# 1. ε is normally distributed with a mean of 0 2. the variance, σ 2, is constant 3. All pairs of error terms are uncorrelated

Save this PDF as:

Size: px
Start display at page:

Download "1. ε is normally distributed with a mean of 0 2. the variance, σ 2, is constant 3. All pairs of error terms are uncorrelated"

## Transcription

1 STAT E-150 Statistical Methods Residual Analysis; Data Transformations The validity of the inference methods (hypothesis testing, confidence intervals, and prediction intervals) depends on the error term, ε, satisfying these assumptions: 1. ε is normally distributed with a mean of 0 2. the variance, σ 2, is constant 3. All pairs of error terms are uncorrelated How can we determine if the assumptions are met? And, what can be done if they are not met? We can estimate the value of the regression residuals for each value of y: y yˆ which is the observed value - the predicted (or expected) value i i Properties of Regression Residuals 1. The mean of the residuals is 0, because (y y) ˆ 0 2. The standard deviation of the residuals = the standard deviation of the fitted regression model, s. Consider this data for the level of cholesterol (in mg/l) and average daily intake of saturated fat (in mg) for a sample of 20 Olympic athletes: Fat (mg) Cholesterol (mg/l)

2 The scatter diagram for this data is shown below. Which would be better, a linear model or a quadratic model? First we can look at the regression models. Here is the linear regression model for this data: ANOVA b Model Sum of Squares df Mean Square F Sig. 1 Regression a Residual Total a. Predictors: (Constant), FAT b. Dependent Variable: CHOLES Coefficients a Unstandardized Coefficients Standardized Coefficients Model B Std. Error Beta t Sig. 1 (Constant) FAT a. Dependent Variable: CHOLES Model Summary b Model R R Square Adjusted R Square Std. Error of the Estimate a

3 ANOVA b Model Sum of Squares df Mean Square F Sig. 1 Regression a Residual Total a. Predictors: (Constant), FAT b. Dependent Variable: CHOLES What is the least-squares model, based on this data? For the observation where x = 1200, What is the expected value of y? What is the observed value of y? What is the value of the residual, ε? 3

4 Here is the table with the residuals included: Fat (mg) Cholesterol (mg/l) Residual and the descriptive statistics for the residuals: Descriptive Statistics N Minimum Maximum Mean Std. Deviation Unstandardized Residual Valid N (listwise) 20 Note that the sum of the residuals is 0. 4

5 How does the quadratic model compare with the linear model? ANOVA Sum of Squares df Mean Square F Sig. Regression Residual Total The independent variable is FAT. Coefficients Unstandardized Coefficients Standardized Coefficients B Std. Error Beta t Sig. FAT FAT ** (Constant) Model Summary Adjusted R Std. Error of the R R Square Square Estimate The independent variable is FAT. Note that there is a problem: the coefficient of the quadratic term is shown as.000 To fix this, double-click on any table that shows the coefficients and then double-click on the coefficient to see more precision: The regression equation is 2 ŷ x x 5

6 Here are the residuals for this model, and the descriptive statistics for the residuals. Note that once again the sum of the residuals is zero. Fat (mg) Cholesterol (mg/l) Residual Residuals Statistics a Minimum Maximum Mean Std. Deviation N Predicted Value Residual Std. Predicted Value Std. Residual a. Dependent Variable: CHOLES 6

7 Here are the residual plots for these two models: Linear Model: Quadratic Model: What do they suggest? Checking the assumption of equal variance We want the error term to have constant variance for all values of the predictor variable(s). This is called homoscedasticity. (Variances without this property are called heteroscedastic.) Look at the residual plots to see if this assumption is satisfied. 7

