Probability 101 Compiled by Henry Posters

Size: px
Start display at page:

Download "Probability 101 Compiled by Henry Posters"

Transcription

1 Probability 101 Introduction Living with uncertainty is part of everyday life. As probability (defined by Webster s as: the number of times something is likely to occur over the range of possible occurrences) affects many things we do, we would like to able to quantify as best as we can the amount of uncertainty. For example, before stepping into an airplane, people who are afraid of flying should know that the probability of a significant incident is reassuringly minute (flight delays and lost luggage not included ). Vacationers bound for San Diego would like to know the likelihood of enjoying at least 20 sunny days in August (very likely as we all know). Dreamers who play the lottery ought to know the odds of winning the jackpot (extremely small) before buying lots of tickets. One can estimate these likelihoods using the theory of probability, which provides mathematical methods for quantifying chances/likelihoods of random events in order to predict the behavior of defined systems. So, with sufficient knowledge of the physics of failures an automotive engineer should be able to quantify the likelihood of driving a car 100,000 miles without experiencing any engine failures. Rules and Properties of Probability 1.0 Sample Spaces and Sets In statistics the set of all possible outcomes of an experiment in a given situation is called the Sample Space (S). An Event is any collection (subsets) of outcomes that are contained in the sample space (S). See diagrams 1 and 2. Sets, and the relationship between them, can be best explained with the help of Venn diagrams shown on page 7. A Venn diagram is graphical representation of the relationship between multiple events. To simplify probability equations it is convenient to use the customary notations of sets. A c denotes the event that A does not occur. It is called the compliment of event A. The event that either A or B occurs is called a union of A and B. It is denoted by A B. See Venn diagram 4. Its compliment (A B) c is shown in diagram 5. Similarly, the event that C and D both occur is written as B D. It is referred to as the intersection of C and D. It is shown in Venn diagram 6. If events have no points in common (they cannot both occur) they are called mutually exclusive. See Venn diagram 3. 1

2 2.0 Relationships among Sets 2.1 The compliment of an event A, denoted as A c, is the event that consists of all the outcomes (points) of the sample space that are not contained in A. In other words, A c is the event that A will not happen. See Venn diagram The union of two events A and B, denoted by A B and read A or B, is the event consisting of all the outcomes (points) that are either in A or in B or in both events. The union includes outcomes for which both A and B occur as well as outcomes for which exactly one occurs. See Venn diagram The intersection of two events A and B, denoted by A B and read A and B is the event consisting of all outcomes (points) that are in both A and B. See Venn diagram Similarly, the intersection of three events A, B, and C is denoted by A B C It is the event that consists of all outcomes (points) that are in A and B and C. See diagram From Venn diagram 5 we can see that (A B) c is the same event as (A) c (B) c 2.6 Event A B c and event B A c are depicted in respectively diagram 7 and From Venn diagrams 10, 11 and 12 we can derive that: A B = A (B A c ) = (A B c ) + (A B) + (B A c ) 2.8 When A and B have no outcomes in common, they are said to be mutually exclusive or disjoint events. The events cannot happen at the same time. See Venn diagram Properties of Probability Given an experiment and a sample space (S), the objective of probability is to assign to each event (A) a number A) that will give a measure of the chance that event (A) will occur. The probability of an event is always a positive real number or zero. 3.1 Probability that event A will happen is A) = the number of ways event A can happen, divided by the total number of possible outcomes. n( A) A) = From this basic premise it is reasonable to expect that 0 A) 1 S The smallest probability we can have is zero, which means that event A will never happen. The largest probability is 1. In that case event A will always happen. Some examples: 2

