BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS

Size: px
Start display at page:

Download "BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS"

Transcription

1 LECTURE Third Edition BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS A. J. Clark School of Engineering Department of Civil and Environmental Engineering 11 Chapter by Dr. Ibrahim A. Assakkaf SPRING 003 ENES 0 Mechanics of Materials Department of Civil and Environmental Engineering University of Maryland, College Park LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 1 Bending of In the previous discussion, we have considered only those beams that are fabricated from a single material such as steel. However, in engineering design there is an increasing trend to use beams fabricated from two or more materials.

2 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. Steel Bending of These are called composite beams. They offer the opportunity of using each of the materials employed in their construction advantage. Concrete Aluminum Steel LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 3 Foam Core with Metal Cover Plates Consider a composite beam made of metal cover plates on the top and bottom with a plastic foam core as shown by the cross sectional area of Figure 6. The design concept of this composite beam is to use light-low strength foam to support the load-bearing metal plates located at the top and bottom.

3 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 4 Foam Core with Metal Cover Plates Foam Core t m Figure 6 Metal Face Plates b h f t m LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 5 Foam Core with Metal Cover Plates The strain is continuous across the interface between the foam and the cover plates. The stress in the foam is given by σ f E f ε 0 (53) The stress in the foam is considered zero because its modulus of elasticity E f is small compared to the modulus of elasticity of the metal.

4 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 6 Foam Core with Metal Cover Plates Assumptions: Plane sections remain plane before and after loading. The strain is linearly distributed as shown in Figure 7. LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 7 Foam Core with Metal Cover Plates y M Compressive Strain Neutral Axis x Tensile Strain Figure 7

5 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 8 Foam Core with Metal Cover Plates Using Hooke s law, the stress in the metal of the cover plates can be expressed as y σ m εem Em (53) ρ but E σ m m / ρ M / I My I x x, therefore (54) LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 9 Foam Core with Metal Cover Plates The relation for the stress is the same as that established earlier; however, the foam does not contribute to the load carrying capacity of the beam because its modulus of elasticity is negligible. For this reason, the foam is not considered when determining the moment of inertia I x.

6 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 10 Foam Core with Metal Cover Plates Under these assumptions, the moment of inertia about the neutral axis is given by hf tm btm I ( ) NA Ad btm f m h + t (55) Combining Eqs 54 and 55, the maximum stress in the metal is computed as M ( hf + tm ) ( h + t ) σ (56) max bt m f m LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 11 Foam Core with Metal Cover Plates The maximum stress in the metal plates of the beam is given by Foam Core Metal Face Plates h f t m σ max M bt m ( h f + tm ) ( h + t ) f m (56) b t m

7 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 1 Example 1 A simply-supported, foam core, metal cover plate composite beam is subjected to a uniformly distributed load of magnitude q. Aluminum cover plates in. thick, 10 in. wide and 10 ft long are adhesively bonded to a polystyrene foam core. The foam is 10 in. wide, 6 in. high, and 10 ft long. If the yield strength of the aluminum cover plates is 3 ksi, determine q. LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 13 Example 1 (cont d) The maximum moment for a simply supported beam is given by ql q( 10 1) M max 1800q 8 8 When the composite beam yields, the stresses in the cover plates are σ max F y 3,000 psi

8 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 14 Example 1 (cont d) Substituting above values for M max and σ max into Eq. 56, we get M ( hf + tm ) σ max btm( h f + tm ) 1800q( ) 3,000 10( 0.063)[ ] Or lb lb q in ft LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 15 Bending of Members Made of Several Materials The derivation given for foam core with metal plating was based on the assumption that the modulus of elasticity E f of the foam is so negligible,that is, it does not contribute to the load-carrying capacity of the composite beam.

9 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 16 Bending of Members Made of Several Materials When the moduli of elasticity of various materials that make up the beam structure are not negligible and they should be accounted for, then procedure for calculating the normal stresses and shearing stresses on the section will follow different approach, the transformed section of the member. LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 17 Transformed Section Consider a bar consisting of two portions of different materials bonded together as shown in Fig. 8. This composite bar will deform as described earlier. Thus the normal strain ε x still varies linearly with the distance y from the neutral axis of the section (see Fig 8b), and the following formula holds: y ε x (57) ρ

10 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 18 Transformed Section y y M 1 y ε x ρ σ 1 E 1 y ρ N.A ε x σ E y ρ σ x Figure 8 (a) (b) (c) LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 19 Transformed Section Because we have different materials, we cannot simply assume that the neutral axis passes through the centroid of the composite section. In fact one of the goal of this discussion will be to determine the location of this axis.

