Homework 3. problems: 4.5, 4.31, 4.49, 4.67
|
|
|
- Rolf White
- 9 years ago
- Views:
Transcription
1 Hoewok 3 poble: 4.5, 4.3, 4.49, 4.67
2 Poble 4.5 The veco poiion of a paicle vaie in ie accoding o he expeion ( 3. ˆi 6. ˆj ). (a) Find expeion fo he velociy and acceleaion a funcion of ie. (b) Deeine he paicle poiion and velociy a.. Noe. The poiion funcion i no defined unabiguouly. I i no clea wha he ie uni ae. By defaul, one hould aue ha econd bu ineed wihou he uni ino he funcion. I would be cleae, if he funcion wee peened in he following way () ( ) ˆ 3. i 6. ˆj a) By definiion, he velociy funcion i equal o he deivaive of he poiion funcion. Auing a fixed efeence fae (wih ie independen uni veco) d d v() ˆ i ˆ j ˆi ˆj ˆj d d By definiion, he acceleaion funcion i equal o he deivaive of he velociy funcion. a () dv d d d ˆ j ˆ j b) The above funcion allow one o deeine pecific value a an abiay inan. Hence a, he paicle i a ( ) ( ) ˆ 3. i 6. ( ) ˆj ( 3. ˆi 6. ˆj ) y x The velociy of he paicle a hi inan i v( ) ˆj ˆj v
3 Poble 4.3 A ain low down a i ound a hap hoizonal cuve, lowing fo 9. k/h o 5 k/h in he 5. ha i ake o ound he cuve. The adiu of he cuve i 5. Copue he acceleaion a he oen he ain peed eache 5 k/h. Aue he ain low down a a conan ae duing he 5- ineval fo 9 k/h o 5 k/h in 5. 5 In a cicula oion Caeian cala coponen v of acceleaion ae igonoeic funcion of ie. Fo he infoaion given, i i oe convenien o deeine he angenial (along he diecion of he ajecoy) and cenipeal (anvee o he ajecoy) coponen of he acceleaion. In any ype of oion, he angenial coponen of acceleaion i equal o he ae a he peed of he paicle change. Since in hi poble i i aued ha he peed change a a conan ae, angenial acceleaion a an inan unde conideaion i equal o i aveage value (deivaive of he funcion i equal o he diffeence quoien). Hence a () dv d Δv Δ k h 5 ( 5 9) ( 5 9) 3 k h 36 5 / k / h.74 The anvee coponen of acceleaion affec only he diecion of velociy. In a cicula oion, he anvee coponen i alway dieced owad he cene of he cicula pah of he paicle and i efeed a he cenipeal acceleaion. In a cicula oion, he cenipeal acceleaion depend only on he peed of he objec and he adiu of pah cuvaue. 3 k / k k 5 5 v h h 36 / h a c() The wod acceleaion afen efe o he agniude of he acceleaion veco, heefoe one ay include hi eaning alo ino he anwe a f a f
4 Poble 4.39 Heahe Lia in he Laboghini acceleae a ae of ( ˆi ˆj ) Jagua acceleae a ( ˆi 3ˆj ) 3 /, while Jill in he + /. They boh a fo he e a he oigin on a xy coodinae ye. Afe 5, (a) wha i Lia peed wih epec o Jill, (b) how fa apa ae hey, and (c) wha i Lia acceleaion elaive o Jill? a) The iniial poiion and iniial velociy of boh ca ae given in he efeence fae of he oigin. Addiionally, he acceleaion of each ca i given in hi efeence fae. Uing invee elaion he velociy and he poiion funcion can be found fo boh ca. In he efeence fae of he oigin, Jill velociy a ie i u () u + a d' [,3] J while Heahe velociy in hi efeence fae i () v + a d' [ 3, ] v H In he efeence fae of he oigin Jill poiion a ie i () R + u() d' [,3] R while Heahe poiion in hi efeence fae i () + v( ' ) d' [ 3, ] Looking a he figue, Heahe poiion wih epec o Jill i elaed o he poiion of boh gil wih epec o he oigin. Wih he appopiae choice of Jill coodinae ye ' () () R() [ 3, ] [,3] [, 5] O y y J R H x x
