Problems with solutions -MS Exam: Option I. Probability and Statistics- Fall 2007

Size: px
Start display at page:

Download "Problems with solutions -MS Exam: Option I. Probability and Statistics- Fall 2007"

Transcription

1 Problems with solutions -MS Exam: Option I Probability and Statistics- Fall 2007 [1] Math 310 -MS Exam, Fall 2007 If A is a real symmetric matrix then show that its range (column space) R(A) and null space N(A) have only the null vector in common, i.e., R(A) N(A) = {0}. Solution to Math 310 -MS Exam, Fall 2007-Majumdar Let y R(A) N(A). Then y = Ax, and Ay = 0. i.e AAx = 0 i.e A T Ax = 0(sinceA = A T ) i.e x T A T Ax = 0 i.e Ax = 0 i.e y = 0 [2] Math MS Exam, Fall 2007 Find x sin x lim. x 0 x 3 Solution to Math MS Exam, Fall 2007-Miescke We use L Hospital s Rule three times: x sin x lim x 0 x 3 = lim x 0 1 cos x 3x 2 [3] Stat MS Exam, Fall 2007 = lim x 0 sin x 6x = lim cos x x 0 6 = 1 6. If X and Y are independent random variables each uniform on the interval [0, 1] then find (i). p.d.f. of X + Y. (ii). E(X + Y ) 2 1

2 (i.) Solution to Math MS Exam, Fall 2007-Majumdar { 1 if 0 < x < 1, f X (x) = 0 Otherwise { 1 if f Y (y) = 0 Otherwise 0 < y < 1 { 1 if f X,Y (x, y) = 0 Otherwise 0 < x, y < 1 Let Z = X + Y. Let F Z (z) be the cumulative distribution function of Z. case 1. 0 < z < 1. In this case 0 < x, y < 1. Thus F Z (z) = P (Z z) = P (X + Y z) = z dx (z x) dy = z case 2. 1 z < 2. In This case F Z (z) = P (Z z) = P (X + Y z) = 1 P (X + Y > z) Now P (X + Y > z) for z > 1 is simply the area of the triangle formed by the intersection of the sets A = {(x, y) : x + y > z} and B = {(x, y) :, 0 x, y 1} which is (2 z)2. Thus 2 F Z (z) = 1 (2 z)2. Now the density of Z is given by 2 (ii.) f X (x) = z if 0 z 1, 2 z if 1 < z 2, 0 Otherwise By symmetry and by the independence of X, Y we have E(X) = E(Y ), E(X 2 ) = E(Y 2 ). Now E(X+Y ) 2 = E(X 2 )+E(Y 2 )+2E(XY ) = 2E(X 2 )+2[E(X)] 2 = 2 [ 1 ] x2 dx + 2 xdx) 0 = 7 6 2

3 [4] Stat (Chapter 5,6,7):-MS Exam, Fall 2007 Let X 1, X 2,..., X n, n > 2, be a random sample from the discrete distribution b(1, θ) that has the pdf where 0 < θ < 1. f(x; θ) = { θ x (1 θ) 1 x, x = 0, 1; 0, elsewhere. (a) Show that Y 1 = n i=1 X i is a complete sufficient statistic for θ. (b) Find the function ϕ(y 1 ) which is the MVUE of θ. Solution to Stat MS Exam, Fall 2007-Yang (a) Proof: For 0 < θ < 1, rewrite f(x; θ) = exp {x log θ + (1 x) log(1 θ)} { } θ = exp log x + log(1 θ), x {0, 1} 1 θ So b(1, θ) belongs to the regular exponential class with Therefore p(θ) = log θ, q(θ) = log(1 θ), K(x) = x, S(x) = 0 1 θ Y 1 = n K(X i ) = i=1 is a complete sufficient statistic for θ. (b) Note that n i=1 X i E( Y 1 n ) = 1 n ne(x 1) = θ So ϕ(y 1 ) = Y 1 /n is the MVUE of θ. 3