8 Checking the normality assumption Construct a histogram of the residuals to see if they are normally distributed. Check to see if the histogram is unimodal and symmetric, and also check the Normal Probability Plot. However, regression is robust with regard to nonnormal errors. That is, the regression inference can be considered to be valid even if this assumption is not exactly satisfied. However, if the distribution of the residuals is highly skewed, you may try transforming the data. What if the assumptions for this analysis are not met? For example, what if the scatterplot does not show a linear relationship between the variables? The United Nations Development Programme (UNDP) collects data in the developing world to help countries solve global and national development challenges. One summary measure used by the agency is the Human Development Index (HDI) which attempts to summarize in a single number the progress in health, education, and economics of a country. In 2006 the HDI was as high as for Norway and as low as for Niger. The gross domestic product per capita (GDPPC), by contrast, is often used to summarize the overall economic strength of a country. Is there a relationship between the HDI and the GDPPC? Here is a scatterplot of GDPPC against HDI. Is it appropriate to fit a linear model to this data? Why or why not? 8

9 GDPPC is measured in dollars. Incomes and other economic measures tend to be highly right-skewed. Taking logs often makes the distribution more unimodal and symmetric. Here are histograms of the GDPPC values and the log of those values. How would you describe these distributions? How would you describe the relationship between the HDI and log(gdppc)? 9

10 Here is the SPSS output for this relationship: Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate a a. Predictors: (Constant), HDI ANOVA b Model Sum of Squares df Mean Square F Sig. 1 Regression a Residual Total a. Predictors: (Constant), HDI b. Dependent Variable: loggdppc Coefficients a Unstandardized Coefficients Standardized Coefficients Model B Std. Error Beta t Sig. 1 (Constant) HDI a. Dependent Variable: loggdppc Assess this relationship and write the appropriate regression equation. The new regression equation is 10

11 What do these graphs tell you about this model? Outliers and Influential Observations An outlier is an observation that lies outside the overall pattern for the data. Points that are outliers in the y-direction have large residuals (greater than 3s ), but other outliers may not. An observation is influential if removing it would remarkably change the overall pattern. Points that are outliers in the x-direction are often influential. Influential points draw the regression line toward themselves, and so they cannot be identified by looking for large residuals. It should be noted that not all outliers are influential. 11

12 Assignment 6 Read Chapter 8 through page 407 Hand in the solutions to the following questions. Use SPSS for your analyses; if Minitab or SAS output is shown, use SPSS to reproduce the results. Be sure to paste the SPSS output into your solutions. Ex. 7.20, 8.2*, 8.3, 8.10, 8.13 (try transforming y to y ), 8.19, 8.25, 8.28 * if you decide that this model is not appropriate, explain why, and suggest and test a model that you think would be better. 12

### Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

### Simple linear regression

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

### Simple Linear Regression in SPSS STAT 314

Simple Linear Regression in SPSS STAT 314 1. Ten Corvettes between 1 and 6 years old were randomly selected from last year s sales records in Virginia Beach, Virginia. The following data were obtained,

### Chapter 23. Inferences for Regression

Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily

### SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.

Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.

### Running head: ASSUMPTIONS IN MULTIPLE REGRESSION 1. Assumptions in Multiple Regression: A Tutorial. Dianne L. Ballance ID#

Running head: ASSUMPTIONS IN MULTIPLE REGRESSION 1 Assumptions in Multiple Regression: A Tutorial Dianne L. Ballance ID#00939966 University of Calgary APSY 607 ASSUMPTIONS IN MULTIPLE REGRESSION 2 Assumptions

### Doing Multiple Regression with SPSS. In this case, we are interested in the Analyze options so we choose that menu. If gives us a number of choices:

Doing Multiple Regression with SPSS Multiple Regression for Data Already in Data Editor Next we want to specify a multiple regression analysis for these data. The menu bar for SPSS offers several options:

### HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

### Univariate Regression

Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

### SIMPLE REGRESSION ANALYSIS

SIMPLE REGRESSION ANALYSIS Introduction. Regression analysis is used when two or more variables are thought to be systematically connected by a linear relationship. In simple regression, we have only two

### e = random error, assumed to be normally distributed with mean 0 and standard deviation σ

1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.