5 a) Diecly fo he definiion of velociy, Heahe velociy wih epec o Jill i decibed by he following funcion v ' d ' d () [, 5] A 5, he velociy i heefoe v ' ( 5) [, 5] 5 [, 5] and fo he definiion of peed i value i v' + ( 5) 6.9 b) A he conideed inan, Heahe poiion wih epec o Jill i ' ( 5) [, 5] ( 5) [ 5, 6.5] Magniude of he poiion veco epeen he diance of he objec fo he oigin of he efeence fae. Theefoe he diance fo Jill o Heae i ' 5 + ( 6.5) 67.3 c) Diecly fo he definiion, Heahe acceleaion in Jill efeence fae i a ' ' dv d () [, 5]
6 Poble 4.59 A kie leave he ap of a ki jup wih a velociy of /, 5 above he hoizonal, a in figue 4.8. The lope i inclined a 5, and ai eiance i negligible. Find (a) he diance fo he ap ha o whee he jupe land and (b) he velociy coponen ju befoe landing. (How do you hink he eul igh be affeced if ai eiance wee included? Noe ha jupe lean fowad in he hape of an aifoil wih hei hand a hei ide o inceae hei diance. Why doe i wok?) y 5 / 5 x - iniial poiion - locaion of he landing v - iniial peed α - angle beween iniial velociy wih he hoizonal β - angle beween he diecion of he lope wih he hoizonal In ode o olve he poble I will fi decibe he oion of he kie. Thi funcion will allow e o deeine he inan when he kie jup and land, and deeine he iniial and final poiion, fo which he agniude of he diplaceen can be found. Finally I can find he velociy a he inan of landing. Le' pecify he efeence ie and he efeence fae in which I will decibe he oion. I decided o chooe he inan when he kie, eaed a a paicle, leave he ap a he efeence inan and he end of he ap a he oigin of a Caeian ye. The axe ae in he hoizonal and veical diecion. The z-axi i pependicula o he oion, heefoe we know ha he coponen of all veco elaed o he oion ae zeo in he z-diecion. We can heefoe decibe he oion by wo dienional veco R. Wih he above aupion he iniial poiion and iniial velociy ae:,, v v [ coα,in α] 9.7,.6. Wih good appoxiaion we can aue ha he kie ove wih conan (fee fall) acceleaion
7 a () g, 9.8 Thi infoaion allow u o pedic he kie' velociy and poiion a any inan. () v () v + a( ' ) d' v + g 9.7, () () + v( ' ) d' + v + g [,] + [ 9.7,.6] + [, 4.9] 9.7, When he kie land, hi o he poiion i oewhee along he lope of he ounain. Theefoe, in hi coodinae ye he coponen of hi o he landing poiion u aify y (3) anβ x Ue equaion () o find ou if hi i poible. Thee u be uch an inan ha vy + g anβ vx Thi equaion ha he oluion o v ( ) 9.7 an5.5 x anβ + v β + y.87 g 9.8 a) A hi inan he poiion of he kie (he landing locaion) i (.87) , (.87) [ 7.9, 3.9] The diplaceen i defined in uch a way ha i agniude i equal o he diance Δ beween he iniial and he final poiion. Theefoe Δ x, y, x, y [ ] [ ] ( ) ( )
8 b) Equaion () allow one o find he velociy of he kie a any inan ha he/he i in he ai. Ju befoe he landing, hi o he velociy i heefoe v () 9.7, , 8. The peence of ineacion wih he ai ake he copeiion oe exciing. The kie can influence he lengh of he jup. I would be upiing bu heoeically jup can be longe in he peence of ineacion wih he ai! The idea i o educe he y-coponen of he acceleaion by uing ai a a ouce of an addiional foce (lif), while ainaining alo conan hoizonal coponen of he velociy. The pinciple i applicable in hand gliding (when hee i no ai convecion). Soe anial alo leaned how o inceae he ange of hei jup by aking advanage of ineacion wih he ai.