3 The probability that an impossible event (such as rolling 15 with two dice) will happen is 0. The probability of an event that must happen (such as flipping either a head or a tail) is The probability of a sample space is always 1. Symbolically: S) = 1 for any sample space. 3.3 For any event A, A) + A c ) = 1 and consequently A) = 1-A c ). In other words: The probability that an event will occur and the probability that it will not occur always add up to 1. Events that cannot possible occur have the probability of zero. 3.4 If event A and event B are mutually exclusive (cannot both happen at the same time), then A and B) = A B) = For any two events A and B, A or B) = A B) = A) + B) A B) When A and B are mutually exclusive then A B) = A) + B) 4.0 Conditional Probability 4.1 Conditional probability is defined as A B) which is the probability of event (A) given that event (B) has occurred. For any two events (A) and (B) with B) > 0, the conditional probability of (A) given that (B) has occurred is: A B) A B) = B) Example of Conditional Probability: Suppose that of all individuals who purchase a Ford SUV, 60 percent select a model with a sunroof, 40 percent pick the same model with leather seats, and 30 percent select one that has both, a sunroof and leather seats. Now consider randomly selecting a buyer and let A = SUV with sunroof and B = SUV with leather seats. Then A) = 0.6, B) = 0.4 and A and B) = A B) = 0.3 Given that a selected individual bought a Ford SUV with leather seats, what is the probability that this car has also a sunroof? A B) 0.3 A B) = = = That is, of all those who bought a Ford SUV with leather B) 0.4 seats, 75 percent got one that has also a sunroof. 3

4 5.0 General Rule of Multiplication A B) By multiplying both sides of A B) = by B) we get: B) A B) = B) A B) Consideration of B A) gives A B) = A) B A) The general rule of multiplication states: The probability that two events A and B will both occur is the product of the probability that one of them will occur and the probability that the other event will occur given that the first has occurred. When events A and B are independent then A B) = A) B) Independent means that the occurrence or non-occurrence of one event has no bearing on the chance that the other event will happen. Probability in Quality and Reliability Engineering Example 1 A RADAR system has three sub-systems. Extensive testing of the three sub-systems has revealed the following probabilities of failure-free performance: Sub-system 1: no failures over five year period) = 0.99 Sub-system 2: no failures over five year period) = 0.97 Sub-system 3: no failures over five year period) = 0.95 If any of the three sub-systems fails, the entire radar system fails. Failure of one sub-system has no bearing on the chance that any of the other sub-systems will fail. What is the probability that the radar system will perform, failure free, for a period of five years? The probability that the radar system will perform failure-free for a five year time period is: zero failures Radar system) = zero failures subsystem1 zero failures subsystem2 zero failures subsystem3) = 0 failures subsystem1) 0 failures subsystem2) 0 failures subsystem3) = (0.99) (0.97) (0.95) = or 91.2 percent. Example 2 A modern airplane requires only one out of the three (or four) engines to successfully operate during flight. The chance that a well-maintained engine fails is very small. Let the probability of engine failure during a 14 hour flight be 0.5 percent. engine failure during 14 hour flight) = What is the probability that an airplane, powered by four engines, will safely fly from Los Angeles to Sydney Australia? Flight time is 14 hours. The plane will not make it to Sydney if all four engines would fail. The probability of that happening is quite small. Using the multiplication rule we get: all four engines fail) = engine1 fails engine2 fails engine3 fails engine4 fails) = engine1 fails) engine2 fails) engine3 fails) engine4 fails) = (0.005) 4 = [5(10) -3 ] 4 = 5(10) -12 =

5 There are only five combinations of engines working/failing possible. 1. All four engines work, none fails 2. Three engines work, one fails 3. Two engines work, two fail 4. One engine works, three fail 5. All four engines fail The sum of the probabilities of events one to five is 1. Hence, the probability that at least one engine works is 1 all four engines fail) = 1 5(10) -12 = = or percent. The probability that a modern day airplane will safely complete a 14-hour flight is extremely high. Probability in Tennis In tennis the most important (and most complex) shot is the serve. The objective of the server is to make it as difficult as possible for the opponent to return it (or not be able to return the ball at all). Most recreational tennis players hit a strong (50 to100 mph) first serve and a rather weak (less than 50mph) second one. For an opponent a weak serve offers a great opportunity to hit a winner. Let s assume a probability of 60 percent that a player s first (cannon ball) serve makes it over the net into the service box (we will add probability data about the opponent s chance of returning it successfully later) and a 90 percent chance that the second (weak) serve will be in. What would be the chance of getting at least one serve in? Answer: The probability of hitting a successful first (strong) serve is good first serve) = 0.6 The probability of not hitting a good first serve is 1-good first serve) =1-0.6 = 0.4 The probability of hitting a successful second (weak) serve is good second serve) = 0.9 The probability of missing the second serve is 1-good second serve) = = 0.1 Given that the player serves both the first and the second serve there can be only three outcomes. a) Both serves are out. b) The first serve is out and the second one is in. c) Both serves are in (in reality the player would serve only once). two in)+one in)+zero in) = 1 The general rule of multiplication tells us that the probability that two events A and B will both occur is the product of the probability that one of them will occur and the probability that the other event will occur given that the first has occurred. The multiplication rule is written as: A B) = A) B A). When events A and B are independent then A B) = A) B) Independent means that the occurrence or non-occurrence of one event has no connection to the likelihood that the other event will happen. In the tennis example, the chance that the player will 5