4 [5] Stat (Chapter 8,9):-MS Exam, Fall 2007 Let X = (X 1,..., X n ) denote a random sample from the distribution N(0, θ) that has the pdf f(x; θ) = 1 ) exp ( x2, < x <. 2πθ 2θ The purpose is to test the hypothesis H 0 : θ = 1 against the alternative hypothesis H 1 : θ > 1. (a) Show that the likelihood ratio L(θ = 1; X)/L(θ = θ 1 ; X) is based upon the statistic Y = n i=1 X2 i, where θ 1 > 1 is fixed. (b) If n = 15, find a uniformly most powerful critical region of size α = 0.05 for the hypothesis test. (Hint: Use the chi-square table attached.) Solution to Stat (chapters 8,9):- MS Exam, Fall 2007-Yang (a) Proof: The likelihood function of θ given x = (x 1,..., x n ) is L(θ; x) = Therefore the likelihood ratio ( ) { n/2 1 exp 1 2πθ 2θ n i=1 { ( ) n L(θ = 1; X) L(θ = θ 1 ; X) = θ1 1 θn/2 1 exp 2θ 1 So it is based upon the statistic Y = n i=1 X2 i. (b) For any fixed θ 1 > 1 and for any positive constant k, x 2 i i=1 } X 2 i } L(θ = 1; x) L(θ = θ 1 ; x) k n i=1 x 2 i 2θ [ 1 n θ log θ 1 log k] = c By the Neyman-Pearson Theorem, the best critical region C for testing H 0 : θ = 1 against H 1 : θ = θ 1 4

5 takes the form of {(x 1,..., x n ) : n i=1 x2 i c}, where the constant c is determined by P H0 (X C) = α If n = 15, Y χ 2 (15) under the null hypothesis. By the chi-square table attached, c = if α = Note that the best critical region C does not depend on θ 1. So { } n C = (x 1,..., x n ) : x 2 i is a uniformly most powerful critical region of size α = 0.05 for testing H 0 : θ = 1 against H 1 : θ > 1. [6] Stat MS Exam, Fall 2007 i=1 In a study of effectiveness of hypnosis the emotions of fear, happiness, depression, and calmness were requested in random order for each of five subjects during hypnosis. The following table gives the resulting measurements of skin potential (adjusted for initial level) in millivolts. Subject A B C D E Fear Happiness Depression Calmness Assuming that the skin potential of a person has different levels in the four types of emotions suppose we want to test whether hypnosis can cause these emotions. (a) Describe the basic model of the Friedman test, give its test statistic S, and compute S. (b) Explain why the Friedman test is here more appropriate than the Kruskal- Wallis test. 5

6 Solution to Stat MS Exam, Fall 2007-Miescke The basic underlying model is X i,j = θ + β i + τ j + e i,j, i = 1,..., n, j = 1,..., k, where the e i,j are i.i.d. with a common continuous c.d.f. F. The β i are the block effects, and the τ j are the treatment effects. For testing H 0 : τ 1 = = τ k versus H A : τ [1] < τ [k] we reject H 0 for large values of the test statistic S = 12n k(k + 1) k ( R j k j=1 where the cut-off value is taken from a table with quantiles of the distribution of S under H 0. For the given data, n = 5, k = 4, and the ranks are Subject A B C D E Fear Happiness Depression Calmness This gives S = 3 [( )2 + ( )2 + ( )2 + ( ] )2 = 5.88 [7] Stat MS Exam, Fall 2007 This refers to sampling from a finite population of size N using auxiliary size measures given in terms of values of an auxiliary character X while the study variable is denoted by Y. The sample size is n > 2. First one unit is randomly selected by adopting PPS method. Denote by i the selected unit. Then unit i is removed and the remaining (n 1) units are selected by adopting SRSWOR method from the remaining (N 1) population units. Denote by s = (i,.) the sample so drawn. ) 2 6

7 (a). Work out first and second order inclusion probabilities of the units in the population, to be denoted as Π j s and Π jk s. (b). Show that Π j Π k > Π jk for all pairs of units (j, k), j k. (c). Suggest an unbiased estimate of the population mean Ȳ, i. based only on the first unit selected from the population; ii. based on all the n units selected from the population. Solution to Stat MS Exam, Fall 2007-Hedayat We denote by p j the normed size of j-th population unit, so that j p j = 1. j = 1, 2,..., N (a). In standard notations : (b). Easy (c). y i p i (i). Π j = p j + (1 p j ). (n 1) (N 1) (ii). Π jk = p j. (n 1) (N 1) + p k. (n 1) (N 1) + (1 p j p k ). (n 1)(n 2) (N 1)(N 2) y i Np i serves as an unbiased estimate of the population total. Hence, serves as an unbiased estimate of Ȳ. We may suggest the Horvitz- Thompson Estimate [HTE] of the population mean Ȳ which is given by 1 y j N j Π j sum being over all sample units in s. [8] Stat MS Exam, Fall 2007 Consider a three dimensional Poisson process of particles in the space with intensity parameter ν. Fix a particle and let D be the distance from this particle to its nearest neighbor. Find (i). P (D > d). (ii). E(D). Solution to Stat MS Exam, Fall 2007-El-Neweihi 7