Worked Examples. v max =?
Exaple iction + Unifo Cicula Motion Cicula Hill A ca i diing oe a ei-cicula hill of adiu. What i the fatet the ca can die oe the top of the hill without it tie lifting off of the gound? ax? (1) Copehend
Transformations. Computer Graphics. Types of Transformations. 2D Scaling from the origin. 2D Translations. 9/22/2011. Geometric Transformation
9// anfomaion. Compue Gaphic Lecue anfomaion Wha i a anfomaion? Wha oe i o? anfom he cooinae / nomal veco of objec Wh ue hem? Moelling -Moving he objec o he eie locaion in he envionmen -Muliple inance
HFCC Math Lab Intermediate Algebra - 13 SOLVING RATE-TIME-DISTANCE PROBLEMS
HFCC Mah Lab Inemeiae Algeba - 3 SOLVING RATE-TIME-DISTANCE PROBLEMS The vaiables involve in a moion poblem ae isance (), ae (), an ime (). These vaiables ae elae by he equaion, which can be solve fo any
Pricing strategy of e-commerce platform under different operational models
Picing saegy of e-coece lafo unde diffeen oeaional odels Shuihua Han, Yufang Fu School of Manageen, Xiaen Univesiy, Xiaen, 36000, China Absac: We odel icing saegy unde lafo coeiion wih diffeen e-coece
Experiment #1: Reflection, Refraction, and Dispersion
Expeimen #1: Reflecion, Refacion, and Dispesion Pupose: To sudy eflecion and efacion of ligh a plane and cuved sufaces, as well as he phenomenon of dispesion. Equipmen: Ray Box wih Slis Opical Accessoies
HUT, TUT, LUT, OU, ÅAU / Engineering departments Entrance examination in mathematics May 25, 2004
HUT, TUT, LUT, OU, ÅAU / Engineeing depamens Enane examinaion in mahemais May 5, 4 Insuions. Reseve a sepaae page fo eah poblem. Give you soluions in a lea fom inluding inemediae seps. Wie a lean opy of
MANAGEMENT SCIENCE doi 10.1287/mnsc.1070.0804ec pp. ec1 ec17
MAAEMET SCIECE doi 087/mn0700804e e e7 e-omanion OY AAIABE I EECTOIC OM infom 008 IOMS Eleoni Comanion Call Cene Ououing Cona Unde Infomaion Aymmey by Samee aija Edieal J inke and obe A Sumky Managemen
Chapter 13 Fluids. Use the definition of density to express the mass of the gold sphere: The mass of the copper sphere is given by:
Chapte Fluid 5 One phee i ade of gold and ha a adiu and anothe phee i ade of coppe and ha a adiu. f the phee have equal a, hat i the atio of the adii, /? ictue the oble We can ue the definition of denity
PHY 143 Basic Physics For Engineers I. E-Notes
PHY 43 Basic Physics Fo Enginees I E-Noes Pepaed by Mohd Noo Mohd Ali Physics Lecue Applied Science Depamen Univesiy Teknologi MARA Pulau Pinang Offeed Since July 007 Physics and measuemens ( hs)... 4
Chapter 30: Magnetic Fields Due to Currents
d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.
