# Describing Data. Carolyn J. Anderson EdPsych 580 Fall Describing Data p. 1/42

Save this PDF as:

Size: px
Start display at page:

Download "Describing Data. Carolyn J. Anderson EdPsych 580 Fall Describing Data p. 1/42"

## Transcription

1 Describing Data Carolyn J. Anderson EdPsych 580 Fall 2005 Describing Data p. 1/42

2 Describing Data Numerical Descriptions Single Variable Relationship Graphical displays Single variable. Relationships in data. Reading: Chapter 3 Describing Data p. 2/42

3 Descriptive Statistics Notation: Lower case letters denote observed values: y 1,y 2,...,y n Measures of central tendency. Measures of variability. When there are two variables Both numerical: correlation Both discrete: odds ratio, phi coefficient Numerical & discrete? Describing Data p. 3/42

4 Measures of Central Tendency Mode: the most frequent number. = Maximizes the number of correct guesses. Median: 50% below and 50% above this value. = Minimizes y guess. Mean: the arithmetic average ȳ = 1 n n i=1 y i. = Minimizes n i=1 (y i guess) 2. Describing Data p. 4/42

5 Properties of the Mean All scores influence the value. Add (or subtract) a constant c to each score 1 n n (y i + c) = 1 n i=1 n i=1 y i + 1 n n i=1 c = ȳ + c Multiply (divide) each score by a constant c 1 n n i=1 cy i = c n n i=1 y i = cȳ Describing Data p. 5/42

6 Properties of the Mean (continued) Sum of deviations about the mean ( n n n n 1 (y i ȳ) = y i ȳ = y i n n i=1 i=1 i=1 i=1 n i=1 y i ) = 0 The mean minimizes the sum of squared deviations ( n ) n min (y i c) 2 = (y i ȳ) 2 i=1 i=1 Describing Data p. 6/42

7 Measures of Dispersion (Variance) Range: = y max y min Variance = the average sum of squared deviations from the mean var(of a sample) var(of a population) = s 2 n = 1 n = σ 2 = 1 n un-biased estimate of σ 2 = ˆσ 2 = s 2 = n (y i ȳ) 2 i=1 n (y i µ) 2 i=1 1 (n 1) n (y i ȳ) 2. Standard Deviation = square root of variance. o Describing Data p. 7/42 i=1

8 Graphical Displays How depends on data type: Discrete/cateogrical (e.g., gender, region of US, ethnic background, grade level). = Bar chart, pie chart Ordinal but still discrete (e.g., responses to Likert item on a survey question). = Bar chart Numerical/continuous (e.g., SAT scores). = Cumulative distribution, histogram, box plot, stem-n-leaf. Describing Data p. 8/42

9 Discrete: Pie Chart Describing Data p. 9/42

10 Discrete: Bar Chart Describing Data p. 10/42

11 Ordinal: Bar Chart Describing Data p. 11/42

12 Ordinal: Bar Chart Describing Data p. 12/42

13 Ordinal: Bar Chart Describing Data p. 13/42

14 Numerical Variable: Stem n Leaf Stem Leaf # Multiply Stem.Leaf by 10**+1 \ consecutive Supermarket 7 shoppers and how much each spent (Data from Moore & 6 McCabe) --- probably made up Describing Data p. 14/42

15 Numerical Variable: Box Plot Average Total SAT Score mean * o Mid-West maximum 75 th percentile 50 th percentile (median) 25 th percentile minimum outlier Describing Data p. 15/42

16 Numerical: Histogram Science scores of high school seniors (HSB data) Describing Data p. 16/42

17 Relationships Between Variables Rarely interested in just one variable,e.g., Weight. Number of deaths per country due to heart disease. Number of men and women participating in a study on career choice. Quantitative SAT scores of applicants to UIUC. State average quantitative SAT scores. Describing Data p. 17/42

18 Association Between Variables Definition (Moore & McCabe, 1999): Two variables measured on the same individual are associated if some values of one variable tend to occur more often with some values of the second variable than with other values of that variable. Describing Data p. 18/42

19 Graphics for Relationships For today, look at the following: 1. Symmetric relation for 2 numerical variables. 2. Numerical response variable with numerical explanatory variable. categorical explanatory variable. numerical and categorical explanatory variables. Describing Data p. 19/42