11 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 0 Transformed Section We can write: σ 1 E1 y E1ε x ρ (58a) E y σ Eε x ρ From Eq. 58, it follows that df 1 E1 y σ1da da ρ E y df σ da da ρ (58b) (59a) (59b) LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 1 Transformed Section But, denoting by n the ratio E /E 1 of the two moduli of elasticity, df can expressed as ( ne1 ) y E1 y df da ( nda) (60) ρ ρ Comparing Eqs. 59a and 60, it is noted that the same force df would be exerted on an element of area n da of the first material.

12 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. Transformed Section This mean that the resistance to bending of the bar would remain the same if both portions were made of the first material, providing that the width of each element of the lower portion were multiplied by the factor n. The widening (if n>1) and narrowing (n<1) must be accomplished in a direction parallel to the neutral axis of the section. LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 3 Transformed Section b 1 N.A E n E 1 b Figure 9 b n b

13 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 4 Transformed Section Since the transformed section represents the cross section of a member made of a homogeneous material with a modulus of elasticity E 1,the previous method may be used to find the neutral axis of the section and the stresses at various points of the section. Figure 30 shows the fictitious distribution of normal stresses on the section. LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 5 Transformed Section y y C σ x N.A. My I σ x Figure 30. Distribution of Fictitious Normal Stress on Cross Section

14 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 6 Stresses on Transformed Section 1. To obtain the stress σ 1 at a point located in the upper portion of the cross section of the original composite beam, the stress is simply computed from My/I.. To obtain the stress σ at a point located in the upper portion of the cross section of the original composite beam, stress σ x computed from My/I is multiplied by n. LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 7 Example A steel bar and aluminum bar are bonded together to form the composite beam shown. The modulus of elasticity for aluminum is 70 GPa and for streel is 00 GPa. Knowing that the beam is bent about a horizontal axis by a moment M 1500 N- m, determine the maximum stress in (a) the aluminum and (b) the steel.

15 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 8 Example (cont d) M Steel 0 mm Aluminum 40 mm 30 mm LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 9 Example (cont d) First, because we have different materials, we need to transform the section into a section that represents a section that is made of homogeneous material, either steel or aluminum. We have n E s Ea

16 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 30 Example (cont d) 30 mm n mm Steel 0 mm Aluminum Aluminum 40 mm Aluminum 30 mm Figure 31a 30 mm Figure 31b LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 31 Example (cont d) 10 y I C NA Consider the transformed section of Fig. 31b, therefore ( ) + 40( 30 40) ( ) + ( 30 40) 3 ( ) ( )(.353 0) ( ) mm from top mm m

17 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 3 Example (cont d) mm y C.353 mm N.A. C 0 mm 40 mm 30 mm LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 33 Example (cont d) a) Maximum normal stress in aluminum occurs at extreme lower fiber of section, that is at y -( ) mm MPa (T) 3 ( ) My Pa 9 I σ al

18 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 34 Example (cont d) b) Maximum normal stress in stelel occurs at extreme upper fiber of the cross section, that is. at y mm. 3 ( ) My 1500 n (.867) I MPa (C) σ St Pa LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 35 Reinforced Concrete Beam An important example of structural members made of different materials is demonstrated by reinforced concrete beams. These beams, when subjected to positive bending moments, are reinforced by steel rods placed a short distance above their lower face as shown in Figure 33a.

19 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 36 Reinforced Concrete Beam Figure 3 Dead and Live Loads M LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 37 Reinforced Concrete Beam Figure 33 d b d - x x b C 1 x N.A. σ F x n A s (a) (b) (c)

20 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 38 Reinforced Concrete Beam Concrete is very weak in tension, so it will crack below the neutral surface and the steel rods will carry the entire tensile load. The upper part of the concrete beam will carry the compressive load. To obtain the transformed section, the total cross-sectional area A s of steel bar is replaced by an equivalent area na s. LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 39 Reinforced Concrete Beam The ratio n is given by Modulus of Elasticity for Steel E n Modulus of Elasticity for Concrete E The position of the neutral axis is obtained by determining the distance x from the upper face of the beam (upper fiber) to the centroid C of the transformed section. s c