Solution Derivations for Capa #8
Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass
Circle Geometry (Part 3)
Eam aer 3 ircle Geomery (ar 3) emen andard:.4.(c) yclic uadrilaeral La week we covered u otheorem 3, he idea of a convere and we alied our heory o ome roblem called IE. Okay, o now ono he ne chunk of heory
Modeling the Yield Curve Dynamics
FIXED-INCOME SECURITIES Chape 2 Modeling he Yield Cuve Dynamics Ouline Moivaion Inees Rae Tees Single-Faco Coninuous-Time Models Muli-Faco Coninuous-Time Models Abiage Models Moivaion Why do we Cae? Picing
Chapter 13. Network Flow III Applications. 13.1 Edge disjoint paths. 13.1.1 Edge-disjoint paths in a directed graphs
Chaper 13 Nework Flow III Applicaion CS 573: Algorihm, Fall 014 Ocober 9, 014 13.1 Edge dijoin pah 13.1.1 Edge-dijoin pah in a direced graph 13.1.1.1 Edge dijoin pah queiong: graph (dir/undir)., : verice.
Chapter 7. Response of First-Order RL and RC Circuits
Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
1. Time Value of Money 3 2. Discounted Cash Flow 35 3. Statistics and Market Returns 49 4. Probabilities 81 5. Key Formulas 109
1. Time Value of Money 3 2. Discouned Cash Flow 35 3. Saisics and Make Reuns 49 4. Pobabiliies 81 5. Key Fomulas 109 Candidae Noe: This is a lenghy Sudy Session ha, along wih Sudy Session 3, you should
Production-Inventory Systems with Lost-sales and Compound Poisson Demands
Podcion-Invenoy Syem wih Lo-ale and Compond Poion emand Jim (Jnmin) Shi School of Managemen, New Jeey Inie of Technology, Newak, NJ 72 J. Mack Robinon College of Bine, Geogia Sae Univeiy, Alana, GA 333
Mechanics 1: Work, Power and Kinetic Energy
Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).
Mechanics 1: Motion in a Central Force Field
Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.
Episode 401: Newton s law of universal gravitation
Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce
Answer, Key Homework 6 David McIntyre 45123 Mar 25, 2004 1
Answe, Key Homewok 6 vid McInye 4513 M 5, 004 1 This pin-ou should hve 0 quesions. Muliple-choice quesions my coninue on he nex column o pge find ll choices befoe mking you selecion. The due ime is Cenl
17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides
7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion
The Euro. Optimal Currency Areas. The Problem. The Euro. The Proposal. The Proposal
The Euro E Opial Currency Areas ( σ ( r The Euro is an exaple of a currency union. The naions abandoned independen oneary auhoriy o ge a coon currency. Lecures in Macroeconoics- Charles W. Upon Opial Currency
Problem P3.3: The wind power output per unit area swept by the rotor is 2.4 kw/m 2. Convert this quantity to the dimensions of hp/ft 2.
Chaper 3: Technical Proble-Solving and Counicaion Skill Proble P3.3: The wind power oupu per uni area wep by he roor i.4 kw/. Conver hi quaniy o he dienion of hp/f. Conver o USCS uing he facor fro Table
RC (Resistor-Capacitor) Circuits. AP Physics C
(Resisor-Capacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED
Ultraconservative Online Algorithms for Multiclass Problems
Jounal of Machine Leaning Reseach 3 (2003) 951-991 Submied 2/02; Published 1/03 Ulaconsevaive Online Algoihms fo Muliclass Poblems Koby Camme Yoam Singe School of Compue Science & Engineeing Hebew Univesiy,
29 March 2006. Application of Annuity Depreciation in the Presence of Competing Technologies II Telecom New Zealand
29 Mach 2006 Applicaion of Annuiy Depeciaion in he Pesence of Compeing Technologies II Telecom ew Zealand Pojec Team Tom Hid (Ph.D.) Daniel Young EA Economic Consuling Level 6 33 Exhibiion See Melboune
2.4 Network flows. Many direct and indirect applications telecommunication transportation (public, freight, railway, air, ) logistics
.4 Nework flow Problem involving he diribuion of a given produc (e.g., waer, ga, daa, ) from a e of producion locaion o a e of uer o a o opimize a given objecive funcion (e.g., amoun of produc, co,...).