6 miss the second serve does not depend on whether or not he/she misses the first serve (however, if the server gets the fist serve in there is no need to serve a second one). The chance that the first serve and the second serve will be out is: A B) = A) B) zero serve in) = (0.4) (0.1) = 0.04 The chance of getting at least one serve in is 1 minus the chance that none will be in. at least one serve in) = = 0.96 or 96 percent. Some tennis players never compromise on their second serve. They will hit the second serve as fast as the first one. In that case the probability of getting at least on serve in will be reduced to 1-(0.4) (0.4) = = 0.84 or 84 percent. Probability in Decision Making Decision-making under risk (probabilistic decision-making) requires a basic understanding of the rules of probability. To make intelligent decisions or predictions about the quality & reliability of a business, product or service we must have useful information about the business, product or service in question. Such information is usually obtained from sampling, taking quantitative measurements, and converting sample data into information. Quality professionals must understand that uncertainty/risk is introduced every time data is used that have been derived from samples (the data do not always represent certainty ). Consequently, a lack of understanding of the rules of probability may lead to incorrect decision-making. References: John Freund, Introduction to Probability Sheldon Ross, A First Course in Probability Jay Devore, Probability and Statistics for Engineering and the Sciences Library: Taking a Sample 6

7 7

STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia

STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that

More information

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.

More information

Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay

Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay QuestionofDay Question of the Day What is the probability that in a family with two children, both are boys? What is the probability that in a family with two children, both are boys, if we already know

More information

Probability. Section 9. Probability. Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space)

Probability. Section 9. Probability. Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space) Probability Section 9 Probability Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space) In this section we summarise the key issues in the basic probability

More information

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

More information

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION 1 WHAT IS STATISTICS? Statistics is a science of collecting data, organizing and describing it and drawing conclusions from it. That is, statistics

More information

Basic Probability Concepts

Basic Probability Concepts page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes

More information

AP Stats - Probability Review

AP Stats - Probability Review AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

More information

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are

More information

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314 Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space

More information

Ch. 13.2: Mathematical Expectation

Ch. 13.2: Mathematical Expectation Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we

More information

A Few Basics of Probability

A Few Basics of Probability A Few Basics of Probability Philosophy 57 Spring, 2004 1 Introduction This handout distinguishes between inductive and deductive logic, and then introduces probability, a concept essential to the study

More information

MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

More information

Probability and Expected Value

Probability and Expected Value Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are

More information

Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

More information

Probabilistic Strategies: Solutions

Probabilistic Strategies: Solutions Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either

More information

How To Understand And Solve A Linear Programming Problem

How To Understand And Solve A Linear Programming Problem At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,

More information

Bayesian Tutorial (Sheet Updated 20 March)

Bayesian Tutorial (Sheet Updated 20 March) Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that

More information

INFO ABOUT THE ODDS BETTING ON LOTTO, LOTTERIES OR KENO?

INFO ABOUT THE ODDS BETTING ON LOTTO, LOTTERIES OR KENO? INFO ABOUT THE ODDS BETTING ON LOTTO, LOTTERIES OR KENO? YOU MAY HEAR OF PEOPLE HAVING A WIN WITH LOTTO AND POWERBALL, GETTING LUCKY IN THE LOTTERY, OR HAVING WINNING NUMBERS COME UP IN THE POOLS OR KENO.

