Complement. If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A.


 Marjory Austin
 1 years ago
 Views:
Transcription
1 Complement If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A. For example, if A is the event UNC wins at least 5 football games, then A c is the event UNC wins less than 5 football games. 1
2 We can represent this by a Venn diagram, as follows: S A c A Figure 1. Venn diagram for a single event A and its complement A c. 2
3 The Law of Complementary Events states that P (A c ) = 1 P (A). Example. In the game involving two throws of a die, if A is the event the total is 10 or greater, then A c is the event the total is 9 or smaller. We know P (A) = 1 6, so P (Ac ) =
4 Disjoint events, Intersection and Union Two events A and B are said to be disjoint if they cannot both occur. This is represented by the following Venn diagram: S A B Figure 2. Venn diagram for two disjoint events A and B. 4
5 For example, in two throws of a die, if A is the event the total is 10 or larger and B is the event the total is 3 or smaller, it is clear that A and B cannot both be true, so they are disjoint events. With any two events A and B, we define the intersection of A and B, also written A and B, to be the event that A and B both occur. With any two events A and B, we define the union of A and B, also written A or B, to be the event that at least one of A and B occurs. Note that in common English, if we say A or B, that s often taken as excluding the possibility of both A and B occurring. In the language of probability, A or B always includes the possibility that both A and B might occur unless they are disjoint, in which case it is impossible. 5
6 So another definition of disjoint events is: two events A and B are disjoint if the intersection A and B is an impossible event. The law of addition for disjoint events states that: If two events A and B are disjoint, then P (A or B) = P (A) + P (B). Example. Consider the toss of two dice where A is the event the total is 10 or larger and B is the event the total is 3 or smaller. We have already seen that P (A) = 6 1 and it is easy to see by similar reasoning that P (B) = Therefore P (A or B) = P (A) + P (B) = = 1 4. We could also figure this out directly, by noting that the event A or B consists of 9 outcomes of the sample space ((1,1),(1,2),(2,1) plus the 6 outcomes that comprise B) so the probability is 9 36 =
7 The Law of Addition for Nondisjoint Events S A B Figure 3. Venn diagram for two disjoint events A and B. 7
8 In this case the Law of Addition reads P (A or B) = P (A) + P (B) P (A and B). Example. In a certain university, 52% of all students take a statistics class, 23% take a computing course, and 7% take both. What percentage of students take at least one of computing or statistics? 8
9 For a randomly chosen student let A be the event the student takes statistics, and let B be the event the student takes computing. The Venn diagram to represent this situation is: S A B Figure 4. Venn diagram for this problem. 9
10 Applying the Law of Addition, P (A or B) = = In other words, 68% of students take at least one of Statistics or Computing. 10
11 Independent Events Two events are said to be independent if the outcome of one of them does not influence the other. For example, in sporting events, the outcomes of different games are usually considered independent even though that may not be true in a completely strict and literal sense. The multiplication rule for independent events says that if A and B are independent, P (A and B) = P (A) P (B). 11
12 Example: A football pundit states that the probability that UNC will beat NC State is 0.4, while the probability that UNC will beat Duke is 0.8. What is the probability that 1. UNC wins both games? 2. UNC wins at least one game? 3. UNC loses both games? 12
13 Solution: 1. If A is the event UNC beats State and B is the event UNC beats Duke, and if we assume these are independent events, then the probability of A and B is = Apply the Law of Addition: P (A or B) = P (A)+P (B) P (A and B) = = Apply the Law of Complementary Events: UNC loses both games is the complement of UNC wins at least one game, so its probability is =
14 Warning: Don t confuse the notions of independent events and disjoint events. Independence means that the outcome of one event does not influence the outcome of the other. Disjoint means that if one event occurs then the other cannot occur the very opposite of independence! 14
15 Conditional Probabilities Consider the example (page 218 of text, referring to the Wimbledon tennis tournament), A: Federer misses his first serve B: Federer misses his second serve We are told that Federer misses his first serve 36% of the time, and that of all the times he misses his first serve, he also misses his second serve 6% of the time. What, then, is the probability he has a double fault? Logically, the answer is 6% of 36%, or , which is about
16 Now let us rephrase this in the language of conditional probability. We are told that the event A occurs 36% of the time, or in other words P (A) = We are also told that, given that A has occurred, the event B occurs 6% of the time. This is written in probability notation as P (B A) = The left hand side is read as the probability of B given A. In this particular context, it would not make sense to talk about the probability of B given A c, though in other contexts, that would make sense (e.g. free throws in basketball). 16
17 The law of multiplication for conditional probabilities says P (A and B) = P (A) P (B A). Note that if we just interchange the role of A and B, we also get P (A and B) = P (B) P (A B). Finally, if A and B are independent, we get P (A B) = P (A) and P (B A) = P (B) that formalizes what is meant by saying that the outcome of one event does not influence the outcome of the other. But in that case, either of the last two formulas reduces to P (A and B) = P (A) P (B) as in our earlier formulation of the multiplication rule for independent events. 17
18 Here is another (more complicated) example. Consider the game in which a player tosses a die twice, and we want to calculate the probability that the total of the two tosses is at least 10. Define the events A: The first throw is a 6. B: The first throw is a 5. C: The first throw is a 4. D: The total of the two throws is at least 10. Note that if the first throw is less than 4, it s impossible for the total to be 10 or higher. So P (D) = P (A and D) + P (B and D) + P (C and D). (1) 18