### Using Minitab for Regression Analysis: An extended example

Using Minitab for Regression Analysis: An extended example The following example uses data from another text on fertilizer application and crop yield, and is intended to show how Minitab can be used to

### Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

### Example: Boats and Manatees

Figure 9-6 Example: Boats and Manatees Slide 1 Given the sample data in Table 9-1, find the value of the linear correlation coefficient r, then refer to Table A-6 to determine whether there is a significant

### 1.1. Simple Regression in Excel (Excel 2010).

.. Simple Regression in Excel (Excel 200). To get the Data Analysis tool, first click on File > Options > Add-Ins > Go > Select Data Analysis Toolpack & Toolpack VBA. Data Analysis is now available under

### Module 5: Multiple Regression Analysis

Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College

### Regression. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Regression Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given the least squares regression line y8 = 5 2x: a. the relationship between

### Chapter 5. Regression

Topics covered in this chapter: Chapter 5. Regression Adding a Regression Line to a Scatterplot Regression Lines and Influential Observations Finding the Least Squares Regression Model Adding a Regression

### Correlation and Regression Analysis: SPSS

Correlation and Regression Analysis: SPSS Bivariate Analysis: Cyberloafing Predicted from Personality and Age These days many employees, during work hours, spend time on the Internet doing personal things,

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### Chapter 9. Section Correlation

Chapter 9 Section 9.1 - Correlation Objectives: Introduce linear correlation, independent and dependent variables, and the types of correlation Find a correlation coefficient Test a population correlation

### 2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

### Regression, least squares

Regression, least squares Joe Felsenstein Department of Genome Sciences and Department of Biology Regression, least squares p.1/24 Fitting a straight line X Two distinct cases: The X values are chosen

### Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

### CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

### Prediction and Confidence Intervals in Regression

Fall Semester, 2001 Statistics 621 Lecture 3 Robert Stine 1 Prediction and Confidence Intervals in Regression Preliminaries Teaching assistants See them in Room 3009 SH-DH. Hours are detailed in the syllabus.

### MTH 140 Statistics Videos

MTH 140 Statistics Videos Chapter 1 Picturing Distributions with Graphs Individuals and Variables Categorical Variables: Pie Charts and Bar Graphs Categorical Variables: Pie Charts and Bar Graphs Quantitative

### Projects Involving Statistics (& SPSS)

Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,

### UCLA STAT 13 Statistical Methods - Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates

UCLA STAT 13 Statistical Methods - Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates 1. (a) (i) µ µ (ii) σ σ n is exactly Normally distributed. (c) (i) is approximately Normally

### Bivariate Regression Analysis. The beginning of many types of regression

Bivariate Regression Analysis The beginning of many types of regression TOPICS Beyond Correlation Forecasting Two points to estimate the slope Meeting the BLUE criterion The OLS method Purpose of Regression

### Assumptions. Assumptions of linear models. Boxplot. Data exploration. Apply to response variable. Apply to error terms from linear model

Assumptions Assumptions of linear models Apply to response variable within each group if predictor categorical Apply to error terms from linear model check by analysing residuals Normality Homogeneity

### Multiple Regression: What Is It?

Multiple Regression Multiple Regression: What Is It? Multiple regression is a collection of techniques in which there are multiple predictors of varying kinds and a single outcome We are interested in

### Simple Linear Regression

STAT 101 Dr. Kari Lock Morgan Simple Linear Regression SECTIONS 9.3 Confidence and prediction intervals (9.3) Conditions for inference (9.1) Want More Stats??? If you have enjoyed learning how to analyze

### Using JMP with a Specific

1 Using JMP with a Specific Example of Regression Ying Liu 10/21/ 2009 Objectives 2 Exploratory data analysis Simple liner regression Polynomial regression How to fit a multiple regression model How to

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### AP Statistics Section :12.2 Transforming to Achieve Linearity

AP Statistics Section :12.2 Transforming to Achieve Linearity In Chapter 3, we learned how to analyze relationships between two quantitative variables that showed a linear pattern. When two-variable data