More information

In the situations that we will encounter, we may generally calculate the probability of an event

In the situations that we will encounter, we may generally calculate the probability of an event What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

More information

Fundamentals of Probability

Fundamentals of Probability Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

More information

Chapter 13 & 14 - Probability PART

Chapter 13 & 14 - Probability PART Chapter 13 & 14 - Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14 - Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph

More information

Cumulative Diagrams: An Example

Cumulative Diagrams: An Example Cumulative Diagrams: An Example Consider Figure 1 in which the functions (t) and (t) denote, respectively, the demand rate and the service rate (or capacity ) over time at the runway system of an airport

More information

Probability, statistics and football Franka Miriam Bru ckler Paris, 2015.

Probability, statistics and football Franka Miriam Bru ckler Paris, 2015. Probability, statistics and football Franka Miriam Bru ckler Paris, 2015 Please read this before starting! Although each activity can be performed by one person only, it is suggested that you work in groups

More information

Unit 19: Probability Models

Unit 19: Probability Models Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,

More information

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to

More information

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179)

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179) Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172-179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities

More information

Economics 1011a: Intermediate Microeconomics

Economics 1011a: Intermediate Microeconomics Lecture 12: More Uncertainty Economics 1011a: Intermediate Microeconomics Lecture 12: More on Uncertainty Thursday, October 23, 2008 Last class we introduced choice under uncertainty. Today we will explore

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant

More information

Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014

Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014 Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities

More information

1 Combinations, Permutations, and Elementary Probability

1 Combinations, Permutations, and Elementary Probability 1 Combinations, Permutations, and Elementary Probability Roughly speaking, Permutations are ways of grouping things where the order is important. Combinations are ways of grouping things where the order

More information

Math 210. 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. (e) None of the above.

Math 210. 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. (e) None of the above. Math 210 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. 2. Suppose that 80% of students taking calculus have previously had a trigonometry course. Of those that did, 75% pass their calculus

More information

If, under a given assumption, the of a particular observed is extremely. , we conclude that the is probably not

If, under a given assumption, the of a particular observed is extremely. , we conclude that the is probably not 4.1 REVIEW AND PREVIEW RARE EVENT RULE FOR INFERENTIAL STATISTICS If, under a given assumption, the of a particular observed is extremely, we conclude that the is probably not. 4.2 BASIC CONCEPTS OF PROBABILITY

More information

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300 Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate

More information

Math 3C Homework 3 Solutions

Math 3C Homework 3 Solutions Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard

More information

Standard 12: The student will explain and evaluate the financial impact and consequences of gambling.

Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. TEACHER GUIDE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Priority Academic Student Skills Personal Financial

More information

Complement. If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A.

Complement. If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A. Complement If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A. For example, if A is the event UNC wins at least 5 football games, then A c is the

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice,

More information

Math Matters: Why Do I Need To Know This? 1 Probability and counting Lottery likelihoods

Math Matters: Why Do I Need To Know This? 1 Probability and counting Lottery likelihoods Math Matters: Why Do I Need To Know This? Bruce Kessler, Department of Mathematics Western Kentucky University Episode Four 1 Probability and counting Lottery likelihoods Objective: To demonstrate the

More information

Lecture 13. Understanding Probability and Long-Term Expectations

Lecture 13. Understanding Probability and Long-Term Expectations Lecture 13 Understanding Probability and Long-Term Expectations Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).

More information

Algebra I Notes Relations and Functions Unit 03a

Algebra I Notes Relations and Functions Unit 03a OBJECTIVES: F.IF.A.1 Understand the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element

More information

STAT 35A HW2 Solutions

STAT 35A HW2 Solutions STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },

More information

Lottery Combinatorics

Lottery Combinatorics Published by the Applied Probability Trust Applied Probability Trust 2009 110 Lottery Combinatorics IAN MCPHERSON and DEREK HODSON The chance of landing the National Lottery jackpot (or a share of it)

More information

Curriculum Design for Mathematic Lesson Probability

Curriculum Design for Mathematic Lesson Probability Curriculum Design for Mathematic Lesson Probability This curriculum design is for the 8th grade students who are going to learn Probability and trying to show the easiest way for them to go into this class.