21 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 40 Reinforced Concrete Beam Note that the first moment of transformed section with respect to neutral axis must be zero. Since the the first moment of each of the two portions of the transformed section is obtained by multiplying its area by the distance of its own centroid from the neutral axis, we get LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 41 Reinforced Concrete Beam x ( bx) ( d x)( na ) or 1 bx + nas x nas d 0 (61) Solving the quadratic equation for x, both the position of the neutral axis in the beam and the portion of the cross section of the concrete beam can be obtained. s 0

22 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 4 Reinforced Concrete Beam The neutral axis for a concrete beam is found by solving the quadratic equation: b 1 bx + na x na d b 0 s s (6) d d - x x C 1 x n A s LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 43 Example 3 5 -in A concrete floor slab is reinforced by 8 diameter steel rods placed 1 in. above the lower face of the slab and spaced 6 in. on centers. The modulus of elasticity is psi for concrete used and psi for steel. Knowing that a bending moment of 35 kip in is applied to each 1-ft width of the slab, determine (a) the maximum stress in concrete and (b) the stress in the steel.

23 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 44 Example 3 (cont d) M 35 kip in 4 in. 1 in. 5 in. 6 in. 6 in. 6 in. 6 in. 4 in. 5 in. LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 45 Example 3 (cont d) Transformed Section Consider a portion of the slab 1 in. wide, in 5 which there are two -in diameter rods having a 8 total cross-sectional area 4 in. x 4 - x 1 in. C N.A. A s 5 π in 4 E n E s s c na ( 0.614) 6.14 in 10

24 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 46 Example 3 (cont d) Neutral Axis The neutral axis of the slab passes through the centroid of the transformed section. Using Eq. 6: Quadratic Formula b ± x b 4ac a x take x bx + nas x nas d 0 1 6x x ( 1) x x 6.14( 4) 0 x in LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 47 Example 3 (cont d) Moment of Inertia The centroidal moment of inertia of the transformed section is 1 in. 4 in C N.A I 3 ( ) (.45) 51.7 in 6.14 in

25 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 48 Example 3 (cont d) Maximum stress in concrete: 35( 1.575) σ c My I Stress in steel: σ s n My I 51.7 (.45) ksi (C) 35 ( 10) ksi (T) 51.7 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 49 Stress Concentrations a b Stress concentrations may occur: in the vicinity of points where the loads are applied in the vicinity of abrupt changes in cross section Mc σ m K I Figure 33

26 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 50 Stress Concentrations Example 4 Grooves 10 mm deep are to be cut in a steel bar which is 60 mm wide and 9 mm thick as shown. Determine the smallest allowable width of the grooves if the stress in the bar is not to exceed 150 MPa when the bending moment is equal to 180 N m. LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 51 Stress Concentrations Example 4 (cont d) Figure 34

27 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 5 Stress Concentrations Example 4 (cont d) From Fig. 34a: 1 1 d ( ) d mm c ( 40) 0 mm The moment of inertia of the critical cross section about its neutral axis is given by ( 9 10 )( ) m I bd 1 1 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 53 Stress Concentrations Example 4 (cont d) Therefore, the stress is σ Mc 180 I ( 0 10 ) 75 MPa Using Mc σ m K I 150 K ( 75) K Also D d 40

28 LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 54 Stress Concentrations Example 4 (cont d) From Fig. 33b, and for values of D/d 1.5 and K, therefore r 0.13 d r 0.13 ( d ) 0.13( 40) 5. mm Thus, the smallest allowable width of the grooves is ( 5.) 10.4 mm r LECTURE 11. BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS ( ) Slide No. 55 Stress Concentrations a b Stress concentrations may occur: in the vicinity of points where the loads are applied in the vicinity of abrupt changes in cross section Mc σ m K I Figure 33

MATERIALS AND MECHANICS OF BENDING

MATERIALS AND MECHANICS OF BENDING HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following. MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

More information

BEAMS: SHEAR FLOW, THIN WALLED MEMBERS

BEAMS: SHEAR FLOW, THIN WALLED MEMBERS LECTURE BEAMS: SHEAR FLOW, THN WALLED MEMBERS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering 15 Chapter 6.6 6.7 by Dr. brahim A. Assakkaf SPRNG 200 ENES

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

PRESTRESSED CONCRETE. Introduction REINFORCED CONCRETE CHAPTER SPRING 2004. Reinforced Concrete Design. Fifth Edition. By Dr. Ibrahim.

