Microelectronics Circuit Analysis and Design. Rectifier Circuits. Donald A. Neamen. Chapter 2. Diode Circuits. In this chapter, we will:

Size: px
Start display at page:

Download "Microelectronics Circuit Analysis and Design. Rectifier Circuits. Donald A. Neamen. Chapter 2. Diode Circuits. In this chapter, we will:"

Transcription

1 icroelectronics Circuit Analysis and Design Donald A. Neamen Chapter 2 Diode Circuits n this chapter, we will: Determine the operation and characteristics of diode rectifier circuits, which is the first stage of the process of converting an ac signal into a dc signal in the electronic power supply. Apply the characteristics of the ener diode to a ener diode voltage regulator circuit. Apply the nonlinear characteristics of diodes to create wave shaping circuits known as clippers and clampers. Examine the techniques used to analyze circuits that contain more than one diode. Rectifier Circuits A basic rectifier converts an ac voltage to a pulsating dc voltage. A filter then eliminates ac components of the waveform to produce a nearly constant dc voltage output. Rectifier circuits are used in virtually all electronic devices to convert the 120-V 60-Hz ac power line source to the dc voltages required for operation of electronic devices. n rectifier circuits, the diode state changes with time and a given piecewise linear model is valid only for a certain time interval. Chap 3-4

2 Half Wave Rectification PV Vs+Vγ f r f is zero, when diode is on, v o v s -v γ Figure 2.6 Full-wave rectifier: (a) circuit with center-tapped transformer, (b) voltage transfer characteristics, and (c) input and output waveforms Full-Wave Rectifiers Full-wave rectifiers cut capacitor discharge time in half and require half the filter capacitance to achieve a given ripple voltage. All specifications are the same as for half-wave rectifiers. Reversing polarity of the diodes gives a fullwave rectifier with negative output voltage.

3 Figure 2.7 A full-wave bridge rectifier: (a) circuit showing the current direction for a positive input cycle, (b) current direction for a negative input cycle, and (c) input and output voltage waveforms Full-Wave Bridge Rectification The requirement for a centertapped transformer in the fullwave rectifier is eliminated through use of 2 extra diodes. All other specifications are the same as for a half-wave rectifier except PV V s (max)- v γ. Rectifier Topology Comparison Filter capacitors are a major factor in determining cost, size and weight in design of rectifiers. For a given ripple voltage, a full-wave rectifier requires half the filter capacitance as that in a halfwave rectifier. Reduced peak current can reduce heat dissipation in diodes. Benefits of full-wave rectification outweigh increased expenses and circuit complexity (an extra diode and center-tapped transformer). The bridge rectifier eliminates the center-tapped transformer, and the PV rating of the diodes is reduced. Cost of extra diodes is negligible. Chap 3-12

4 Power Supply Applications Filters, Ripple Voltage, and Regulators Power Supply Applications Filter Networks Output Voltage of Full-Wave Rectifier with RC Filter ost electronic applications require smooth dc current to operate properly. Filtering pulsating dc circuits accomplishes this. Adding a capacitor to the output of a half-wave rectifier filters the pulsating dc into smooth dc. The ripple on the dc output is V Vr 2 frc where f 1 2T P

5 Power Supply Applications Full-wave Rectifier with Filter A capacitive filter added to the output of a full-wave bridge rectifier is shown at the left. One drawback of a half-wave rectifier is the higher level of ripple voltage after filtering. Full-wave rectification reduces this ripple voltage. Power Supply Circuits Filters and Regulators Smoothening the Output Voltage of a Rectifier Add a Capacitor across Power Supply Circuits Filters and Regulators A capacitor-input filter will charge and discharge such that it fills in the gaps between each peak. This reduces variations of voltage. This voltage variation is called ripple voltage. Power Supply Circuits Filters and Regulators The advantage of a full-wave rectifier over a half-wave is quite clear. The capacitor can more effectively reduce the ripple when the time between peaks is shorter. V ripple