More information

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4? Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than

More information

PROBABILITY SECOND EDITION

PROBABILITY SECOND EDITION PROBABILITY SECOND EDITION Table of Contents How to Use This Series........................................... v Foreword..................................................... vi Basics 1. Probability All

More information

25 Integers: Addition and Subtraction

25 Integers: Addition and Subtraction 25 Integers: Addition and Subtraction Whole numbers and their operations were developed as a direct result of people s need to count. But nowadays many quantitative needs aside from counting require numbers

More information

A Little Set Theory (Never Hurt Anybody)

A Little Set Theory (Never Hurt Anybody) A Little Set Theory (Never Hurt Anybody) Matthew Saltzman Department of Mathematical Sciences Clemson University Draft: August 21, 2013 1 Introduction The fundamental ideas of set theory and the algebra

More information

Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

More information

Systems of Linear Equations in Three Variables

Systems of Linear Equations in Three Variables 5.3 Systems of Linear Equations in Three Variables 5.3 OBJECTIVES 1. Find ordered triples associated with three equations 2. Solve a system by the addition method 3. Interpret a solution graphically 4.

More information

Minimax Strategies. Minimax Strategies. Zero Sum Games. Why Zero Sum Games? An Example. An Example

Minimax Strategies. Minimax Strategies. Zero Sum Games. Why Zero Sum Games? An Example. An Example Everyone who has studied a game like poker knows the importance of mixing strategies With a bad hand, you often fold But you must bluff sometimes Lectures in Microeconomics-Charles W Upton Zero Sum Games

More information

Question 1 Formatted: Formatted: Formatted: Formatted:

Question 1 Formatted: Formatted: Formatted: Formatted: In many situations in life, we are presented with opportunities to evaluate probabilities of events occurring and make judgments and decisions from this information. In this paper, we will explore four

More information

Pigeonhole Principle Solutions

Pigeonhole Principle Solutions Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such

More information

Multiplication and Division with Rational Numbers

Multiplication and Division with Rational Numbers Multiplication and Division with Rational Numbers Kitty Hawk, North Carolina, is famous for being the place where the first airplane flight took place. The brothers who flew these first flights grew up

More information

Ch. 13.3: More about Probability

Ch. 13.3: More about Probability Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the

More information

Introduction to Probability

Introduction to Probability Massachusetts Institute of Technology Course Notes 0 6.04J/8.06J, Fall 0: Mathematics for Computer Science November 4 Professor Albert Meyer and Dr. Radhika Nagpal revised November 6, 00, 57 minutes Introduction

More information

Standard 12: The student will explain and evaluate the financial impact and consequences of gambling.

Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. STUDENT MODULE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Simone, Paula, and Randy meet in the library every

More information

AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

More information

14.4. Expected Value Objectives. Expected Value

14.4. Expected Value Objectives. Expected Value . Expected Value Objectives. Understand the meaning of expected value. 2. Calculate the expected value of lotteries and games of chance.. Use expected value to solve applied problems. Life and Health Insurers

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level S2 of challenge: B/C S2 Mathematical goals Starting points Materials required Time needed Evaluating probability statements To help learners to: discuss and clarify some common misconceptions about

More information

It is remarkable that a science, which began with the consideration of games of chance, should be elevated to the rank of the most important

It is remarkable that a science, which began with the consideration of games of chance, should be elevated to the rank of the most important PROBABILLITY 271 PROBABILITY CHAPTER 15 It is remarkable that a science, which began with the consideration of games of chance, should be elevated to the rank of the most important subject of human knowledge.