20 Symmetric Relation for 2 Numerical SAT Scores Deborah Guber, Political Science, U of VT Title: Getting What You Pay For Individuals are 50 states. Our interest (for now) is to look at the nature of the relationship between average verbal SAT and average math SAT. Describing Data p. 20/42

21 Scatter Plots Shows the relationship between 2 numerical variables. The value of one variable shown on a horizontal axis and the value of the other variable shown on a vertical axis. One point for each individual. Describing Data p. 21/42

22 Scatter Plot for Symmetric Describing Data p. 22/42

23 Scatter Plot for Symmetric Describing Data p. 23/42

24 What Have We Learned? Positive association between mean verbal and quantitative SAT scores. Linear relationship. Relatively strong association. Describing Data p. 24/42

25 Asymmetric Relation, Two Numerical Individuals are 50 states. Interested in explaining the state SAT scores (response variable) based on expenditure per pupil (explanatory variable). Since verbal and quantitative SAT scores are strongly related, we will use the state total SAT scores as the response variable. Convention: Response/outcome variable on vertical. Explanatory variable on horizontal. Describing Data p. 25/42

26 Scatter Plot for Asymmetric Describing Data p. 26/42

27 What have we learned? Expenditure per Pupil in doesn t help explain the variability of SAT scores (at least at the state level). Possible outliers in terms of expenditure: NJ, NY, CT, AK. Describing Data p. 27/42

28 Alternative Explanatory Variables Individuals are 50 states. Response variable is the state average total SAT scores. Explanatory variables are (a) Percent of eligible students taking the SAT exam. (b) Region of country. Describing Data p. 28/42

29 Scatter Plot for Asymmetric Describing Data p. 29/42

30 What have we learned? Negative relationship between state average total SAT and the percent of eligible students taking the SAT exam. Approximate linear relationship. Variability in SAT total scores is about the same over percent of eligible students taking the SAT exam. Possibly groups of similar states. Describing Data p. 30/42

31 Asymmetric Numerical response variable and discrete explanatory variable. Plot of the data. Box plots. Mean plots. Describing Data p. 31/42

32 Mean Plot Numerical response and categorical explanatory Average Total SAT Score * * * * * East Mid-West North South West Regions of the United States Describing Data p. 32/42

33 What have we learned? Some of the variability in SAT total scores can be accounted for by region. Mid-western states have the highest average SAT total, followed by Southern and Western states, and Eastern and Northern states have the lowest. Describing Data p. 33/42

34 Box Plot: More Information Average Total SAT Score Mid-West maximum 75 th percentile 50 th percentile (median) 25 th percentile minimum Regions of the United States Describing Data p. 34/42

35 Box Plot Average Total SAT Score mean * o Mid-West maximum 75 th percentile 50 th percentile (median) 25 th percentile minimum outlier Regions of the United States Describing Data p. 35/42

36 Box Plots Average Total SAT Score * * o o * * * East Mid-West North South West Regions of the United States Describing Data p. 36/42

37 What have we learned? Some of the variability in SAT total scores can be accounted for by region. Mid-western states have the highest average SAT totals, followed by Southern and Western states, and Eastern and Northern states have the lowest. Southern states are the most variable, and the Eastern and Northern states have the least variabile. Most of the Western states are in between the mid-western and Eastern & Northern states. Describing Data p. 37/42

38 Data Plot: Numerical & Discrete Response = Total SAT, Explanatory = Region Describing Data p. 38/42

39 Scatter Plot with a Discrete Variable Use different symbols or colors Describing Data p. 39/42

40 Scatter Plot with State Labels Describing Data p. 40/42

41 What have we learned? Negative linear relationship between average total SAT score and percent of eligible students taking the SAT. Relatively few students from mid-west and south-central take SAT. Large percentage of students from North and East and south (i.e., AK, NC, SC, GA & FL)take SAT. Describing Data p. 41/42

42 What to Look for in Graphics Overall pattern. Direction of relationship. Strength of relationship. Variability. Deviations from pattern (e.g., outlier). Anything surprising or noteworthy. o Describing Data p. 42/42

### STATISTICS FOR PSYCH MATH REVIEW GUIDE

STATISTICS FOR PSYCH MATH REVIEW GUIDE ORDER OF OPERATIONS Although remembering the order of operations as BEDMAS may seem simple, it is definitely worth reviewing in a new context such as statistics formulae.