6 Power Supply Applications Full-wave rectifier with filter design Half-wave Rectifier with Filter Output voltage of a full-wave rectifier with an RC filter Power Supply Circuits Design of Filter Capacitor Voltage across the capacitor: t' τ t' RC vo( t) Ve Ve time Output voltage of a full-wave rectifier with an RC filter inimum out voltage: T ' RC VL Ve T : discharge time Ripple voltage: V ripple V V V L T ' RC ( 1 e ) V ripple V T' RC T << RC TP T T P Vripple V RC Assume capacitor takes negligible time to charge f 1 2 T P V ripple V 2 f RC

7 Example 2.3 Design a full-wave rectifier to meet particular specification. A full-wave rectifier is to be designed to procedure a peak output voltage of 12 V, deliver 120 ma to the load, and produce an output with a ripple of not more than 5.0 %. An input line voltage of 120 V (rms), 60 Hz is available. Full-wave rectifier design P61 H W # 2 Variation on Problem 1.62 Root ean Square V VRS 0.707V 2 ean value of sinusoidal over one period signal is zero Variation con t Variation con t For -0.7V < V < 0.7V, 0 When V 0.7V, changes linearly with voltage The device under test (DUT) acts like an open and can be modeled as such over this voltage range. 5V 0.7V r f 2.35kΩ and Vγ 0. 7V 2mA

8 Variation con t Since the -V characteristics of the device under test (DUT) are symmetrically about V D 0, a similar model can be used for V - 0.7V as for V 0.7V For V -0.7V: 5V 0.7V r f 2.35kΩ and Vγ 0. 7V 2mA

9 ener Diodes ener diodes are available with voltage breakdowns of 1.8 ~ 200 V. at least >10% Power Supply Applications ener Voltage Regulator Circuit Output voltage remain constant, even when output load resistance varies over a wide range, and when input voltage varies over a specific range. nput resistance Limit the current through the ener diode and drop the excess voltage between V PS and V. Varying voltage source Variable load conditions This curve illustrates the minimum and maximum ranges of current operation that the ener can effectively maintain it s voltage. Voltage Rectifier with nonzero ener resistance ener Diode Characteristics The ener diode begins to conduct when V PS V. When V PS V : V L V L V /R L,, but V constant 1 (V PS V )/R i 1 - L

10 Sizing Series Resistance R i V ps V + L z Or V ps V R i z L Case 1: V z > V zo V ps min, z min, L max Case 2: P z rated diode dissipation V ps max, z max, l min Case 1: Case 2: Sizing Series Resistance R R i i V V ps (min) V (min) + ps (max) + L (max) V L z (max) z (min) VPS V Ri nput Assume the ener resistance is zero for ideal diode Power Supply Applications VPS V R i V R For proper operation, the diode must remain in the breakdown region and power dissipation in diode must not exceed its rated value. n other words, 1. The (min) when (max) and V PS (min). 2. The (max) when (min) and V PS (max). VPS (min) V Ri (min) + (max) VPS (max) V Ri (max) + (min) [ V (min) V ] [ (max) + (min)] [ V (max) V ] [ (min) + (max)] PS ener Voltage Regulator Circuit + nput f minimum requirement is (min) 0.1 (max), PS [ V (max) V ] (min)[ V (min) V ] (max) PS PS (max) i VPS (min) 0.9V 0.1VPS (max) Current-limiting resistor R

11 Voltage Regulation VL(max) VL(min) %regulation x100 V ( nom ) where: V L (nom) the nominal output voltage Voltage regulation is the measure of circuit ability to maintain a constant output even when input voltage or load current varies %regulation is used to measure how well the regulator is performing its function L Example 2.5 P68 Example Demonstration of ener diode as a voltage regulator n the Circuit given in Fig, the resistance R 1 kω, V L 10 V at 1 ma, and r 30 Ω. Given that V in changes from 11 V to 20 V, calculate the ener current change and the output voltage change. Three-Terminal C Voltage Regulators Solution: When V in 11 V V z z r z Regulators use feedback with high-gain amplifiers to reduce ripple voltage at the output. Bypass capacitors provide low-impedance paths for highfrequency signals to ensure proper operation of the regulator. Regulators provide excellent line and load regulation, maintaining constant voltage even if the output current changes by many orders of magnitude.