The Essence of the Electromagnetic Wave is Not Energy
The Eence of the Electomagnetic Wave i Not Enegy Zeng Qingping Ai Foce Rada Academy Pofeo cienceum@yahoocn Abtact The cutomay opinion i: electic ave o light ave i enegy, TYang expeiment i the intefeence
Newton s Laws of Motion
Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The
Acceleration Lab Teacher s Guide
Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion
ú Ó Á É é ú ú É ú Á Á ú É É É ú É Ó É ó É Á ú ú ó Á Á ú Ó ú Ó ú É Á ú Á ú ó ú Á ú Á É Á Á Ó É Á ú ú é ú ú ú ú Á ú ó ú Ó Á Á Á Á ú ú ú é É ó é ó ú ú ú É é ú ú ú óú ú ú Ó Á ú ö é É ú ú ú úé ú ú É É Á É
Valuing Long-Lived Assets
Valuing Long-Lived Asses Olive Tabalski, 008-09-0 This chape explains how you can calculae he pesen value of cash flow. Some vey useful shocu mehods will be shown. These shocus povide a good oppouniy fo
PY1052 Problem Set 8 Autumn 2004 Solutions
PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what
1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2
Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the
Advance Jounal of Food Science and Technology
Advance Jounal of Food Science and Technology 5(): 566-57, 03 ISSN: 04-4868; e-issn: 04-4876 Maxwell Scienific Oganizaion, 03 Subied: July 9, 03 Acceped: Augus 03, 03 Published: Decebe 05, 03 Sudy on he
Standardized Coefficients
Standadized Coefficient Ta. How do ou decide which of the X ae mot impotant fo detemining? In thi handout, we dicu one poile (and contoveial) anwe to thi quetion - the tandadized egeion coefficient. Fomula.
Chapter 2 Kinematics in One Dimension
Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how
Volatility Structures of Forward Rates and the Dynamics of the Term Structure* Peter Ritchken and L. Sanakarasubramanian
Volailiy Sucues o Fowad Raes and he Dynamics o he em Sucue* ypesee: RH 1s poo: 1 Oc nd poo: 3d poo: Pee Richken and L. Sanakaasubamanian Case Wesen Reseve Univesiy; Bea Seans & Co Fo geneal volailiy sucues
Signal Rectification
9/3/25 Signal Recificaion.doc / Signal Recificaion n imporan applicaion of juncion diodes is signal recificaion. here are wo ypes of signal recifiers, half-wae and fullwae. Le s firs consider he ideal
7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary
7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o
An iterative wave-front sensing algorithm for high-contrast imaging systems *
An ieaive wave-fon sensing algoihm fo high-conas imaging sysems * Jiangpei Dou,, Deqing Ren,,,3 and Yongian Zhu, aional Asonomical Obsevaoies / anjing Insiue of Asonomical Opics & Technology, Chinese Academy
AMB111F Financial Maths Notes
AMB111F Financial Maths Notes Compound Inteest and Depeciation Compound Inteest: Inteest computed on the cuent amount that inceases at egula intevals. Simple inteest: Inteest computed on the oiginal fixed
Parameter Identification of DC Motors
Paamete dentification of DC Moto utho: Dipl.-ng. ngo öllmecke dvantage of the Paamete dentification Method Saving time and money in the teting poce: no anical coupling neceay Full infomation: Entie chaacteitic
Description: Conceptual questions about projectile motion and some easy calculations. (uses applets)
Week 3: Chapter 3 [ Edit ] Overview Suary View Diagnotic View Print View with Anwer Week 3: Chapter 3 Due: 11:59p on Sunday, February 8, 2015 To undertand how point are awarded, read the Grading Policy
Gauss Law. Physics 231 Lecture 2-1
Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing
Experiment 6: Centripetal Force
Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee
Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.
Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa
Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
Effect of Unemployment Insurance Tax On Wages and Employment: A Partial Equilibrium Analysis
Effect of Unemployment nuance Tax On Wage and Employment: atial Equilibium nalyi Deegha Raj dhikai, Oklahoma Employment Secuity Commiion ynn Gay, Oklahoma Employment Secuity Commiion Jackie Bun, Texa &
Solutions to Problems: Chapter 7
Solution to Poblem: Chapte 7 P7-1. P7-2. P7-3. P7-4. Authoized and available hae LG 2; Baic a. Maximum hae available fo ale Authoized hae 2,000,000 Le: Shae outtanding 1,400,000 Available hae 600,000 b.
Design and Testing of a Controller for Autonomous Vehicle Path Tracking Using GPS/INS Sensors
Poceeing o he 7h Wol Conge he nenaional Feeaion o Auoaic Conol Seoul, Koea, July -, Deign an eing o a Conolle o Auonoou Vehicle Pah acking Uing GPS/NS Seno Juyong Kang*. Rai Y. Hiniyeh** Seung-Wuk Moon***,
AP Calculus AB 2013 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a mission-driven no-for-profi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was
cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
WHAT ARE OPTION CONTRACTS?
WHAT ARE OTION CONTRACTS? By rof. Ashok anekar An oion conrac is a derivaive which gives he righ o he holder of he conrac o do 'Somehing' bu wihou he obligaion o do ha 'Somehing'. The 'Somehing' can be
A Curriculum Module for AP Calculus BC Curriculum Module
Vecors: A Curriculum Module for AP Calculus BC 00 Curriculum Module The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy.
12. Rolling, Torque, and Angular Momentum
12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.
2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,
3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects
Chapter 3 Savings, Present Value and Ricardian Equivalence
Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,
The Detection of Obstacles Using Features by the Horizon View Camera
The Detection of Obstacles Using Featues b the Hoizon View Camea Aami Iwata, Kunihito Kato, Kazuhiko Yamamoto Depatment of Infomation Science, Facult of Engineeing, Gifu Univesit [email protected]
Economics Honors Exam 2008 Solutions Question 5
Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I
Coordinate Systems L. M. Kalnins, March 2009
Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean
9.5 Amortization. Objectives
9.5 Aotization Objectives 1. Calculate the payent to pay off an aotized loan. 2. Constuct an aotization schedule. 3. Find the pesent value of an annuity. 4. Calculate the unpaid balance on a loan. Congatulations!
OPTIONS ON PENSION ANNUITY
06 Invesmen Managemen and Financial Innovaions, Volume 4, Issue 3, 007 OPION ON PNION NNUIY hulamih. Goss *, Rami Yosef **, Ui Benzion *** bsac We inoduce a uoean (eoic) call oion on a ension annuiy. he
Derivative Securities: Lecture 7 Further applications of Black-Scholes and Arbitrage Pricing Theory. Sources: J. Hull Avellaneda and Laurence
Deivaive ecuiies: Lecue 7 uhe applicaios o Black-choles ad Abiage Picig heoy ouces: J. Hull Avellaeda ad Lauece Black s omula omeimes is easie o hik i ems o owad pices. Recallig ha i Black-choles imilaly
Voltage ( = Electric Potential )
V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage
Capacitors and inductors
Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear
Exam 3: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P
Hedging Portfolios with Short ETFs
Hedging Pofolios wih Sho EFs hosen Michalik, Deusche Bank AG Leo Schube, Consance Univesiy of Applied Sciences [email protected] [email protected] Documenos de abajo en Análisis Económico.-
Chapter 2. Electrostatics
Chapte. Electostatics.. The Electostatic Field To calculate the foce exeted by some electic chages,,, 3,... (the souce chages) on anothe chage Q (the test chage) we can use the pinciple of supeposition.
Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.
Gaphs of Equations CHAT Pe-Calculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such
The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C
Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit
4 Convolution. Recommended Problems. x2[n] 1 2[n]
4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discree-ime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.1-1.