8 P (D > d) = P (no particles in a sphere with center at chosen particle and radius d). =e 4 3 πd3ν, d > 0. E(D) = = e 4 3 πνx3 dx e 4 3 πνy y 2 3 dy = 1 3 Γ(1 3 ) πν 3 [9] Stat 481 Problem 1 - MS Exam, Fall 2007 In studying the thrust force developed by a drill press, it is thought that drilling speed and feed rate of the material are the most important factors. An experiment is conducted with 4 feed rates and two drill speeds. The experiment is conducted by using a completely randomized design with 2 replicates for each level combination. The measurements(thrust force) are presented in the table below: Drill speed Feed Ratio (i.) Complete the df and MS column for the following ANOVA table. 8

9 Source df SS MS Drill speed (A).148 Feed Rate (B).092 Interaction (A*B).042 Error Total(corrected).303 (ii.) The two factor interaction turned out to have a p-value of Since feed rate is a factor with quantitative levels the interaction was partitioned into a component A B L and a reminder where B L refers to the linear component of B. Compute the sums of squares for both of these components. (iii.) By studying the main factors and two factor interaction (all of which are significant), it became clear that a succinct description of the relationship between the response and the two factors was difficult. It is therefore decided to make a two way table of average responses. From this table an estimate for the effect of A was computed separately at every level of B. Compute the common estimated standard error for these four effect estimators. [10] Stat 481 Problem 2 - MS Exam, Fall 2007 This problem with 3 parts deals with 2 3 factorial experiment that uses a completely randomized design in which each of the 8 treatments is replicated twice. (i.) In this situation, would you make a normal probability plot of the factorial effect estimates? Why or why not? (ii.) The observed treatment means from this experiment, each of which is 9

10 based on two replicates, are shown in the following table. Treatment mean (1) 22 a 25 b 12 ab 35 c 23 ac 30 bc 15 abc 38 For the contrast corresponding to the main effect of factor A, compute an estimate and the corresponding standard error. (iii.) It turned out that A and AB were the only significant factorial effects. With this information and the treatment means given in part (ii.) discuss in as much detail as you can at how the three factors A, B, and C affect the response. Also decide which treatment(s) you would recommend if it was desirable to maximize the response. (Hint: An appropriate two- way table might be helpful). Solution to Stat 481 Problem [9] - MS Exam, Fall 2007 Solution: Solution to Stat 481 Problem [10] - MS Exam, Fall

11 Appendix A: Table I Chi-Square Distribution The following table presents selected quantiles of chi-square distribution; i.e., the value x such that P (X x) = for selected degrees of freedom r. x 0 1 Γ(r/2)2 r/2 wr/2 1 e w/2 dw, 11

12 P (X x) r

13 Appendix B: Table II Normal Distribution The following table presents the standard normal distribution. The probabilities tabled are P (X x) = Φ(x) = x 1 2π e w2 /2 dw Note that only the probabilities for x 0 are tabled. To obtain the probabilities for x < 0, use the identity Φ( x) = 1 Φ(x). 13

14 x

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

More information

Master s Theory Exam Spring 2006

Master s Theory Exam Spring 2006 Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

More information

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random

More information

Statistics 100A Homework 7 Solutions

Statistics 100A Homework 7 Solutions Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators... MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Feb 28 Homework Solutions Math 151, Winter 2012. Chapter 6 Problems (pages 287-291)

Feb 28 Homework Solutions Math 151, Winter 2012. Chapter 6 Problems (pages 287-291) Feb 8 Homework Solutions Math 5, Winter Chapter 6 Problems (pages 87-9) Problem 6 bin of 5 transistors is known to contain that are defective. The transistors are to be tested, one at a time, until the

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

Parametric and non-parametric statistical methods for the life sciences - Session I

Parametric and non-parametric statistical methods for the life sciences - Session I Why nonparametric methods What test to use? Rank Tests Parametric and non-parametric statistical methods for the life sciences - Session I Liesbeth Bruckers Geert Molenberghs Interuniversity Institute

