enzymes

Laboratory 5: Properties of Enzymes Laboratory 5: Properties of Enzymes Technical Objectives 1. Accurately measure and transfer solutions with pipettes 2. Use a Spectrophotometer to study enzyme action. 3. Properly graph a set of data. Knowledge

More information

The Measurement of Sensitivity in Fluorescence Spectroscopy

The Measurement of Sensitivity in Fluorescence Spectroscopy The Measurement of Sensitivity in Fluorescence Spectroscopy Among instrumental techniques, fluorescence spectroscopy is recognized as one of the more sensitive. In fluorescence, the intensity of the emission

More information

Upon completion of this lab, the student will be able to:

Upon completion of this lab, the student will be able to: 1 Learning Outcomes EXPERIMENT B4: CHEMICAL EQUILIBRIUM Upon completion of this lab, the student will be able to: 1) Analyze the absorbance spectrum of a sample. 2) Calculate the equilibrium constant for

More information

Chem 131A: Absorbance of Riboflavin

Chem 131A: Absorbance of Riboflavin Chem 131A: Absorbance of Riboflavin Purpose: The purpose of this experiment is to: 1) Familiarize the student with the use of the HP 8452 diode array spectrophotometer, 2) examine the limitations of the

More information

0 10 20 30 40 50 60 70 m/z

0 10 20 30 40 50 60 70 m/z Mass spectrum for the ionization of acetone MS of Acetone + Relative Abundance CH 3 H 3 C O + M 15 (loss of methyl) + O H 3 C CH 3 43 58 0 10 20 30 40 50 60 70 m/z It is difficult to identify the ions

More information

Review of the isotope effect in the hydrogen spectrum

Review of the isotope effect in the hydrogen spectrum Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

HUMBOLDT-UNIVERSITÄT ZU BERLIN MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I

HUMBOLDT-UNIVERSITÄT ZU BERLIN MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I HUMBOLDT-UNIVERSITÄT ZU BERLIN MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I INSTITUT FÜR PHYSIK Physik von Makromolekülen UV-VIS absorption characterization of (macro)molecular solutions Persons in charge:

More information

UV/VIS Spectroscopy. Summary. Contents

UV/VIS Spectroscopy. Summary. Contents Summary UV/VIS Spectroscopy Many chemical compounds have a characteristic colour. For example, quinone is yellow; chlorophyll is green; the 2,4-dinitrophenylhydrazone derivatives of aldehydes and ketones

More information

Ionization of amino acids

Ionization of amino acids Amino Acids 20 common amino acids there are others found naturally but much less frequently Common structure for amino acid COOH, -NH 2, H and R functional groups all attached to the a carbon Ionization

More information

SPECTROPHOTOMETRIC MEASUREMENTS TECHNIQUES FOR FERMENTATION PROCESS BASE THEORY FOR UV-VIS SPECTROPHOTOMETRIC MEASUREMENTS

SPECTROPHOTOMETRIC MEASUREMENTS TECHNIQUES FOR FERMENTATION PROCESS BASE THEORY FOR UV-VIS SPECTROPHOTOMETRIC MEASUREMENTS SPECTROPHOTOMETRIC MEASUREMENTS TECHNIQUES FOR FERMENTATION PROCESS (PART ONE) BASE THEORY FOR UV-VIS SPECTROPHOTOMETRIC MEASUREMENTS INTERNAL REPORT 2012 Filip Monica Sanda, Macocian Eugen Victor, Toderaş

More information

Application Note: Absorbance

Application Note: Absorbance Units Units Theory of absorbance Light absorption occurs when atoms or molecules take up the energy of a photon of light, thereby reducing the transmission of light as it is passed through a sample. Light

More information

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2 Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

H H N - C - C 2 R. Three possible forms (not counting R group) depending on ph

H H N - C - C 2 R. Three possible forms (not counting R group) depending on ph Amino acids - 0 common amino acids there are others found naturally but much less frequently - Common structure for amino acid - C, -N, and functional groups all attached to the alpha carbon N - C - C

More information

Modern approaches to determination of toxic metals in marine environmental objects. Atomic absorption and inductively coupled plasma, advantages and

Modern approaches to determination of toxic metals in marine environmental objects. Atomic absorption and inductively coupled plasma, advantages and Modern approaches to determination of toxic metals in marine environmental objects. Atomic absorption and inductively coupled plasma, advantages and disadvantages Atomic spectroscopy Atomic spectroscopy

More information

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block. 1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information

Hitachi U-4100 UV-vis-NIR spectrophotometer (341-F)