12 Voltage ultipliers Homework solution (page 108) Voltage triplers and quadruplers utilize three and four diode-capacitor arrangements respectively.

13 V o clipped when f V γ 0.7 V and V B 5 V then clip when V 1 < 4.3 V V 1 < V B -V γ

14 Clamper Circuits Action of a Diode Clamper Circuit Diode OR Logic Circuits v nput V sinω t Assume V γ 0 r f 0 (a) a typical diode clamper circuit (b) the sinusoidal input signal v Capacitor deally, the capacitor cannot discharge, remains constant (c) the capacitor voltage (d) the output voltage Kirchhoff s voltage law v Out v + v V + V sinω t V (sinω t 1) Capacitor nput Diode AND Logic Circuits ultiple-diode Circuits Photodiode Circuit V 1 (V) V 2 (V) V O (V)

15 iscellaneous Diode Applications iscellaneous Diode Applications There are many practical applications for diodes beyond power supplies. Some of these applications include: Clipper circuits that serve to protect circuits from damage as a result of over-voltage conditions. Clippers are common in computer circuits. solation diodes are used to isolate various sections of circuits from another. An example of this is the battery backup for computer memory.

The D.C Power Supply

The D.C Power Supply The D.C Power Supply Voltage Step Down Electrical Isolation Converts Bipolar signal to Unipolar Half or Full wave Smoothes the voltage variation Still has some ripples Reduce ripples Stabilize the output

More information

Properties of electrical signals

Properties of electrical signals DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier

More information

CHAPTER 2B: DIODE AND APPLICATIONS. D.Wilcher

CHAPTER 2B: DIODE AND APPLICATIONS. D.Wilcher CHAPTER 2B: DIODE AND APPLICATIONS D.Wilcher 1 CHAPTER 2B: OBJECTIVES Analyze the operation of 3 basic types of rectifiers Describe the operation of rectifier filters and IC regulators Analyze the operation

More information

Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.

Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes. by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Center-Tapped Full-wave Rectifier The center-tapped (CT) full-wave rectifier

More information

The full wave rectifier consists of two diodes and a resister as shown in Figure

The full wave rectifier consists of two diodes and a resister as shown in Figure The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached

More information

Rectifier circuits & DC power supplies

Rectifier circuits & DC power supplies Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How

More information

Chapter 3. Diodes and Applications. Introduction [5], [6]

Chapter 3. Diodes and Applications. Introduction [5], [6] Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic p-n junction diode. All other diode

More information

Lecture - 4 Diode Rectifier Circuits

Lecture - 4 Diode Rectifier Circuits Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

More information

Chapter 2 MENJANA MINDA KREATIF DAN INOVATIF

Chapter 2 MENJANA MINDA KREATIF DAN INOVATIF Chapter 2 DIODE part 2 MENJANA MINDA KREATIF DAN INOATIF objectives Diode with DC supply circuit analysis serial & parallel Diode d applications the DC power supply & Clipper Analysis & Design of rectifier

More information

Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.

Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an

More information

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.

More information

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions

More information

See Horenstein 4.3 and 4.4

See Horenstein 4.3 and 4.4 EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-18 Lec 3: Rectifier and Clipper circuits Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Rectifier Circuits:

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information

Homework Assignment 03

Homework Assignment 03 Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

More information

Precision Diode Rectifiers

Precision Diode Rectifiers by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic

More information

Fundamentals of Microelectronics

Fundamentals of Microelectronics Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors

More information

Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module

Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working

More information

AC Direct Off-Line Power Supplies

AC Direct Off-Line Power Supplies AC Direct Off-Line Power Supplies r Introduction Many DC power supplies found in electronic systems, including those in this Tech School, rectify the 120 volts available at an electric outlet. The initial