More information

That s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 9-12

That s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 9-12 That s Not Fair! ASSESSMENT # Benchmark Grades: 9-12 Summary: Students consider the difference between fair and unfair games, using probability to analyze games. The probability will be used to find ways

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

Sample Term Test 2A. 1. A variable X has a distribution which is described by the density curve shown below:

Sample Term Test 2A. 1. A variable X has a distribution which is described by the density curve shown below: Sample Term Test 2A 1. A variable X has a distribution which is described by the density curve shown below: What proportion of values of X fall between 1 and 6? (A) 0.550 (B) 0.575 (C) 0.600 (D) 0.625

More information

Chapter 7 Probability. Example of a random circumstance. Random Circumstance. What does probability mean?? Goals in this chapter

Chapter 7 Probability. Example of a random circumstance. Random Circumstance. What does probability mean?? Goals in this chapter Homework (due Wed, Oct 27) Chapter 7: #17, 27, 28 Announcements: Midterm exams keys on web. (For a few hours the answer to MC#1 was incorrect on Version A.) No grade disputes now. Will have a chance to

More information

Is it possible to beat the lottery system?

Is it possible to beat the lottery system? Is it possible to beat the lottery system? Michael Lydeamore The University of Adelaide Postgraduate Seminar, 2014 The story One day, while sitting at home (working hard)... The story Michael Lydeamore

More information

TOPIC P2: SAMPLE SPACE AND ASSIGNING PROBABILITIES SPOTLIGHT: THE CASINO GAME OF ROULETTE. Topic P2: Sample Space and Assigning Probabilities

TOPIC P2: SAMPLE SPACE AND ASSIGNING PROBABILITIES SPOTLIGHT: THE CASINO GAME OF ROULETTE. Topic P2: Sample Space and Assigning Probabilities TOPIC P2: SAMPLE SPACE AND ASSIGNING PROBABILITIES SPOTLIGHT: THE CASINO GAME OF ROULETTE Roulette is one of the most popular casino games. The name roulette is derived from the French word meaning small

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

Decision Making under Uncertainty

Decision Making under Uncertainty 6.825 Techniques in Artificial Intelligence Decision Making under Uncertainty How to make one decision in the face of uncertainty Lecture 19 1 In the next two lectures, we ll look at the question of how

More information

ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers

ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages

More information

Money Unit $$$$$$$$$$$$$$$$$$$$$$$$ First Grade

Money Unit $$$$$$$$$$$$$$$$$$$$$$$$ First Grade Number Sense: By: Jenny Hazeman & Heather Copiskey Money Unit $$$$$$$$$$$$$$$$$$$$$$$$ First Grade Lesson 1: Introduction to Coins (pennies, nickels, dimes) The Coin Counting Book by Roxanne Williams A

More information

Introduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang

Introduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang Introduction to Discrete Probability 22c:19, section 6.x Hantao Zhang 1 Terminology Experiment A repeatable procedure that yields one of a given set of outcomes Rolling a die, for example Sample space

More information

Reliability. 26.1 Reliability Models. Chapter 26 Page 1

Reliability. 26.1 Reliability Models. Chapter 26 Page 1 Chapter 26 Page 1 Reliability Although the technological achievements of the last 50 years can hardly be disputed, there is one weakness in all mankind's devices. That is the possibility of failure. What

More information

Lab 11. Simulations. The Concept

Lab 11. Simulations. The Concept Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that

More information

Definition and Calculus of Probability

Definition and Calculus of Probability In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the

More information

RELIABILITY OF SYSTEMS WITH VARIOUS ELEMENT CONFIGURATIONS

RELIABILITY OF SYSTEMS WITH VARIOUS ELEMENT CONFIGURATIONS Application Example 1 (Probability of combinations of events; binomial and Poisson distributions) RELIABILITY OF SYSTEMS WITH VARIOUS ELEMENT CONFIGURATIONS Note: Sections 1, 3 and 4 of this application

More information

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.

More information

EXAMPLES OF ASSIGNING DEPTH-OF-KNOWLEDGE LEVELS ALIGNMENT ANALYSIS CCSSO TILSA ALIGNMENT STUDY May 21-24, 2001 version 2.0

EXAMPLES OF ASSIGNING DEPTH-OF-KNOWLEDGE LEVELS ALIGNMENT ANALYSIS CCSSO TILSA ALIGNMENT STUDY May 21-24, 2001 version 2.0 EXAMPLES OF ASSIGNING DEPTH-OF-KNOWLEDGE LEVELS ALIGNMENT ANALYSIS CCSSO TILSA ALIGNMENT STUDY May 21-24, 2001 version 2.0 Level 1 Recall Recall of a fact, information or procedure Example 1:1 Grade 8