Hitachi U-4100 UV-vis-NIR spectrophotometer (341-F) Hitachi U-4100 UV-vis-NIR spectrophotometer (341-F) Please contact Dr. Amanda Young for training requests and assistance: 979-862-6845, amandayoung@tamu.edu Hardware Our spectrophotometer is made up of

More information

instruments Analytical Instruments for Science

instruments Analytical Instruments for Science instruments Analytical Instruments for Science instruments Contents PAGE NO. Introduction 4 T60 UV-Vis Spectrophotometer 6 T70 UV-Vis Spectrophotometer 10 T80 UV-Vis Spectrophotometer 14 T90+ UV-Vis Spectrophotometer

More information

Chapter 28: High-Performance Liquid Chromatography (HPLC)

Chapter 28: High-Performance Liquid Chromatography (HPLC) Chapter 28: High-Performance Liquid Chromatography (HPLC) Scope Instrumentation eluants, injectors, columns Modes of HPLC Partition chromatography Adsorption chromatography Ion chromatography Size exclusion

More information

X Ray Flourescence (XRF)

X Ray Flourescence (XRF) X Ray Flourescence (XRF) Aspiring Geologist XRF Technique XRF is a rapid, relatively non destructive process that produces chemical analysis of rocks, minerals, sediments, fluids, and soils It s purpose

More information

Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight

Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight Experiment #12: The Bohr Atom Purpose: To observe the visible spectrum of hydrogen and helium and verify the Bohr model of the hydrogen atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes,

More information

Coating Technology: Evaporation Vs Sputtering

Coating Technology: Evaporation Vs Sputtering Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy 04.04.2016 V1 The aim of this document is to provide basic technical information

More information

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline EXPERIMENT 5 Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline UNKNOWN Submit a clean, labeled 100-mL volumetric flask to the instructor so that your unknown iron solution

More information

Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service

Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service Introduction into Flow Cytometry Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service How does a FACS look like? FACSCalibur FACScan What is Flow Cytometry?

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

The Rate Constant for Fluorescence Quenching 1

The Rate Constant for Fluorescence Quenching 1 The Rate Constant for Fluorescence Quenching 1 Purpose This experiment utilizes fluorescence intensity measurements to determine the rate constant for the fluorescence quenching of anthracene or perylene

More information

RNA) - - - = 1 1 = 1 EU

RNA) - - - = 1 1 = 1 EU Colorimetric Methods for Determining Protein Concentration. Goals: 1. Learn how to use colorimetric (Lowry, BCA, and Bradford) methods to determine protein concentration in mg/ml. 2. Use intrinsic biomolecular

More information

ELECTRON SPIN RESONANCE Last Revised: July 2007

ELECTRON SPIN RESONANCE Last Revised: July 2007 QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron

More information

Introduction to flow cytometry

Introduction to flow cytometry Introduction to flow cytometry Flow cytometry is a popular laser-based technology. Discover more with our introduction to flow cytometry. Flow cytometry is now a widely used method for analyzing the expression

More information

4. Molecular spectroscopy. Basel, 2008

4. Molecular spectroscopy. Basel, 2008 4. Molecular spectroscopy Basel, 2008 4. Molecular spectroscopy Contents: 1. Introduction 2. Schema of a spectrometer 3. Quantification of molecules mouvements 4. UV-VIS spectroscopy 5. IR spectroscopy

More information

UV-Vis Vis spectroscopy. Electronic absorption spectroscopy

UV-Vis Vis spectroscopy. Electronic absorption spectroscopy UV-Vis Vis spectroscopy Electronic absorption spectroscopy Absortpion spectroscopy Provide information about presence and absence of unsaturated functional groups Useful adjunct to IR Determination of

More information

Flow cytometry basics fluidics, optics, electronics...

Flow cytometry basics fluidics, optics, electronics... Title Flow cytometry basics fluidics, optics, electronics... RNDr. Jan Svoboda, Ph.D. Cytometry and Microscopy Core Facility IMB, CAS, v.v.i Vídeňská 1083 Fluorescence Fluorescence occurs when a valence

More information

DNA NANOWIRES USING NANOPARTICLES ECG653 Project Report submitted by GOPI KRISHNA.ARI,arig@unlv.nevada.edu,Fall-2008

DNA NANOWIRES USING NANOPARTICLES ECG653 Project Report submitted by GOPI KRISHNA.ARI,arig@unlv.nevada.edu,Fall-2008 DNA NANOWIRES USING NANOPARTICLES ECG653 Project Report submitted by GOPI KRISHNA.ARI,arig@unlv.nevada.edu,Fall-2008 INTRODUCTION: Deoxyribonucleic acid (DNA) has been a key building block in nanotechnology