More information

= V peak 2 = 0.707V peak

= V peak 2 = 0.707V peak BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

More information

Experiment 2 Diode Applications: Rectifiers

Experiment 2 Diode Applications: Rectifiers ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness

More information

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode) Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

More information

Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics

Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics 76 6 Principles of Electronics Semiconductor Diode 6.1 Semiconductor Diode 6.3 Resistance of Crystal Diode 6.5 Crystal Diode Equivalent Circuits 6.7 Crystal Diode Rectifiers 6.9 Output Frequency of Half-Wave

More information

Lab 3 Rectifier Circuits

Lab 3 Rectifier Circuits ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct

More information

Lab Report No.1 // Diodes: A Regulated DC Power Supply Omar X. Avelar Omar de la Mora Diego I. Romero

Lab Report No.1 // Diodes: A Regulated DC Power Supply Omar X. Avelar Omar de la Mora Diego I. Romero Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO) Periférico Sur Manuel Gómez Morín 8585, Tlaquepaque, Jalisco, México, C.P. 45090 Analog Electronic Devices (ESI038 / SE047) Dr. Esteban

More information

Supplement Reading on Diode Circuits. http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf

Supplement Reading on Diode Circuits. http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf EE40 Lec 18 Diode Circuits Reading: Chap. 10 of Hambley Supplement Reading on Diode Circuits http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf Slide 1 Diodes Circuits Load

More information

Chapter 22 Further Electronics

Chapter 22 Further Electronics hapter 22 Further Electronics washing machine has a delay on the door opening after a cycle of washing. Part of this circuit is shown below. s the cycle ends, switch S closes. t this stage the capacitor

More information

X-ray Imaging System. X-Ray Circuit. Principles of Imaging Science II (RAD 120) X-ray Imaging System Circuitry

X-ray Imaging System. X-Ray Circuit. Principles of Imaging Science II (RAD 120) X-ray Imaging System Circuitry Principles of Imaging Science II (RAD 120) X-ray Imaging System Circuitry X-ray Imaging System Operating console Set x-ray tube current (quantity) and voltage (quality) Controls line compensation, kvp,

More information

Introduction to Power Supplies

Introduction to Power Supplies Introduction to Power Supplies INTRODUCTION Virtually every piece of electronic equipment e g computers and their peripherals calculators TV and hi-fi equipment and instruments is powered from a DC power

More information

ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section

ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section Question I (20 points) Question II (20 points) Question III (20 points) Question IV (20 points) Question V (20 points) Total (100 points)

More information

EE 255 ELECTRONICS I LABORATORY EXPERIMENT 2 POWER SUPPLY DESIGN CONSIDERATIONS

EE 255 ELECTRONICS I LABORATORY EXPERIMENT 2 POWER SUPPLY DESIGN CONSIDERATIONS EE 55 ELETRONIS I LABORATORY EXPERIMENT POWER SUPPLY ESIGN ONSIERATIONS OBJETIES In this experiment you will Learn how to select the best rectifier circuit for your application Gain experience in designing

More information

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012 1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

More information

POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO

POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO POWER SUPPLY MODEL XP-15 Instruction Manual ELENCO Copyright 2013 by Elenco Electronics, Inc. REV-A 753020 All rights reserved. No part of this book shall be reproduced by any means; electronic, photocopying,

More information

Regulated D.C. Power Supply

Regulated D.C. Power Supply 442 17 Principles of Electronics Regulated D.C. Power Supply 17.1 Ordinary D.C. Power Supply 17.2 Important Terms 17.3 Regulated Power Supply 17.4 Types of Voltage Regulators 17.5 Zener Diode Voltage Regulator

More information

ECEN 1400, Introduction to Analog and Digital Electronics

ECEN 1400, Introduction to Analog and Digital Electronics ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall

More information

CONSTRUCTING A VARIABLE POWER SUPPLY UNIT

CONSTRUCTING A VARIABLE POWER SUPPLY UNIT CONSTRUCTING A VARIABLE POWER SUPPLY UNIT Building a power supply is a good way to put into practice many of the ideas we have been studying about electrical power so far. Most often, power supplies are

More information

LEP 4.4.07. Rectifier circuits

LEP 4.4.07. Rectifier circuits Related topics Half-wave rectifier, full-wave rectifier, Graetz rectifier, diode, Zener diode, avalanche effect, charging capacitor, ripple, r.m.s. value, internal resistance, smoothing factor, ripple

More information

Chapter 6. Amplifiers

Chapter 6. Amplifiers Chapter 6 Signal Conditioning Circuit Power Supplies and Amplifiers Chapter 6 Signal Conditioning Circuit Power Supplies and Amplifiers 6.1 An electronic instrumentation system consists of: Fig g( (6-1)

More information

Yrd. Doç. Dr. Aytaç Gören

Yrd. Doç. Dr. Aytaç Gören H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps

More information

Experiment No. 3. Power Supplies and Linear Regulators

Experiment No. 3. Power Supplies and Linear Regulators Experiment No. 3. Power Supplies and Linear Regulators By: Prof. Gabriel M. Rebeiz The University of Michigan EES Dept. Ann Arbor, Michigan All electronic systems which operate on D voltages (5 V, 12 V,

More information

Figure 1. Diode circuit model

Figure 1. Diode circuit model Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The

More information

The Electronic Power Supply. 1. Problem Statement ( 4 situations) 2. Sample Solution 3. Notes for the Instructor

The Electronic Power Supply. 1. Problem Statement ( 4 situations) 2. Sample Solution 3. Notes for the Instructor I N T E R D I S C I P L I N A R Y L I V E L Y A P P L I C A T I O N S P R O J E C T M A T E R I A L S 1. Problem Statement ( 4 situations) 2. Sample Solution 3. Notes for the Instructor Computing Requirements:

More information

UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES

UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES WHITE PAPER: TW0062 36 Newburgh Road Hackettstown, NJ 07840 Feb 2009 Alan Gobbi About the Author Alan Gobbi Alan Gobbi

More information

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

More information

HALF-WAVE & FULL-WAVE RECTIFICATION

HALF-WAVE & FULL-WAVE RECTIFICATION HALF-WAE & FULL-WAE RECTIFICATION Objectives: HALF-WAE & FULL-WAE RECTIFICATION To recognize a half-wave rectified sinusoidal voltage. To understand the term mean value as alied to a rectified waveform.

More information

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer

More information

Diodes and Transistors

Diodes and Transistors Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)

More information

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

More information

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder Robert W. Erickson University of Colorado, Boulder 1 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction

More information

Switch Mode Power Supply Topologies

Switch Mode Power Supply Topologies Switch Mode Power Supply Topologies The Buck Converter 2008 Microchip Technology Incorporated. All Rights Reserved. WebSeminar Title Slide 1 Welcome to this Web seminar on Switch Mode Power Supply Topologies.

More information

Chapter 20 Quasi-Resonant Converters

Chapter 20 Quasi-Resonant Converters Chapter 0 Quasi-Resonant Converters Introduction 0.1 The zero-current-switching quasi-resonant switch cell 0.1.1 Waveforms of the half-wave ZCS quasi-resonant switch cell 0.1. The average terminal waveforms

More information

Silicon Controlled Rectifiers

Silicon Controlled Rectifiers 554 20 Principles of Electronics Silicon Controlled Rectifiers 20.1 Silicon Controlled Rectifier (SCR) 20.2 Working of SCR 20.3 Equivalent Circuit of SCR 20.4 Important Terms 20.5 V-I Characteristics of

More information

Design Considerations for an LLC Resonant Converter

Design Considerations for an LLC Resonant Converter Design Considerations for an LLC Resonant Converter Hangseok Choi Power Conversion Team www.fairchildsemi.com 1. Introduction Growing demand for higher power density and low profile in power converter