PRESTRESSED CONCRETE. Introduction REINFORCED CONCRETE CHAPTER SPRING 2004. Reinforced Concrete Design. Fifth Edition. By Dr. Ibrahim. CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition PRESTRESSED CONCRETE A. J. Clark School of Engineering Department of Civil and Environmental

More information

SPECIFICATIONS, LOADS, AND METHODS OF DESIGN

SPECIFICATIONS, LOADS, AND METHODS OF DESIGN CHAPTER Structural Steel Design LRFD Method Third Edition SPECIFICATIONS, LOADS, AND METHODS OF DESIGN A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural

More information

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those

More information

APE T CFRP Aslan 500

APE T CFRP Aslan 500 Carbon Fiber Reinforced Polymer (CFRP) Tape is used for structural strengthening of concrete, masonry or timber elements using the technique known as Near Surface Mount or NSM strengthening. Use of CFRP

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

Stresses in Beam (Basic Topics)

Stresses in Beam (Basic Topics) Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and

More information

Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -)

Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -) Cause: external force P Force vs. Stress Effect: internal stress f 05 Force vs. Stress Copyright G G Schierle, 2001-05 press Esc to end, for next, for previous slide 1 Type of Force 1 Axial (tension /

More information

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow. 9.2 One-way Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase

More information

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem

More information

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia DESIGN OF SLABS Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction Types of Slab Slabs are plate elements

More information

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

More information

BEAMS: SHEAR AND MOMENT DIAGRAMS (GRAPHICAL)

BEAMS: SHEAR AND MOMENT DIAGRAMS (GRAPHICAL) LECTURE Third Edition BES: SHER ND OENT DIGRS (GRPHICL). J. Clark School of Engineering Department of Civil and Environmental Engineering 3 Chapter 5.3 by Dr. Ibrahim. ssakkaf SPRING 003 ENES 0 echanics

More information

Bending Stress in Beams

Bending Stress in Beams 936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending

More information

Bending, Forming and Flexing Printed Circuits

Bending, Forming and Flexing Printed Circuits Bending, Forming and Flexing Printed Circuits John Coonrod Rogers Corporation Introduction: In the printed circuit board industry there are generally two main types of circuit boards; there are rigid printed

More information

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable

More information

Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics. Stress. What you ll learn: Motivation Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

More information

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading - Contents Stress & Strain: xial oading

More information

16. Beam-and-Slab Design

16. Beam-and-Slab Design ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil

More information

SHAFTS: TORSION LOADING AND DEFORMATION

SHAFTS: TORSION LOADING AND DEFORMATION ECURE hird Edition SHAFS: ORSION OADING AND DEFORMAION A. J. Clark Shool of Engineering Department of Civil and Environmental Engineering 6 Chapter 3.1-3.5 by Dr. Ibrahim A. Assakkaf SPRING 2003 ENES 220

More information

Sheet metal operations - Bending and related processes

Sheet metal operations - Bending and related processes Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key... Error! Bookmark not defined. 1.Bending

More information

Lecture 8 Bending & Shear Stresses on Beams

Lecture 8 Bending & Shear Stresses on Beams Lecture 8 Bending & hear tresses on Beams Beams are almost always designed on the asis of ending stress and, to a lesser degree, shear stress. Each of these stresses will e discussed in detail as follows.

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1 Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

More information

Mechanics of Materials. Chapter 5 Stresses In Beams

Mechanics of Materials. Chapter 5 Stresses In Beams Mechanics of Materials Chapter 5 Stresses In Beams 5.1 Introduction In previous chapters, the stresses in bars caused by axial loading and torsion. Here consider the third fundamental loading : bending.

More information

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

More information

A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated.

A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated. Design Step 4 Design Step 4.1 DECK SLAB DESIGN In addition to designing the deck for dead and live loads at the strength limit state, the AASHTO-LRFD specifications require checking the deck for vehicular

More information

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

More information

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for: HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

More information

Hardened Concrete. Lecture No. 14

Hardened Concrete. Lecture No. 14 Hardened Concrete Lecture No. 14 Strength of Concrete Strength of concrete is commonly considered its most valuable property, although in many practical cases, other characteristics, such as durability

More information

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Topics 17.1 INTRODUCTION Rectangular Combined Footing: Trapezoidal Combined Footings: Cantilever Footing: Mat foundation: 17.2 COMMON TYPES OF MAT FOUNDATIONS