More information

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 8: Optical Absorption Spring 2002 Yan Zhang and Ali Shakouri, 05/22/2002 (Based

More information

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

Ultraviolet-Visible (UV-Vis) Spectroscopy Background Information

Ultraviolet-Visible (UV-Vis) Spectroscopy Background Information 1 Ultraviolet-Visible (UV-Vis) Spectroscopy Background Information Instructions for the Operation of the Cary 300 Bio UV-Visible Spectrophotometer See the Thermo OMNIC Help reference on page 49. Ultraviolet-Visible

More information

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Note: there is a second document that goes with this one! 2046 - Absorbance Spectrophotometry - Calibration Curve Procedure. The second document

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Principles

More information

VWR SPECTROPHOTOMETERS

VWR SPECTROPHOTOMETERS VWR SPECTROPHOTOMETERS Reliable Accurate Easy to Use New_Spectrophotometry_v2.indd 2 Your first choice for spectrophotometry 5/9/2014 2:22:18 PM Quality Guaranteed VWR SPECTROPHOTOMETERS Single Beam Units

More information

SSO Transmission Grating Spectrograph (TGS) User s Guide

SSO Transmission Grating Spectrograph (TGS) User s Guide SSO Transmission Grating Spectrograph (TGS) User s Guide The Rigel TGS User s Guide available online explains how a transmission grating spectrograph (TGS) works and how efficient they are. Please refer

More information

AMINO ACID ANALYSIS By High Performance Capillary Electrophoresis

AMINO ACID ANALYSIS By High Performance Capillary Electrophoresis AMINO ACID ANALYSIS By High Performance Capillary Electrophoresis Analysis of Amino Acid Standards Label free analysis using the HPCE-512 ABSTRACT Capillary electrophoresis using indirect UV detection

More information

ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS

ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS 1 ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS Buck Scientific Atomic Absorption Spectrophotometer, Model 200 Atomic absorption spectroscopy (AAS) has for many years

More information

Name Class Date. spectrum. White is not a color, but is a combination of all colors. Black is not a color; it is the absence of all light.

Name Class Date. spectrum. White is not a color, but is a combination of all colors. Black is not a color; it is the absence of all light. Exercises 28.1 The Spectrum (pages 555 556) 1. Isaac Newton was the first person to do a systematic study of color. 2. Circle the letter of each statement that is true about Newton s study of color. a.

More information

Protein quantification and detection methods

Protein quantification and detection methods Protein quantification and detection methods 1) Spectroscopic procedures 2) Measurement of the total protein content by colorimetry 3) Amino acid analysis 4) Other methods, eg. radiolabelling of proteins,

More information

electron does not become part of the compound; one electron goes in but two electrons come out.

electron does not become part of the compound; one electron goes in but two electrons come out. Characterization Techniques for Organic Compounds. When we run a reaction in the laboratory or when we isolate a compound from nature, one of our first tasks is to identify the compound that we have obtained.

More information

DNA quality: electrophoresis, spectrophotometry and fluorometry

DNA quality: electrophoresis, spectrophotometry and fluorometry DNA quality: electrophoresis, spectrophotometry and fluorometry Ambika B Gaikwad ambika@nbpgr.ernet.in After isolation of DNA, quantification and analysis of quality are necessary to ascertain the approximate

More information

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission Principles of Imaging Science I (RAD119) X-ray Production & Emission X-ray Production X-rays are produced inside the x-ray tube when high energy projectile electrons from the filament interact with the

More information

DNA Detection. Chapter 13

DNA Detection. Chapter 13 DNA Detection Chapter 13 Detecting DNA molecules Once you have your DNA separated by size Now you need to be able to visualize the DNA on the gel somehow Original techniques: Radioactive label, silver

More information

Flame Direct Attach UV-VIS Integrated Sampling System Installation and Operation Instructions

Flame Direct Attach UV-VIS Integrated Sampling System Installation and Operation Instructions Flame Direct Attach UV-VIS Integrated Sampling System Installation and Operation Instructions Description The Flame Integrated Sampling System (FLAME-DA-CUV-UV-VIS) is a snap-on, direct-attach 1 cm cuvette

More information

The Phenomenon of Photoelectric Emission:

The Phenomenon of Photoelectric Emission: The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of

More information

It has long been a goal to achieve higher spatial resolution in optical imaging and

It has long been a goal to achieve higher spatial resolution in optical imaging and Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,

More information

How To Understand Light And Color

How To Understand Light And Color PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information