More information

Rectifier filter stage post filtering sense

Rectifier filter stage post filtering sense TopCon DC power supplies Customer support files Nr. 042.0208.016_e Topic: Protecting the DC output 1. Abstract TopCon DC power supplies are generally well suited for operation into reactive DC loads. Reactive

More information

EXPERIMENT 1 SINGLE-PHASE FULL-WAVE RECTIFIER AND LINEAR REGULATOR

EXPERIMENT 1 SINGLE-PHASE FULL-WAVE RECTIFIER AND LINEAR REGULATOR YEDITEPE UNIERSITY ENGINEERING & RCHITECTURE FCULTY INDUSTRIL ELECTRONICS LBORTORY EE 432 INDUSTRIL ELECTRONICS EXPERIMENT 1 SINGLEPHSE FULLWE RECTIFIER ND LINER REGULTOR Introduction: In this experiment

More information

Analog Electronics I. Laboratory

Analog Electronics I. Laboratory Analog Electronics I Laboratory Exercise 1 DC Power Supply Circuits Aim of the exercise The aim of this laboratory exercise is to become familiar with rectifying circuits and voltage stabilization techniques

More information

Diodes. 1 Introduction 1 1.1 Diode equation... 2 1.1.1 Reverse Bias... 2 1.1.2 Forward Bias... 2 1.2 General Diode Specifications...

Diodes. 1 Introduction 1 1.1 Diode equation... 2 1.1.1 Reverse Bias... 2 1.1.2 Forward Bias... 2 1.2 General Diode Specifications... Diodes Contents 1 Introduction 1 1.1 Diode equation................................... 2 1.1.1 Reverse Bias................................ 2 1.1.2 Forward Bias................................ 2 1.2 General

More information

AND8433/D. Using ON Semiconductor Constant Current Regulator (CCR) Devices in AC Applications APPLICATION NOTE

AND8433/D. Using ON Semiconductor Constant Current Regulator (CCR) Devices in AC Applications APPLICATION NOTE Using ON Semiconductor Constant Current Regulator (CCR) Devices in AC Applications Introduction This update includes additional information on 220 V ac lighting circuits with the addition of ON Semiconductors

More information

GenTech Practice Questions

GenTech Practice Questions GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following

More information

13. Diode Rectifiers, Filters, and Power Supplies

13. Diode Rectifiers, Filters, and Power Supplies 1 13. Diode Rectifiers, Filters, and Power Supplies Introduction A power supply takes Alternating Current or A.C. power from your electric utility (Con Edison) and converts the A.C. electrical current

More information

Charger Output AC Ripple Voltage and the affect on VRLA batteries

Charger Output AC Ripple Voltage and the affect on VRLA batteries TECHNICAL BULLETIN 41-2131 Charger Output AC Ripple Voltage and the affect on VRLA batteries Please Note: The information in this technical bulletin was developed for C&D Dynasty 12 Volt VRLA products.

More information

Current and Temperature Ratings

Current and Temperature Ratings Document 361-1 Current and Temperature Ratings Introduction This application note describes: How to interpret Coilcraft inductor current and temperature ratings Our current ratings measurement method and

More information

SERIES-PARALLEL DC CIRCUITS

SERIES-PARALLEL DC CIRCUITS Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills

More information

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00

More information

Tone Ringer SL2410 LOGIC DIAGRAM PIN ASSIGNMENT SLS

Tone Ringer SL2410 LOGIC DIAGRAM PIN ASSIGNMENT SLS Tone Ringer The SL2410 is a bipolar integrated circuit designed for telephone bell replacement. Designed for Telephone Bell Replacement Low Curent Drain Adjustable 2-frequency Tone Adjustable Warbling

More information

Basic Op Amp Circuits

Basic Op Amp Circuits Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

More information

DC/DC power modules basics

DC/DC power modules basics DC/DC power modules basics Design Note 024 Ericsson Power Modules General Abstract This design note covers basic considerations for the use of on-board switch mode DC/DC power modules, also commonly known