### F. Farrokhyar, MPhil, PhD, PDoc

Learning objectives Descriptive Statistics F. Farrokhyar, MPhil, PhD, PDoc To recognize different types of variables To learn how to appropriately explore your data How to display data using graphs How

### Chapter 3: Data Description Numerical Methods

Chapter 3: Data Description Numerical Methods Learning Objectives Upon successful completion of Chapter 3, you will be able to: Summarize data using measures of central tendency, such as the mean, median,

### DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

### STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

### Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)

### 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

### Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

### Statistical Foundations: Measures of Location and Central Tendency and Summation and Expectation

Statistical Foundations: and Central Tendency and and Lecture 4 September 5, 2006 Psychology 790 Lecture #4-9/05/2006 Slide 1 of 26 Today s Lecture Today s Lecture Where this Fits central tendency/location

### Descriptive statistics parameters: Measures of centrality

Descriptive statistics parameters: Measures of centrality Contents Definitions... 3 Classification of descriptive statistics parameters... 4 More about central tendency estimators... 5 Relationship between

### Central Tendency. n Measures of Central Tendency: n Mean. n Median. n Mode

Central Tendency Central Tendency n A single summary score that best describes the central location of an entire distribution of scores. n Measures of Central Tendency: n Mean n The sum of all scores divided

### Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

### The Big 50 Revision Guidelines for S1

The Big 50 Revision Guidelines for S1 If you can understand all of these you ll do very well 1. Know what is meant by a statistical model and the Modelling cycle of continuous refinement 2. Understand

### 13.2 Measures of Central Tendency

13.2 Measures of Central Tendency Measures of Central Tendency For a given set of numbers, it may be desirable to have a single number to serve as a kind of representative value around which all the numbers

### Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

### MEASURES OF VARIATION

NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

### Pie Charts. proportion of ice-cream flavors sold annually by a given brand. AMS-5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple.

Graphical Representations of Data, Mean, Median and Standard Deviation In this class we will consider graphical representations of the distribution of a set of data. The goal is to identify the range of

### 10-3 Measures of Central Tendency and Variation

10-3 Measures of Central Tendency and Variation So far, we have discussed some graphical methods of data description. Now, we will investigate how statements of central tendency and variation can be used.

### Name: Date: Use the following to answer questions 2-3:

Name: Date: 1. A study is conducted on students taking a statistics class. Several variables are recorded in the survey. Identify each variable as categorical or quantitative. A) Type of car the student

### Chapter 10 - Practice Problems 1

Chapter 10 - Practice Problems 1 1. A researcher is interested in determining if one could predict the score on a statistics exam from the amount of time spent studying for the exam. In this study, the

### First Midterm Exam (MATH1070 Spring 2012)

First Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [40pts] Multiple Choice Problems

### Exploratory Data Analysis. Psychology 3256

Exploratory Data Analysis Psychology 3256 1 Introduction If you are going to find out anything about a data set you must first understand the data Basically getting a feel for you numbers Easier to find

### Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

### AP STATISTICS REVIEW (YMS Chapters 1-8)

AP STATISTICS REVIEW (YMS Chapters 1-8) Exploring Data (Chapter 1) Categorical Data nominal scale, names e.g. male/female or eye color or breeds of dogs Quantitative Data rational scale (can +,,, with

### Descriptive Statistics

Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

### Biostatistics: A QUICK GUIDE TO THE USE AND CHOICE OF GRAPHS AND CHARTS

Biostatistics: A QUICK GUIDE TO THE USE AND CHOICE OF GRAPHS AND CHARTS 1. Introduction, and choosing a graph or chart Graphs and charts provide a powerful way of summarising data and presenting them in

### Chapter 3 Descriptive Statistics: Numerical Measures. Learning objectives

Chapter 3 Descriptive Statistics: Numerical Measures Slide 1 Learning objectives 1. Single variable Part I (Basic) 1.1. How to calculate and use the measures of location 1.. How to calculate and use the