Semipartial (Part) and Partial Correlation
Semipatial (Pat) and Patial Coelation his discussion boows heavily fom Applied Multiple egession/coelation Analysis fo the Behavioal Sciences, by Jacob and Paticia Cohen (975 edition; thee is also an updated
Sensitivity Analysis of a Dynamic Fleet Management Model Using Approximate Dynamic Programming
Sensiiviy Analysis of a Dynamic Flee Managemen Model Using Appoximae Dynamic Pogamming HUSEYIN TOPALOGLU School of Opeaions Reseach and Indusial Engineeing, Conell Univesiy, Ihaca, New Yok 14853, USA,
PASSAUER DISKUSSIONSPAPIERE
ofolio elecion wih ime onsains and a Raional xplanaion of Insufficien Divesificaion and xcessive ading Amin Dolze/ Benhad iee AAUR DIKUIOAIR Heausgebe: Die Guppe de beiebswischaflichen ofessoen de Wischafswissenschaflichen
Multiple choice questions [70 points]
Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions
AP Physics Gravity and Circular Motion
AP Phyic Gity nd icul Motion Newton theoy i ey iple. Gity i foce of ttction between ny two object tht he. Two object itting on dektop ttct ech othe with foce tht we cll gity. They don t go flying togethe
THE OPPORTUNITY COST OF BEING CONSTRAINED BY THE TYPE OF ASSET: BONDS ONLY OR STOCKS ONLY
Jounal of Applied conomics Vol IX No 2 (Nov 2006) 325-343 OPPORUNIY CO OF BOND ONLY OR OCK ONLY 325 H OPPORUNIY CO OF BING CONRAIND BY H YP OF A: BOND ONLY OR OCK ONLY ALLA A MLKUMIAN Wesen Illinois Univesiy
Continuous Compounding and Annualization
Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem
TECHNICAL DATA. JIS (Japanese Industrial Standard) Screw Thread. Specifications
JIS (Japanese Industial Standad) Scew Thead Specifications TECNICAL DATA Note: Although these specifications ae based on JIS they also apply to and DIN s. Some comments added by Mayland Metics Coutesy
Gravitation. AP Physics C
Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What
Usefulness of the Forward Curve in Forecasting Oil Prices
Usefulness of he Forward Curve in Forecasing Oil Prices Akira Yanagisawa Leader Energy Demand, Supply and Forecas Analysis Group The Energy Daa and Modelling Cener Summary When people analyse oil prices,
4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to
. Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate
Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1
Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The
How Much Can Taxes Help Selfish Routing?
How Much Can Taxe Help Selfih Rouing? Tim Roughgarden (Cornell) Join wih Richard Cole (NYU) and Yevgeniy Dodi (NYU) Selfih Rouing a direced graph G = (V,E) a ource and a deinaion one uni of raffic from
Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!
1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the
MTH6121 Introduction to Mathematical Finance Lesson 5
26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random
Policies & Procedures. I.D. Number: 1071
Policie & Procedure Tile: Licened Pracical Nure (LPN ) ADDED SKILLS (Aigned Funcion) Auhorizaion: [x] SHR Nuring Pracice Commiee I.D. Number: 1071 Source: Nuring Dae Revied: Sepember 2004 Dae Effecive:
Week 3-4: Permutations and Combinations
Week 3-4: Pemutations and Combinations Febuay 24, 2016 1 Two Counting Pinciples Addition Pinciple Let S 1, S 2,, S m be disjoint subsets of a finite set S If S S 1 S 2 S m, then S S 1 + S 2 + + S m Multiplication
Defining Virtual Reality: Dimensions Determining Telepresence
ocial epone o communicaion echnologie c Defining Viual Realiy: Dimenion Deemining Telepeence Jonahan Seue Depamen of Communicaion, Sanfod Univeiy Cyboganic Media 67 Ramona Avenue San Fancico, CA 94103-2214
UNIT CIRCLE TRIGONOMETRY
UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -
Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.
Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given
Cointegration: The Engle and Granger approach
Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be non-saionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require