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

More information

Chapter - 3 Design of Rectangular Beams and One-way Slabs

Chapter - 3 Design of Rectangular Beams and One-way Slabs Rectangular Beams and One-way Slabs Page 1 of 9 Chapter - 3 Design of Rectangular Beams and One-way Slabs 12 h A 12 strip in a simply supported one-way slab h b=12 L Rectangular Beams and One-way Slabs

More information

Detailing of Reinforcment in Concrete Structures

Detailing of Reinforcment in Concrete Structures Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

More information

AN EXPLANATION OF JOINT DIAGRAMS

AN EXPLANATION OF JOINT DIAGRAMS AN EXPLANATION OF JOINT DIAGRAMS When bolted joints are subjected to external tensile loads, what forces and elastic deformation really exist? The majority of engineers in both the fastener manufacturing

More information

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

Aluminium systems profile selection

Aluminium systems profile selection Aluminium systems profile selection The purpose of this document is to summarise the way that aluminium profile selection should be made, based on the strength requirements for each application. Curtain

More information

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems: Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

More information

Activity 2.3b Engineering Problem Solving Answer Key

Activity 2.3b Engineering Problem Solving Answer Key Activity.3b Engineering roblem Solving Answer Key 1. A force of 00 lbs pushes against a rectangular plate that is 1 ft. by ft. Determine the lb lb pressure in and that the plate exerts on the ground due

More information

Two-Way Post-Tensioned Design

Two-Way Post-Tensioned Design Page 1 of 9 The following example illustrates the design methods presented in ACI 318-05 and IBC 2003. Unless otherwise noted, all referenced table, figure, and equation numbers are from these books. The

More information

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING COUNCIL CERTIICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL - BASIC STUDIES O STRESS AND STRAIN You should judge your progress by completing the self assessment exercises. These may be sent

More information

Reinforced Concrete Design

Reinforced Concrete Design FALL 2013 C C Reinforced Concrete Design CIVL 4135 ii 1 Chapter 1. Introduction 1.1. Reading Assignment Chapter 1 Sections 1.1 through 1.8 of text. 1.2. Introduction In the design and analysis of reinforced

More information

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS 1 th Canadian Masonry Symposium Vancouver, British Columbia, June -5, 013 DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS Vladimir G. Haach 1, Graça Vasconcelos and Paulo

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams

More information

5 G R A TINGS ENGINEERING DESIGN MANUAL. MBG Metal Bar Grating METAL BAR GRATING MANUAL MBG 534-12 METAL BAR GRATING NAAMM

5 G R A TINGS ENGINEERING DESIGN MANUAL. MBG Metal Bar Grating METAL BAR GRATING MANUAL MBG 534-12 METAL BAR GRATING NAAMM METAL BAR NAAMM GRATNG MANUAL MBG 534-12 5 G R A TNG NAAMM MBG 534-12 November 4, 2012 METAL BAR GRATNG ENGNEERNG DEGN MANUAL NAAMM MBG 534-12 November 4, 2012 5 G R A TNG MBG Metal Bar Grating A Division

More information

NOTCHES AND THEIR EFFECTS. Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1

NOTCHES AND THEIR EFFECTS. Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1 NOTCHES AND THEIR EFFECTS Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1 CHAPTER OUTLINE Background Stress/Strain Concentrations S-N Approach for Notched Members

More information

Chapter 8. Flexural Analysis of T-Beams

Chapter 8. Flexural Analysis of T-Beams Chapter 8. Flexural Analysis of T-s 8.1. Reading Assignments Text Chapter 3.7; ACI 318, Section 8.10. 8.2. Occurrence and Configuration of T-s Common construction type.- used in conjunction with either

More information

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES O STRESS AND STRAIN This tutorial is essential for anyone studying the group of tutorials on beams. Essential pre-requisite knowledge

More information

ABSTRACT 1. INTRODUCTION 2. DESCRIPTION OF THE SEGMENTAL BEAM

ABSTRACT 1. INTRODUCTION 2. DESCRIPTION OF THE SEGMENTAL BEAM Ninth LACCEI Latin American and Caribbean Conference (LACCEI 11), Engineering for a Smart Planet, Innovation, Information Technology and Computational Tools for Sustainable Development, August 3-, 11,