### Chapter 2: Frequency Distributions and Graphs

Chapter 2: Frequency Distributions and Graphs Learning Objectives Upon completion of Chapter 2, you will be able to: Organize the data into a table or chart (called a frequency distribution) Construct

### Data Analysis: Describing Data - Descriptive Statistics

WHAT IT IS Return to Table of ontents Descriptive statistics include the numbers, tables, charts, and graphs used to describe, organize, summarize, and present raw data. Descriptive statistics are most

### Histogram. Graphs, and measures of central tendency and spread. Alternative: density (or relative frequency ) plot /13/2004

Graphs, and measures of central tendency and spread 9.07 9/13/004 Histogram If discrete or categorical, bars don t touch. If continuous, can touch, should if there are lots of bins. Sum of bin heights

### 4. Introduction to Statistics

Statistics for Engineers 4-1 4. Introduction to Statistics Descriptive Statistics Types of data A variate or random variable is a quantity or attribute whose value may vary from one unit of investigation

### Graphical and Tabular. Summarization of Data OPRE 6301

Graphical and Tabular Summarization of Data OPRE 6301 Introduction and Re-cap... Descriptive statistics involves arranging, summarizing, and presenting a set of data in such a way that useful information

### Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

### Data presentation and descriptive statistics

Data presentation and descriptive statistics Paola Grosso SNE research group Today with Jeroen van der Ham as special guest Instructions for use I do talk fast: Ask me to repeat if something is not clear;

### Module 3: Correlation and Covariance

Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis

### Summarizing and Displaying Categorical Data

Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency

### There are some general common sense recommendations to follow when presenting

Presentation of Data The presentation of data in the form of tables, graphs and charts is an important part of the process of data analysis and report writing. Although results can be expressed within

### Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts

### STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance

Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis

### Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences

Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html

### Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam. Software Profiling Seminar, Statistics 101

Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam Software Profiling Seminar, 2013 Statistics 101 Descriptive Statistics Population Object Object Object Sample numerical description Object

### 1 Measures for location and dispersion of a sample

Statistical Geophysics WS 2008/09 7..2008 Christian Heumann und Helmut Küchenhoff Measures for location and dispersion of a sample Measures for location and dispersion of a sample In the following: Variable

### CHINHOYI UNIVERSITY OF TECHNOLOGY

CHINHOYI UNIVERSITY OF TECHNOLOGY SCHOOL OF NATURAL SCIENCES AND MATHEMATICS DEPARTMENT OF MATHEMATICS MEASURES OF CENTRAL TENDENCY AND DISPERSION INTRODUCTION From the previous unit, the Graphical displays

### San Jose State University Engineering 10 1

KY San Jose State University Engineering 10 1 Select Insert from the main menu Plotting in Excel Select All Chart Types San Jose State University Engineering 10 2 Definition: A chart that consists of multiple

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) (a) 2 (b) 1

Unit 2 Review Name Use the given frequency distribution to find the (a) class width. (b) class midpoints of the first class. (c) class boundaries of the first class. 1) Miles (per day) 1-2 9 3-4 22 5-6

### Introductory Statistics Notes

Introductory Statistics Notes Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone: (205) 348-4431 Fax: (205) 348-8648 August

### 1-2 Mean, Median, Mode, and Range

Learn to find the mean, median, mode, and range of a data set. mean median mode range outlier Vocabulary The mean is the sum of the data values divided by the number of data items. The median is the middle

### Chapter 15 Multiple Choice Questions (The answers are provided after the last question.)

Chapter 15 Multiple Choice Questions (The answers are provided after the last question.) 1. What is the median of the following set of scores? 18, 6, 12, 10, 14? a. 10 b. 14 c. 18 d. 12 2. Approximately

### Diagrams and Graphs of Statistical Data

Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in

### 32 Measures of Central Tendency and Dispersion

32 Measures of Central Tendency and Dispersion In this section we discuss two important aspects of data which are its center and its spread. The mean, median, and the mode are measures of central tendency

### Descriptive Statistics

Chapter 2 Descriptive Statistics 2.1 Descriptive Statistics 1 2.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Display data graphically and interpret graphs:

### Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

### Session 1.6 Measures of Central Tendency

Session 1.6 Measures of Central Tendency Measures of location (Indices of central tendency) These indices locate the center of the frequency distribution curve. The mode, median, and mean are three indices

### Chapter 2 Statistical Foundations: Descriptive Statistics

Chapter 2 Statistical Foundations: Descriptive Statistics 20 Chapter 2 Statistical Foundations: Descriptive Statistics Presented in this chapter is a discussion of the types of data and the use of frequency

### Descriptive Statistics and Measurement Scales

Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample

### Relationships Between Two Variables: Scatterplots and Correlation

Relationships Between Two Variables: Scatterplots and Correlation Example: Consider the population of cars manufactured in the U.S. What is the relationship (1) between engine size and horsepower? (2)

### 4. Describing Bivariate Data

4. Describing Bivariate Data A. Introduction to Bivariate Data B. Values of the Pearson Correlation C. Properties of Pearson's r D. Computing Pearson's r E. Variance Sum Law II F. Exercises A dataset with

### MCQ S OF MEASURES OF CENTRAL TENDENCY

MCQ S OF MEASURES OF CENTRAL TENDENCY MCQ No 3.1 Any measure indicating the centre of a set of data, arranged in an increasing or decreasing order of magnitude, is called a measure of: (a) Skewness (b)

### Research Variables. Measurement. Scales of Measurement. Chapter 4: Data & the Nature of Measurement

Chapter 4: Data & the Nature of Graziano, Raulin. Research Methods, a Process of Inquiry Presented by Dustin Adams Research Variables Variable Any characteristic that can take more than one form or value.

### HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

### Central Tendency and Variation

Contents 5 Central Tendency and Variation 161 5.1 Introduction............................ 161 5.2 The Mode............................. 163 5.2.1 Mode for Ungrouped Data................ 163 5.2.2 Mode

### Elementary Statistics. Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination

Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination What is a Scatter Plot? A Scatter Plot is a plot of ordered pairs (x, y) where the horizontal axis is used

### 2.0 Lesson Plan. Answer Questions. Summary Statistics. Histograms. The Normal Distribution. Using the Standard Normal Table

2.0 Lesson Plan Answer Questions 1 Summary Statistics Histograms The Normal Distribution Using the Standard Normal Table 2. Summary Statistics Given a collection of data, one needs to find representations

### Variables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test.

The Analysis of Research Data The design of any project will determine what sort of statistical tests you should perform on your data and how successful the data analysis will be. For example if you decide

### 2. Here is a small part of a data set that describes the fuel economy (in miles per gallon) of 2006 model motor vehicles.

Math 1530-017 Exam 1 February 19, 2009 Name Student Number E There are five possible responses to each of the following multiple choice questions. There is only on BEST answer. Be sure to read all possible

### Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information.

Excel Tutorial Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information. Working with Data Entering and Formatting Data Before entering data

### Visualizations. Cyclical data. Comparison. What would you like to show? Composition. Simple share of total. Relative and absolute differences matter

Visualizations Variable width chart Table or tables with embedded charts Bar chart horizontal Circular area chart per item Many categories Cyclical data Non-cyclical data Single or few categories Many

### Utah Core Curriculum for Mathematics

Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions

### Correlation and Regression

Correlation and Regression Scatterplots Correlation Explanatory and response variables Simple linear regression General Principles of Data Analysis First plot the data, then add numerical summaries Look

### Lecture 2: Descriptive Statistics and Exploratory Data Analysis

Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals

### Northumberland Knowledge

Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about

### The Big Picture. Describing Data: Categorical and Quantitative Variables Population. Descriptive Statistics. Community Coalitions (n = 175)

Describing Data: Categorical and Quantitative Variables Population The Big Picture Sampling Statistical Inference Sample Exploratory Data Analysis Descriptive Statistics In order to make sense of data,

### BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

### Sample Exam #1 Elementary Statistics

Sample Exam #1 Elementary Statistics Instructions. No books, notes, or calculators are allowed. 1. Some variables that were recorded while studying diets of sharks are given below. Which of the variables