More information

36 Odds, Expected Value, and Conditional Probability

36 Odds, Expected Value, and Conditional Probability 36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face

More information

The GMAT Guru. Prime Factorization: Theory and Practice

The GMAT Guru. Prime Factorization: Theory and Practice . Prime Factorization: Theory and Practice The following is an ecerpt from The GMAT Guru Guide, available eclusively to clients of The GMAT Guru. If you would like more information about GMAT Guru services,

More information

8.3 Probability Applications of Counting Principles

8.3 Probability Applications of Counting Principles 8. Probability Applications of Counting Principles In this section, we will see how we can apply the counting principles from the previous two sections in solving probability problems. Many of the probability

More information

Working with whole numbers

Working with whole numbers 1 CHAPTER 1 Working with whole numbers In this chapter you will revise earlier work on: addition and subtraction without a calculator multiplication and division without a calculator using positive and

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

More information

Authors: Editor: Graphics: Jason March, B.A. Tim Wilson, B.A. Linda Shanks. Tim Wilson Jason March Eva McKendry

Authors: Editor: Graphics: Jason March, B.A. Tim Wilson, B.A. Linda Shanks. Tim Wilson Jason March Eva McKendry Student Name: Date: Contact Person Name: Phone Number: Lesson 15 Rates and Ratios Objectives Understand what a rate and a ratio are Solve word problems that involve rates and ratios Authors: Jason March,

More information

Chapter 4 DECISION ANALYSIS

Chapter 4 DECISION ANALYSIS ASW/QMB-Ch.04 3/8/01 10:35 AM Page 96 Chapter 4 DECISION ANALYSIS CONTENTS 4.1 PROBLEM FORMULATION Influence Diagrams Payoff Tables Decision Trees 4.2 DECISION MAKING WITHOUT PROBABILITIES Optimistic Approach

More information

Probability definitions

Probability definitions Probability definitions 1. Probability of an event = chance that the event will occur. 2. Experiment = any action or process that generates observations. In some contexts, we speak of a data-generating

More information

Fifth Grade Physical Education Activities

Fifth Grade Physical Education Activities Fifth Grade Physical Education Activities 89 Inclement Weather PASS AND COUNT RESOURCE Indoor Action Games for Elementary Children, pg. 129 DESCRIPTION In this game, students will be ordering whole numbers.

More information

Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.

Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52. Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive

More information

Introduction to Probability

Introduction to Probability 3 Introduction to Probability Given a fair coin, what can we expect to be the frequency of tails in a sequence of 10 coin tosses? Tossing a coin is an example of a chance experiment, namely a process which

More information

Chapter 6: Probability

Chapter 6: Probability Chapter 6: Probability In a more mathematically oriented statistics course, you would spend a lot of time talking about colored balls in urns. We will skip over such detailed examinations of probability,

More information

6th Grade Lesson Plan: Probably Probability

6th Grade Lesson Plan: Probably Probability 6th Grade Lesson Plan: Probably Probability Overview This series of lessons was designed to meet the needs of gifted children for extension beyond the standard curriculum with the greatest ease of use

More information

3.2 Roulette and Markov Chains

3.2 Roulette and Markov Chains 238 CHAPTER 3. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 3.2 Roulette and Markov Chains In this section we will be discussing an application of systems of recursion equations called Markov Chains.

More information

ACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II

ACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages of the examination

More information

Numeracy and mathematics Experiences and outcomes

Numeracy and mathematics Experiences and outcomes Numeracy and mathematics Experiences and outcomes My learning in mathematics enables me to: develop a secure understanding of the concepts, principles and processes of mathematics and apply these in different

More information

Greatest Common Factors and Least Common Multiples with Venn Diagrams

Greatest Common Factors and Least Common Multiples with Venn Diagrams Greatest Common Factors and Least Common Multiples with Venn Diagrams Stephanie Kolitsch and Louis Kolitsch The University of Tennessee at Martin Martin, TN 38238 Abstract: In this article the authors

More information