More information

σ y ( ε f, σ f ) ( ε f

σ y ( ε f, σ f ) ( ε f Typical stress-strain curves for mild steel and aluminum alloy from tensile tests L L( 1 + ε) A = --- A u u 0 1 E l mild steel fracture u ( ε f, f ) ( ε f, f ) ε 0 ε 0.2 = 0.002 aluminum alloy fracture

More information

Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars

Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars Report on Wind Resistance of Signs supported by Glass Fiber Reinforced Concrete (GFRC) Pillars Prepared for US Sign and Fabrication Corporation January, 2006 SUMMARY This study found the attachment of

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams Introduction to Beam Theory Area Moments of Inertia, Deflection, and Volumes of Beams Horizontal structural member used to support horizontal loads such as floors, roofs, and decks. Types of beam loads

More information

FOOTING DESIGN EXAMPLE

FOOTING DESIGN EXAMPLE County: Any Design: BRG Date: 10/007 Hwy: Any Ck Dsn: BRG Date: 10/007 FOOTING DESIGN EXAMPLE Design: Based on AASHTO LRFD 007 Specifications, TxDOT LRFD Bridge Design Manual, and TxDOT Project 0-4371

More information

Steel Design Guide Series. Column Base Plates

Steel Design Guide Series. Column Base Plates Steel Design Guide Series Column Base Plates Steel Design Guide Series Column Base Plates Design of Column Base Plates John T. DeWolf Professor of Civil Engineering University of Connecticut Storrs, Connecticut

More information

Design Analysis and Review of Stresses at a Point

Design Analysis and Review of Stresses at a Point Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to

More information

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

More information

SLAB DESIGN EXAMPLE. Deck Design (AASHTO LRFD 9.7.1) TYPICAL SECTION. County: Any Hwy: Any Design: BRG Date: 7/2010

SLAB DESIGN EXAMPLE. Deck Design (AASHTO LRFD 9.7.1) TYPICAL SECTION. County: Any Hwy: Any Design: BRG Date: 7/2010 County: Any Hwy: Any Design: BRG Date: 7/2010 SLAB DESIGN EXAMPLE Design example is in accordance with the AASHTO LRFD Bridge Design Specifications, 5th Ed. (2010) as prescribed by TxDOT Bridge Design

More information

Assistant Professor of Civil Engineering, University of Texas at Arlington

Assistant Professor of Civil Engineering, University of Texas at Arlington FRC Performance Comparison: Direct Tensile Test, Beam Type Bending Test, and Round Panel Test Shih Ho Chao (Presenting Author) Assistant Professor of Civil Engineering, University of Texas at Arlington

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

Index 20010 Series Prestressed Florida-I Beams (Rev. 07/12)

Index 20010 Series Prestressed Florida-I Beams (Rev. 07/12) Index 20010 Series Prestressed Florida-I Beams (Rev. 07/12) Design Criteria AASHTO LRFD Bridge Design Specifications, 6th Edition; Structures Detailing Manual (SDM); Structures Design Guidelines (SDG)

More information

Design Project 2. Sizing of a Bicycle Chain Ring Bolt Set. Statics and Mechanics of Materials I. ENGR 0135 Section 1040.

Design Project 2. Sizing of a Bicycle Chain Ring Bolt Set. Statics and Mechanics of Materials I. ENGR 0135 Section 1040. Design Project 2 Sizing of a Bicycle Chain Ring Bolt Set Statics and Mechanics of Materials I ENGR 0135 Section 1040 November 9, 2014 Derek Nichols Michael Scandrol Mark Vavithes Nichols, Scandrol, Vavithes

More information

MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas.

MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas. MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA The concepts of first and second moments of area fundamental to several areas of engineering including solid mechanics and fluid mechanics. Students who are

More information

Mechanical Properties - Stresses & Strains

Mechanical Properties - Stresses & Strains Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =

More information

PROBLEM 4.1 SOLUTION. Knowing that the couple shown acts in a vertical plane, determine the stress at (a) point A, (b) point B.