More information

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND

More information

DATA SHEET. TDA1510AQ 24 W BTL or 2 x 12 W stereo car radio power amplifier INTEGRATED CIRCUITS

DATA SHEET. TDA1510AQ 24 W BTL or 2 x 12 W stereo car radio power amplifier INTEGRATED CIRCUITS INTEGRATED CIRCUITS DATA SHEET 24 W BTL or 2 x 12 W stereo car radio File under Integrated Circuits, IC01 January 1992 GENERAL DESCRIPTION The is a class-b integrated output amplifier encapsulated in a

More information

A Low-Cost, Single Coupling Capacitor Configuration for Stereo Headphone Amplifiers

A Low-Cost, Single Coupling Capacitor Configuration for Stereo Headphone Amplifiers Application Report SLOA043 - December 1999 A Low-Cost, Single Coupling Capacitor Configuration for Stereo Headphone Amplifiers Shawn Workman AAP Precision Analog ABSTRACT This application report compares

More information

98% Efficient Single-Stage AC/DC Converter Topologies

98% Efficient Single-Stage AC/DC Converter Topologies 16 POWER CONVERTERS www.teslaco.com 98% Efficient Single-Stage AC/DC Converter Topologies A new Hybrid Switching Method is introduced in this article which for the first time makes possible AC/DC power

More information

unit : mm With heat sink (see Pd Ta characteristics)

unit : mm With heat sink (see Pd Ta characteristics) Ordering number: EN1321E Monolithic Linear IC LA4261 3.5 W 2-Channel AF Power Amplifier for Home Stereos and Music Centers Features. Minimum number of external parts required (No input capacitor, bootstrap

More information

Chapter 3 Diode Circuits. 3.1 Ideal Diode 3.2 PN Junction as a Diode 3.3 Applications of Diodes

Chapter 3 Diode Circuits. 3.1 Ideal Diode 3.2 PN Junction as a Diode 3.3 Applications of Diodes Chapter 3 Diode Circuits 3.1 deal Diode 3.2 PN Junction as a Diode 3.3 Applications of Diodes 1 Diode s Application: Cell Phone Charger An important application of diode is chargers. 充 電 器 Diode acts as

More information

Lecture 24: Oscillators. Clapp Oscillator. VFO Startup

Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Whites, EE 322 Lecture 24 Page 1 of 10 Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Oscillators are circuits that produce periodic output voltages, such as sinusoids. They accomplish this feat

More information

LM101A LM201A LM301A Operational Amplifiers

LM101A LM201A LM301A Operational Amplifiers LM101A LM201A LM301A Operational Amplifiers General Description The LM101A series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709 Advanced

More information

Efficient and reliable operation of LED lighting is dependent on the right choice of current-limiting resistor

Efficient and reliable operation of LED lighting is dependent on the right choice of current-limiting resistor Efficient and reliable operation of LED lighting is dependent on the right choice of current-limiting resistor Phil Ebbert, VP of Engineering, Riedon Inc. Introduction Not all resistors are the same and

More information

Improvements of Reliability of Micro Hydro Power Plants in Sri Lanka

Improvements of Reliability of Micro Hydro Power Plants in Sri Lanka Improvements of Reliability of Micro Hydro Power Plants in Sri Lanka S S B Udugampala, V Vijayarajah, N T L W Vithanawasam, W M S C Weerasinghe, Supervised by: Eng J Karunanayake, Dr. K T M U Hemapala

More information

Panasonic Microwave Oven Inverter HV Power Supply

Panasonic Microwave Oven Inverter HV Power Supply Panasonic Microwave Oven Inverter HV Power Supply David Smith VK3HZ (vk3hz (*at*) wia.org.au) This particular power supply comes from a circa-2000 Panasonic Microwave model NN-S550WF. Nearly all Panasonic