### Multiple Linear Regression

Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is

### 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

### REGRESSION LINES IN STATA

REGRESSION LINES IN STATA THOMAS ELLIOTT 1. Introduction to Regression Regression analysis is about eploring linear relationships between a dependent variable and one or more independent variables. Regression

### t-tests and F-tests in regression

t-tests and F-tests in regression Johan A. Elkink University College Dublin 5 April 2012 Johan A. Elkink (UCD) t and F-tests 5 April 2012 1 / 25 Outline 1 Simple linear regression Model Variance and R

### Linear Regression in SPSS

Linear Regression in SPSS Data: mangunkill.sav Goals: Examine relation between number of handguns registered (nhandgun) and number of man killed (mankill) checking Predict number of man killed using number

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### Elements of statistics (MATH0487-1)

Elements of statistics (MATH0487-1) Prof. Dr. Dr. K. Van Steen University of Liège, Belgium December 10, 2012 Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis -

### Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

### Notes on Applied Linear Regression

Notes on Applied Linear Regression Jamie DeCoster Department of Social Psychology Free University Amsterdam Van der Boechorststraat 1 1081 BT Amsterdam The Netherlands phone: +31 (0)20 444-8935 email:

### Coefficient of Determination

Coefficient of Determination The coefficient of determination R 2 (or sometimes r 2 ) is another measure of how well the least squares equation ŷ = b 0 + b 1 x performs as a predictor of y. R 2 is computed

### Chapter 15 Multiple Choice Questions (The answers are provided after the last question.)

Chapter 15 Multiple Choice Questions (The answers are provided after the last question.) 1. What is the median of the following set of scores? 18, 6, 12, 10, 14? a. 10 b. 14 c. 18 d. 12 2. Approximately

### An analysis appropriate for a quantitative outcome and a single quantitative explanatory. 9.1 The model behind linear regression

Chapter 9 Simple Linear Regression An analysis appropriate for a quantitative outcome and a single quantitative explanatory variable. 9.1 The model behind linear regression When we are examining the relationship

### INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

### DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

### Moderation. Moderation

Stats - Moderation Moderation A moderator is a variable that specifies conditions under which a given predictor is related to an outcome. The moderator explains when a DV and IV are related. Moderation

### List of Examples. Examples 319

Examples 319 List of Examples DiMaggio and Mantle. 6 Weed seeds. 6, 23, 37, 38 Vole reproduction. 7, 24, 37 Wooly bear caterpillar cocoons. 7 Homophone confusion and Alzheimer s disease. 8 Gear tooth strength.

### Multiple Regression. Page 24

Multiple Regression Multiple regression is an extension of simple (bi-variate) regression. The goal of multiple regression is to enable a researcher to assess the relationship between a dependent (predicted)

### SPSS BASICS. (Data used in this tutorial: General Social Survey 2000 and 2002) Ex: Mother s Education to eliminate responses 97,98, 99;

SPSS BASICS (Data used in this tutorial: General Social Survey 2000 and 2002) How to do Recoding Eliminating Response Categories Ex: Mother s Education to eliminate responses 97,98, 99; When we run a frequency

### Section 14 Simple Linear Regression: Introduction to Least Squares Regression

Slide 1 Section 14 Simple Linear Regression: Introduction to Least Squares Regression There are several different measures of statistical association used for understanding the quantitative relationship

### Final Exam Practice Problem Answers

Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

### Simple Linear Regression, Scatterplots, and Bivariate Correlation

1 Simple Linear Regression, Scatterplots, and Bivariate Correlation This section covers procedures for testing the association between two continuous variables using the SPSS Regression and Correlate analyses.