PROBLEM 4.1 SOLUTION. Knowing that the couple shown acts in a vertical plane, determine the stress at (a) point A, (b) point B. PROBLEM.1 Knowing tht the couple shown cts in verticl plne, determine the stress t () point A, (b) point B. SOLUTON () (b) For rectngle: For cross sectionl re: 1 = bh 1 1 = 1 + + = ()(1.5) + ()(5.5) +

More information

Lap Fillet Weld Calculations and FEA Techniques

Lap Fillet Weld Calculations and FEA Techniques Lap Fillet Weld Calculations and FEA Techniques By: MS.ME Ahmad A. Abbas Sr. Analysis Engineer Ahmad.Abbas@AdvancedCAE.com www.advancedcae.com Sunday, July 11, 2010 Advanced CAE All contents Copyright

More information

Structural Integrity Analysis

Structural Integrity Analysis Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

More information

Optimising plate girder design

Optimising plate girder design Optimising plate girder design NSCC29 R. Abspoel 1 1 Division of structural engineering, Delft University of Technology, Delft, The Netherlands ABSTRACT: In the design of steel plate girders a high degree

More information

Basics of Reinforced Concrete Design

Basics of Reinforced Concrete Design Basics of Reinforced Concrete Design Presented by: Ronald Thornton, P.E. Define several terms related to reinforced concrete design Learn the basic theory behind structural analysis and reinforced concrete

More information

Flexural Strength of Reinforced and Prestressed Concrete T-Beams

Flexural Strength of Reinforced and Prestressed Concrete T-Beams Flexural Strength of Reinforced and Prestressed Concrete T-Beams Richard Brice, P.E. Bridge Software Engineer Bridge & Structures Office Washington State Department of Transportation Olympia, Washington

More information

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads? Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

More information

CE591 Fall 2013 Lecture 26: Moment Connections

CE591 Fall 2013 Lecture 26: Moment Connections CE591 Fall 2013 Lecture 26: Moment Connections Explain basic design procedure for moment (FR) connections Explain considerations for connections in momentresisting frames for seismic demands Describe problems

More information

Torsion Tests. Subjects of interest

Torsion Tests. Subjects of interest Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test

More information

FIBERGLASS REINFORCED PLASTIC (FRP) PIPING SYSTEMS DESIGNING PROCESS / FACILITIES PIPING SYSTEMS WITH FRP

FIBERGLASS REINFORCED PLASTIC (FRP) PIPING SYSTEMS DESIGNING PROCESS / FACILITIES PIPING SYSTEMS WITH FRP FIBERGLASS REINFORCED PLASTIC (FRP) PIPING SYSTEMS DESIGNING PROCESS / FACILITIES PIPING SYSTEMS WITH FRP A COMPARISON TO TRADITIONAL METALLIC MATERIALS Prepared by: Kevin Schmit, Project Engineer Specialty

More information

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 11-20, Article ID: IJCIET_06_11_002 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona for Earthen Material and Straw Bale Structures SECTION 70 - GENERAL "APPENDIX CHAPTER 7 - EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety

More information

Numerical modelling of shear connection between concrete slab and sheeting deck

Numerical modelling of shear connection between concrete slab and sheeting deck 7th fib International PhD Symposium in Civil Engineering 2008 September 10-13, Universität Stuttgart, Germany Numerical modelling of shear connection between concrete slab and sheeting deck Noémi Seres

More information

CHAPTER 9 LONG TERM MONITORING AT THE ROUTE 351 BRIDGE

CHAPTER 9 LONG TERM MONITORING AT THE ROUTE 351 BRIDGE CHAPTER 9 LONG TERM MONITORING AT THE ROUTE 351 BRIDGE 9.1 INTRODUCTION An important reason that composite piles have not gained wide acceptance in the civil engineering practice is the lack of a long

More information

Design and Construction of Cantilevered Reinforced Concrete Structures

Design and Construction of Cantilevered Reinforced Concrete Structures Buildings Department Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers APP-68 Design and Construction of Cantilevered Reinforced Concrete Structures

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges 7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience

More information

Lab for Deflection and Moment of Inertia

Lab for Deflection and Moment of Inertia Deflection and Moment of Inertia Subject Area(s) Associated Unit Lesson Title Physics Wind Effects on Model Building Lab for Deflection and Moment of Inertia Grade Level (11-12) Part # 2 of 3 Lesson #

More information

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Yun-gang Zhan School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang,

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).

More information

ARCH 331 Structural Glossary S2014abn. Structural Glossary

ARCH 331 Structural Glossary S2014abn. Structural Glossary Structural Glossary Allowable strength: Nominal strength divided by the safety factor. Allowable stress: Allowable strength divided by the appropriate section property, such as section modulus or cross

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD etho INTRODUCTION TO BEAS Thir Eition A. J. Clark School of Engineering Department of Civil an Environmental Engineering Part II Structural Steel Design an Analsis

More information

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST Abstract Camelia SLAVE University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti

More information