More information

FPAB20BH60B PFC SPM 3 Series for Single-Phase Boost PFC

FPAB20BH60B PFC SPM 3 Series for Single-Phase Boost PFC FPAB20BH60B PFC SPM 3 Series for Single-Phase Boost PFC Features UL Certified No. E209204 (UL1557) 600 V - 20 A Single-Phase Boost PFC with Integral Gate Driver and Protection Very Low Thermal Resistance

More information

DC POWER SUPPLIES. Learning Objectives. Zener diodes. Low cost DC Power Supply

DC POWER SUPPLIES. Learning Objectives. Zener diodes. Low cost DC Power Supply C H A P T E R55 earning Objectives es Unregulated Power Supply Regulated Power Supply Rectifiers Single-phase Half-wave Rectifier Six-phase Half-wave Rectifier Filters Shunt Capacitor Filter Effect of

More information

RC Circuits and The Oscilloscope Physics Lab X

RC Circuits and The Oscilloscope Physics Lab X Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for

More information

Application Note 82 Using the Dallas Trickle Charge Timekeeper

Application Note 82 Using the Dallas Trickle Charge Timekeeper www.maxim-ic.com Application Note 82 Using the Dallas Trickle Charge Timekeeper DESCRIPTION The Dallas Semiconductor/Maxim real-time clock (RTC) family contains a number of parts within an integrated trickle-charging

More information

7-41 POWER FACTOR CORRECTION

7-41 POWER FACTOR CORRECTION POWER FTOR CORRECTION INTRODUCTION Modern electronic equipment can create noise that will cause problems with other equipment on the same supply system. To reduce system disturbances it is therefore essential

More information

Operational Amplifier - IC 741

Operational Amplifier - IC 741 Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

More information

Understanding Delta Conversion Online "Power Regulation" - Part 2

Understanding Delta Conversion Online Power Regulation - Part 2 Application Note #40 Understanding Delta Conversion Online "Power Regulation" - Part 2 Introduction This application note is the second in a series on delta conversion theory of operation. For complete

More information

Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1.

Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1. Examples of Transient and RL Circuits. The Series RLC Circuit Impulse response of Circuit. Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure.

More information

FREQUENCY CONTROLLED AC MOTOR DRIVE

FREQUENCY CONTROLLED AC MOTOR DRIVE FREQUENCY CONTROLLED AC MOTOR DRIVE 1.0 Features of Standard AC Motors The squirrel cage induction motor is the electrical motor motor type most widely used in industry. This leading position results mainly

More information

Op Amp Circuit Collection

Op Amp Circuit Collection Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference

More information

Product Data Bulletin

Product Data Bulletin Product Data Bulletin Power System Harmonics Causes and Effects of Variable Frequency Drives Relative to the IEEE 519-1992 Standard Raleigh, NC, U.S.A. INTRODUCTION This document describes power system

More information

DC-DC Converter Basics

DC-DC Converter Basics Page 1 of 16 Free Downloads / Design Tips / Java Calculators / App. Notes / Tutorials / Newsletter / Discussion / Components Database / Library / Power Links / Software / Technical Articles / On-Line Textbook

More information

Creating a Usable Power Supply from a Solar Panel

Creating a Usable Power Supply from a Solar Panel Creating a Usable Power Supply from a Solar Panel An exploration in DC- DC converters By Kathleen Ellis Advised by Dr. Derin Sherman Department of Physics, Cornell College November 21, 2012 Introduction

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

Fundamentals of Signature Analysis

Fundamentals of Signature Analysis Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...

More information

SECTION 13. Multipliers. Outline of Multiplier Design Process:

SECTION 13. Multipliers. Outline of Multiplier Design Process: SECTION 13 Multipliers VMI manufactures many high voltage multipliers, most of which are custom designed for specific requirements. The following information provides general information and basic guidance

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Introduction There is a growing trend in the UPS industry to create a highly efficient, more lightweight and smaller UPS

More information

Content Map For Career & Technology

Content Map For Career & Technology Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

More information