### Full Factorial Design of Experiments

Full Factorial Design of Experiments 0 Module Objectives Module Objectives By the end of this module, the participant will: Generate a full factorial design Look for factor interactions Develop coded orthogonal

### Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

### Linear Regression. Chapter 5. Prediction via Regression Line Number of new birds and Percent returning. Least Squares

Linear Regression Chapter 5 Regression Objective: To quantify the linear relationship between an explanatory variable (x) and response variable (y). We can then predict the average response for all subjects

### SPSS TUTORIAL & EXERCISE BOOK

UNIVERSITY OF MISKOLC Faculty of Economics Institute of Business Information and Methods Department of Business Statistics and Economic Forecasting PETRA PETROVICS SPSS TUTORIAL & EXERCISE BOOK FOR BUSINESS

### The importance of graphing the data: Anscombe s regression examples

The importance of graphing the data: Anscombe s regression examples Bruce Weaver Northern Health Research Conference Nipissing University, North Bay May 30-31, 2008 B. Weaver, NHRC 2008 1 The Objective

### Regression Analysis (Spring, 2000)

Regression Analysis (Spring, 2000) By Wonjae Purposes: a. Explaining the relationship between Y and X variables with a model (Explain a variable Y in terms of Xs) b. Estimating and testing the intensity

### Data Analysis. Using Excel. Jeffrey L. Rummel. BBA Seminar. Data in Excel. Excel Calculations of Descriptive Statistics. Single Variable Graphs

Using Excel Jeffrey L. Rummel Emory University Goizueta Business School BBA Seminar Jeffrey L. Rummel BBA Seminar 1 / 54 Excel Calculations of Descriptive Statistics Single Variable Graphs Relationships

### Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS

Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple

Using Your TI-NSpire Calculator: Linear Correlation and Regression Dr. Laura Schultz Statistics I This handout describes how to use your calculator for various linear correlation and regression applications.

### 2013 MBA Jump Start Program. Statistics Module Part 3

2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just

### Spearman s correlation

Spearman s correlation Introduction Before learning about Spearman s correllation it is important to understand Pearson s correlation which is a statistical measure of the strength of a linear relationship

### STAT 350 Practice Final Exam Solution (Spring 2015)

PART 1: Multiple Choice Questions: 1) A study was conducted to compare five different training programs for improving endurance. Forty subjects were randomly divided into five groups of eight subjects

### Suggested solution for exam in MSA830: Statistical Analysis and Experimental Design 26 October 2012

Petter Mostad Matematisk Statistik Chalmers Suggested solution for exam in MSA830: Statistical Analysis and Experimental Design 26 October 2012 1. (a) We first compute the probability that all bottles

### ABSORBENCY OF PAPER TOWELS

ABSORBENCY OF PAPER TOWELS 15. Brief Version of the Case Study 15.1 Problem Formulation 15.2 Selection of Factors 15.3 Obtaining Random Samples of Paper Towels 15.4 How will the Absorbency be measured?

### Correlation and Regression

Correlation and Regression Scatterplots Correlation Explanatory and response variables Simple linear regression General Principles of Data Analysis First plot the data, then add numerical summaries Look

### Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

### Once saved, if the file was zipped you will need to unzip it.

1 Commands in SPSS 1.1 Dowloading data from the web The data I post on my webpage will be either in a zipped directory containing a few files or just in one file containing data. Please learn how to unzip

### Premaster Statistics Tutorial 4 Full solutions

Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for

### SPSS Explore procedure

SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stem-and-leaf plots and extensive descriptive statistics. To run the Explore procedure,

### You have data! What s next?

You have data! What s next? Data Analysis, Your Research Questions, and Proposal Writing Zoo 511 Spring 2014 Part 1:! Research Questions Part 1:! Research Questions Write down > 2 things you thought were

### Lean Six Sigma Training/Certification Book: Volume 1

Lean Six Sigma Training/Certification Book: Volume 1 Six Sigma Quality: Concepts & Cases Volume I (Statistical Tools in Six Sigma DMAIC process with MINITAB Applications Chapter 1 Introduction to Six Sigma,

### Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different

### Factor Analysis. Principal components factor analysis. Use of extracted factors in multivariate dependency models

Factor Analysis Principal components factor analysis Use of extracted factors in multivariate dependency models 2 KEY CONCEPTS ***** Factor Analysis Interdependency technique Assumptions of factor analysis

### Introduction to Regression and Data Analysis

Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it

### Yiming Peng, Department of Statistics. February 12, 2013

Regression Analysis Using JMP Yiming Peng, Department of Statistics February 12, 2013 2 Presentation and Data http://www.lisa.stat.vt.edu Short Courses Regression Analysis Using JMP Download Data to Desktop

### Multiple Regression Using SPSS

Multiple Regression Using SPSS The following sections have been adapted from Field (2009) Chapter 7. These sections have been edited down considerably and I suggest (especially if you re confused) that

### SPSS: Descriptive and Inferential Statistics. For Windows

For Windows August 2012 Table of Contents Section 1: Summarizing Data...3 1.1 Descriptive Statistics...3 Section 2: Inferential Statistics... 10 2.1 Chi-Square Test... 10 2.2 T tests... 11 2.3 Correlation...

### DISCRIMINANT FUNCTION ANALYSIS (DA)

DISCRIMINANT FUNCTION ANALYSIS (DA) John Poulsen and Aaron French Key words: assumptions, further reading, computations, standardized coefficents, structure matrix, tests of signficance Introduction Discriminant

### Bivariate Analysis. Correlation. Correlation. Pearson's Correlation Coefficient. Variable 1. Variable 2

Bivariate Analysis Variable 2 LEVELS >2 LEVELS COTIUOUS Correlation Used when you measure two continuous variables. Variable 2 2 LEVELS X 2 >2 LEVELS X 2 COTIUOUS t-test X 2 X 2 AOVA (F-test) t-test AOVA

### 1.5 Oneway Analysis of Variance

Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### Instrumental Variables & 2SLS

Instrumental Variables & 2SLS y 1 = β 0 + β 1 y 2 + β 2 z 1 +... β k z k + u y 2 = π 0 + π 1 z k+1 + π 2 z 1 +... π k z k + v Economics 20 - Prof. Schuetze 1 Why Use Instrumental Variables? Instrumental

### AP Statistics 2001 Solutions and Scoring Guidelines

AP Statistics 2001 Solutions and Scoring Guidelines The materials included in these files are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use

### Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

### Data Analysis for Marketing Research - Using SPSS

North South University, School of Business MKT 63 Marketing Research Instructor: Mahmood Hussain, PhD Data Analysis for Marketing Research - Using SPSS Introduction In this part of the class, we will learn

### Descriptive Statistics. Understanding Data: Categorical Variables. Descriptive Statistics. Dataset: Shellfish Contamination

Descriptive Statistics Understanding Data: Dataset: Shellfish Contamination Location Year Species Species2 Method Metals Cadmium (mg kg - ) Chromium (mg kg - ) Copper (mg kg - ) Lead (mg kg - ) Mercury

### 5. Multiple regression

5. Multiple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/5 QBUS6840 Predictive Analytics 5. Multiple regression 2/39 Outline Introduction to multiple linear regression Some useful

### Basic Statistics and Data Analysis for Health Researchers from Foreign Countries

Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association

### Hints for Success on the AP Statistics Exam. (Compiled by Zack Bigner)

Hints for Success on the AP Statistics Exam. (Compiled by Zack Bigner) The Exam The AP Stat exam has 2 sections that take 90 minutes each. The first section is 40 multiple choice questions, and the second

### MULTIPLE REGRESSION ANALYSIS OF MAIN ECONOMIC INDICATORS IN TOURISM. R, analysis of variance, Student test, multivariate analysis

Journal of tourism [No. 8] MULTIPLE REGRESSION ANALYSIS OF MAIN ECONOMIC INDICATORS IN TOURISM Assistant Ph.D. Erika KULCSÁR Babeş Bolyai University of Cluj Napoca, Romania Abstract This paper analysis