More information

A Tutorial on Probability Theory

A Tutorial on Probability Theory Paola Sebastiani Department of Mathematics and Statistics University of Massachusetts at Amherst Corresponding Author: Paola Sebastiani. Department of Mathematics and Statistics, University of Massachusetts,

More information

1.5 Oneway Analysis of Variance

1.5 Oneway Analysis of Variance Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

More information

Lecture Notes 1. Brief Review of Basic Probability

Lecture Notes 1. Brief Review of Basic Probability Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Section 6.1 Joint Distribution Functions

Section 6.1 Joint Distribution Functions Section 6.1 Joint Distribution Functions We often care about more than one random variable at a time. DEFINITION: For any two random variables X and Y the joint cumulative probability distribution function

More information

4. How many integers between 2004 and 4002 are perfect squares?

4. How many integers between 2004 and 4002 are perfect squares? 5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

More information

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

Least Squares Estimation

Least Squares Estimation Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

PSTAT 120B Probability and Statistics

PSTAT 120B Probability and Statistics - Week University of California, Santa Barbara April 10, 013 Discussion section for 10B Information about TA: Fang-I CHU Office: South Hall 5431 T Office hour: TBA email: chu@pstat.ucsb.edu Slides will

More information

An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

More information

Multivariate Normal Distribution

Multivariate Normal Distribution Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

More information

Statistics Review PSY379

Statistics Review PSY379 Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

Sections 2.11 and 5.8

Sections 2.11 and 5.8 Sections 211 and 58 Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1/25 Gesell data Let X be the age in in months a child speaks his/her first word and

More information

MATH2740: Environmental Statistics

MATH2740: Environmental Statistics MATH2740: Environmental Statistics Lecture 6: Distance Methods I February 10, 2016 Table of contents 1 Introduction Problem with quadrat data Distance methods 2 Point-object distances Poisson process case

More information

Section 5.1 Continuous Random Variables: Introduction

Section 5.1 Continuous Random Variables: Introduction Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Stat 704 Data Analysis I Probability Review

Stat 704 Data Analysis I Probability Review 1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte

More information

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1) Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

More information

Multivariate normal distribution and testing for means (see MKB Ch 3)

Multivariate normal distribution and testing for means (see MKB Ch 3) Multivariate normal distribution and testing for means (see MKB Ch 3) Where are we going? 2 One-sample t-test (univariate).................................................. 3 Two-sample t-test (univariate).................................................

More information

M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung

M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung M2S1 Lecture Notes G. A. Young http://www2.imperial.ac.uk/ ayoung September 2011 ii Contents 1 DEFINITIONS, TERMINOLOGY, NOTATION 1 1.1 EVENTS AND THE SAMPLE SPACE......................... 1 1.1.1 OPERATIONS

More information

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i ) Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015. Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

More information

Multivariate Analysis of Variance (MANOVA): I. Theory

Multivariate Analysis of Variance (MANOVA): I. Theory Gregory Carey, 1998 MANOVA: I - 1 Multivariate Analysis of Variance (MANOVA): I. Theory Introduction The purpose of a t test is to assess the likelihood that the means for two groups are sampled from the

More information

Permutation Tests for Comparing Two Populations

Permutation Tests for Comparing Two Populations Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. Jae-Wan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of

More information

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference 0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures

More information

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane Mathematical Sciences Paper II Time Allowed : 75 Minutes] [Maximum Marks : 100 Note : This Paper contains Fifty (50) multiple choice questions. Each question carries Two () marks. Attempt All questions.

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Chapter 4: Statistical Hypothesis Testing

Chapter 4: Statistical Hypothesis Testing Chapter 4: Statistical Hypothesis Testing Christophe Hurlin November 20, 2015 Christophe Hurlin () Advanced Econometrics - Master ESA November 20, 2015 1 / 225 Section 1 Introduction Christophe Hurlin

More information

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

More information

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A. 1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

More information

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions) Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course

More information

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions Math 70, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

More information

Elliptical copulae. Dorota Kurowicka, Jolanta Misiewicz, Roger Cooke

Elliptical copulae. Dorota Kurowicka, Jolanta Misiewicz, Roger Cooke Elliptical copulae Dorota Kurowicka, Jolanta Misiewicz, Roger Cooke Abstract: In this paper we construct a copula, that is, a distribution with uniform marginals. This copula is continuous and can realize

More information

Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA. Analysis Of Variance Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

More information

Sums of Independent Random Variables

Sums of Independent Random Variables Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables

More information

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

More information

Poisson Models for Count Data

Poisson Models for Count Data Chapter 4 Poisson Models for Count Data In this chapter we study log-linear models for count data under the assumption of a Poisson error structure. These models have many applications, not only to the

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22

Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22 Math 151. Rumbos Spring 2014 1 Solutions to Assignment #22 1. An experiment consists of rolling a die 81 times and computing the average of the numbers on the top face of the die. Estimate the probability

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

Introduction to Detection Theory

Introduction to Detection Theory Introduction to Detection Theory Reading: Ch. 3 in Kay-II. Notes by Prof. Don Johnson on detection theory, see http://www.ece.rice.edu/~dhj/courses/elec531/notes5.pdf. Ch. 10 in Wasserman. EE 527, Detection

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Recall this chart that showed how most of our course would be organized:

Recall this chart that showed how most of our course would be organized: Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

More information

25 The Law of Cosines and Its Applications

25 The Law of Cosines and Its Applications Arkansas Tech University MATH 103: Trigonometry Dr Marcel B Finan 5 The Law of Cosines and Its Applications The Law of Sines is applicable when either two angles and a side are given or two sides and an

More information

Study Guide for the Final Exam

Study Guide for the Final Exam Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

MULTIPLE REGRESSION WITH CATEGORICAL DATA

MULTIPLE REGRESSION WITH CATEGORICAL DATA DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 86 MULTIPLE REGRESSION WITH CATEGORICAL DATA I. AGENDA: A. Multiple regression with categorical variables. Coding schemes. Interpreting

More information

MAS108 Probability I

MAS108 Probability I 1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

More information

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

More information

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A = MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

More information

1.1 Introduction, and Review of Probability Theory... 3. 1.1.1 Random Variable, Range, Types of Random Variables... 3. 1.1.2 CDF, PDF, Quantiles...

1.1 Introduction, and Review of Probability Theory... 3. 1.1.1 Random Variable, Range, Types of Random Variables... 3. 1.1.2 CDF, PDF, Quantiles... MATH4427 Notebook 1 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 1 MATH4427 Notebook 1 3 1.1 Introduction, and Review of Probability

More information

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

Geometric Transformations

Geometric Transformations Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted

More information

Math 202-0 Quizzes Winter 2009

Math 202-0 Quizzes Winter 2009 Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile

More information

Statistics 100A Homework 8 Solutions

Statistics 100A Homework 8 Solutions Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half

More information

One-Way Analysis of Variance

One-Way Analysis of Variance One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We

More information

SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

More information

We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b

We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

Factor Analysis. Chapter 420. Introduction

Factor Analysis. Chapter 420. Introduction Chapter 420 Introduction (FA) is an exploratory technique applied to a set of observed variables that seeks to find underlying factors (subsets of variables) from which the observed variables were generated.

More information

Principle of Data Reduction

Principle of Data Reduction Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then

More information

Introduction to Probability

Introduction to Probability Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

More information

The Analysis of Variance ANOVA

The Analysis of Variance ANOVA -3σ -σ -σ +σ +σ +3σ The Analysis of Variance ANOVA Lecture 0909.400.0 / 0909.400.0 Dr. P. s Clinic Consultant Module in Probability & Statistics in Engineering Today in P&S -3σ -σ -σ +σ +σ +3σ Analysis

More information

171:290 Model Selection Lecture II: The Akaike Information Criterion

171:290 Model Selection Lecture II: The Akaike Information Criterion 171:290 Model Selection Lecture II: The Akaike Information Criterion Department of Biostatistics Department of Statistics and Actuarial Science August 28, 2012 Introduction AIC, the Akaike Information

More information

Nonparametric Statistics

Nonparametric Statistics Nonparametric Statistics References Some good references for the topics in this course are 1. Higgins, James (2004), Introduction to Nonparametric Statistics 2. Hollander and Wolfe, (1999), Nonparametric

More information

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

More information

Math 312 Homework 1 Solutions

Math 312 Homework 1 Solutions Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

More information

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

More information

Analysis of Variance. MINITAB User s Guide 2 3-1

Analysis of Variance. MINITAB User s Guide 2 3-1 3 Analysis of Variance Analysis of Variance Overview, 3-2 One-Way Analysis of Variance, 3-5 Two-Way Analysis of Variance, 3-11 Analysis of Means, 3-13 Overview of Balanced ANOVA and GLM, 3-18 Balanced

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

More information