### Numerical Summarization of Data OPRE 6301

Numerical Summarization of Data OPRE 6301 Motivation... In the previous session, we used graphical techniques to describe data. For example: While this histogram provides useful insight, other interesting

### Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion

Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research

### Sta 309 (Statistics And Probability for Engineers)

Instructor: Prof. Mike Nasab Sta 309 (Statistics And Probability for Engineers) Chapter 2 Organizing and Summarizing Data Raw Data: When data are collected in original form, they are called raw data. The

### Variables. Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is

### DesCartes (Combined) Subject: Mathematics Goal: Statistics and Probability

DesCartes (Combined) Subject: Mathematics Goal: Statistics and Probability RIT Score Range: Below 171 Below 171 Data Analysis and Statistics Solves simple problems based on data from tables* Compares

### Statistics Summary (prepared by Xuan (Tappy) He)

Statistics Summary (prepared by Xuan (Tappy) He) Statistics is the practice of collecting and analyzing data. The analysis of statistics is important for decision making in events where there are uncertainties.

### Math 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction

Binghamton High School Rev.9/21/05 Math 1 September What is the unknown? Model relationships by using Fundamental skills of 2005 variables as a shorthand way Algebra Why do we use variables? What is a

### 21 st Century Math Projects

Project Title: U.S. Presidential Inquiry Standard Focus: Data Analysis & Probability Time Range: 3-5 Days Supplies: Pencil and Paper Topics of Focus: - Box and Whisker Plot - Mean, Median, Mode - Stem

### Section 3.1 Measures of Central Tendency: Mode, Median, and Mean

Section 3.1 Measures of Central Tendency: Mode, Median, and Mean One number can be used to describe the entire sample or population. Such a number is called an average. There are many ways to compute averages,

### 4.1 Exploratory Analysis: Once the data is collected and entered, the first question is: "What do the data look like?"

Data Analysis Plan The appropriate methods of data analysis are determined by your data types and variables of interest, the actual distribution of the variables, and the number of cases. Different analyses

### THE BINOMIAL DISTRIBUTION & PROBABILITY

REVISION SHEET STATISTICS 1 (MEI) THE BINOMIAL DISTRIBUTION & PROBABILITY The main ideas in this chapter are Probabilities based on selecting or arranging objects Probabilities based on the binomial distribution

### The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median

CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box

### GeoGebra Statistics and Probability

GeoGebra Statistics and Probability Project Maths Development Team 2013 www.projectmaths.ie Page 1 of 24 Index Activity Topic Page 1 Introduction GeoGebra Statistics 3 2 To calculate the Sum, Mean, Count,

### Report of for Chapter 2 pretest

Report of for Chapter 2 pretest Exam: Chapter 2 pretest Category: Organizing and Graphing Data 1. "For our study of driving habits, we recorded the speed of every fifth vehicle on Drury Lane. Nearly every

### Stats Review Chapters 3-4

Stats Review Chapters 3-4 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test

### Enduring Understandings: Some basic math skills are required to be reviewed in preparation for the course.

HADDONFIELD PUBLIC SCHOOLS Curriculum Map for Functions, Statistics and Trigonometry September 5 Days Targeted NJ Core Curriculum Content Standards: N-Q.1, N-Q.2, N-Q.3, A-CED.1, A-REI.1, A-REI.3 Enduring

### This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

### Describing Data. We find the position of the central observation using the formula: position number =

HOSP 1207 (Business Stats) Learning Centre Describing Data This worksheet focuses on describing data through measuring its central tendency and variability. These measurements will give us an idea of what

### Bar Charts, Histograms, Line Graphs & Pie Charts

Bar Charts and Histograms Bar charts and histograms are commonly used to represent data since they allow quick assimilation and immediate comparison of information. Normally the bars are vertical, but

### 2 Describing, Exploring, and

2 Describing, Exploring, and Comparing Data This chapter introduces the graphical plotting and summary statistics capabilities of the TI- 83 Plus. First row keys like \ R (67\$73/276 are used to obtain

### Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 2000: Page 1:

Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 000: Page 1: DESCRIPTIVE STATISTICS - FREQUENCY DISTRIBUTIONS AND AVERAGES: Inferential and Descriptive Statistics: There are four

### Univariate Regression

Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is