19 Now P (A) = 6 1. Given that A has occurred, D will occur if the second throw produces any of 4, 5 or 6, and the probability of one of those outcomes is 3 6 or 1 2. So we have P (A) = 1 6, P (D A) = 1 2, P (A and D) = = Similarly P (B) = 1 6, P (D B) = 1 3, P (B and D) = = 1 18, P (C) = 1 6, P (D C) = 1 6, P (C and D) = = Therefore, (1) leads us to P (D) = = 1 6 giving the same answer as in our earlier calculation. 19
The Set Data Model CHAPTER 7. 7.1 What This Chapter Is About
CHAPTER 7 The Set Data Model The set is the most fundamental data model of mathematics. Every concept in mathematics, from trees to real numbers, is expressible as a special kind of set. In this book,
More informationRecall this chart that showed how most of our course would be organized:
Chapter 4 OneWay ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
More informationSet Theory. 2.1 Presenting Sets CHAPTER2
CHAPTER2 Set Theory 2.1 Presenting Sets Certain notions which we all take for granted are harder to define precisely than one might expect. In Taming the Infinite: The Story of Mathematics, Ian Stewart
More informationFixedEffect Versus RandomEffects Models
CHAPTER 13 FixedEffect Versus RandomEffects Models Introduction Definition of a summary effect Estimating the summary effect Extreme effect size in a large study or a small study Confidence interval
More information3. SETS, FUNCTIONS & RELATIONS
3. SETS, FUNCTIONS & RELATIONS If I see the moon, then the moon sees me 'Cos seeing's symmetric as you can see. If I tell Aunt Maude and Maude tells the nation Then I've told the nation 'cos the gossiping
More informationResults from the 2014 AP Statistics Exam. Jessica Utts, University of California, Irvine Chief Reader, AP Statistics jutts@uci.edu
Results from the 2014 AP Statistics Exam Jessica Utts, University of California, Irvine Chief Reader, AP Statistics jutts@uci.edu The six freeresponse questions Question #1: Extracurricular activities
More information4. FIRST STEPS IN THE THEORY 4.1. A
4. FIRST STEPS IN THE THEORY 4.1. A Catalogue of All Groups: The Impossible Dream The fundamental problem of group theory is to systematically explore the landscape and to chart what lies out there. We
More informationHow to Gamble If You Must
How to Gamble If You Must Kyle Siegrist Department of Mathematical Sciences University of Alabama in Huntsville Abstract In red and black, a player bets, at even stakes, on a sequence of independent games
More informationIf A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
More informationBasic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More information15251: Great Theoretical Ideas in Computer Science Anupam Gupta Notes on Combinatorial Games (draft!!) January 29, 2012
15251: Great Theoretical Ideas in Computer Science Anupam Gupta Notes on Combinatorial Games (draft!!) January 29, 2012 1 A TakeAway Game Consider the following game: there are 21 chips on the table.
More informationSUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by
SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More informationPrimes. Name Period Number Theory
Primes Name Period A Prime Number is a whole number whose only factors are 1 and itself. To find all of the prime numbers between 1 and 100, complete the following exercise: 1. Cross out 1 by Shading in
More informationNotes on Richard Dedekind s Was sind und was sollen die Zahlen?
Notes on Richard Dedekind s Was sind und was sollen die Zahlen? David E. Joyce, Clark University December 2005 Contents Introduction 2 I. Sets and their elements. 2 II. Functions on a set. 5 III. Onetoone
More informationRevised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
More informationSome elements of elementary set theory MAT2200 Spring 2011 By Geir Ellingsud
Some elements of elementary set theory MAT2200 Spring 2011 By Geir Ellingsud Most of what this document contains is probably well known to most of you, but still I think it is useful to cast a glance at
More informationIntroduction to Linear Regression
14. Regression A. Introduction to Simple Linear Regression B. Partitioning Sums of Squares C. Standard Error of the Estimate D. Inferential Statistics for b and r E. Influential Observations F. Regression
More informationHow many numbers there are?
How many numbers there are? RADEK HONZIK Radek Honzik: Charles University, Department of Logic, Celetná 20, Praha 1, 116 42, Czech Republic radek.honzik@ff.cuni.cz Contents 1 What are numbers 2 1.1 Natural
More informationYou know from calculus that functions play a fundamental role in mathematics.
CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.
More informationAll of mathematics can be described with sets. This becomes more and
CHAPTER 1 Sets All of mathematics can be described with sets. This becomes more and more apparent the deeper into mathematics you go. It will be apparent in most of your upper level courses, and certainly
More informationOPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationCritical analysis. Be more critical! More analysis needed! That s what my tutors say about my essays. I m not really sure what they mean.
Critical analysis Be more critical! More analysis needed! That s what my tutors say about my essays. I m not really sure what they mean. I thought I had written a really good assignment this time. I did
More informationGroup Theory. Contents
Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation
More informationFigure out the early start and early finish. Early start. Early finish
Figure out the early start and early finish oming up with the float for each activity is useful, but you can actually do better! When you have a long critical path, but the other paths in your network
More informationStatistics. Head First. A BrainFriendly Guide. Dawn Griffiths
A BrainFriendly Guide Head First Statistics Discover easy cures for chart failure Improve your season average with the standard deviation Make statistical concepts stick to your brain Beat the odds at
More informationGROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
More informationTOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS
TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS VIPUL NAIK Abstract. In this journey, we are going to explore the so called separation axioms in greater detail. We shall try to understand how these axioms
More informationSkepticism about the external world & the problem of other minds
Skepticism about the external world & the problem of other minds So far in this course we have, broadly speaking, discussed two different sorts of issues: issues connected with the nature of persons (a
More information