Pricing strategy of ecommerce platform under different operational models


 Brice Robertson
 1 years ago
 Views:
Transcription
1 Picing saegy of ecoece lafo unde diffeen oeaional odels Shuihua Han, Yufang Fu School of Manageen, Xiaen Univesiy, Xiaen, 36000, China Absac: We odel icing saegy unde lafo coeiion wih diffeen ecoece s oeaional odels. The analysis indicaes he oial icing saegies of he wo lafos, as well as he change ends of ice, and suggess fou bagaining saegies based on he cusoe eceived value of he ecoece lafos. Key wods: Picing gae, Oeaional odel, Ecoece lafo.inoducion In he ocess of develoen of ecoece lafo, he gowing of eail ecoece always kees he high seed on inceases and he icing odel is a key quesion o eseach. Soe eseach have aleady exloed he icing gaes of eailes and eeailes (Qihui Lu and Nan Liu,03, Fenando Bensein,008, Ruiliang Yan,008), bu we noice ha he ice coeiion aong ecoece lafos ge oe inense, and he influence of oeaional odels o he ecoece lafos is becoe oe and oe obvious. In his ae, he oeaional odels ae divided ino wo yes: he fis ye is ha he lafo se he ice by and bagain wih sulie, such as Aazon, and he second ye is ha he ecoece ovides a lafo fo sulie and consues and he ice of oduc is decided by sulie, such as Alibaba. Fo he sae oduc which sells on wo ecoece lafos, he icing odel is no only elaed o he cusoe eceived value, bu also influenced by he oeaional odel. The lafo of he fis ye should conside he wholesaling ice, he coeiion wih he second ye lafo and he bagaining gae wih he oduc sulie when hey se he eailing ice. In his ae, we conside hee keys of he icing odel: he oeaional odel, he coeiion of he wo lafos and he cusoe eceived value.. Model desciion Hee, we conside wo yes of oeaional odels which ae adoed by ecoece eaile lafos wih one oduc anufacue. The wo yes of ecoece eaile lafo ae denoed by and. Plafo : he ecoece ovides a lafo fo sulie and consues. Because ha his kind of ecoece lafo does no aiciae in he selling aciviies of online selles and each online selle have a faily weak voice in bagaining owe, so he ice of oduc is decided by sulie; Plafo : he lafo sells oduc hough is own channel. Relying on oweful scale advanage, his kind of ecoece lafos uchase oduc fo sulie se he ice and bagains wih sulie.
2 Sulie s : sulie s ovides oducs o lafo and he online selles of lafo. The diffeence is fo he selles of lafo, sulie s se he ice of he oduc based on wholesaling and eailing, bu fo lafo, he ice of he sae oduc is se by he lafo, based on he sales volue and wholesale ice. We can see ha, he coeiion of ecoece lafo and acually anslaes o a coeiion beween lafo and sulie s. In ode o axiizing he ofi, sulie s has o conside no only he eailing ice bu also he wholesaling ice. The wholesaling icing canno be oo low o else he selling of lafo will encoach on he ake shae of lafo ; in he eanie, i canno be oo high, ohewise he whole sales volue of he ake will decease. Bu fo lafo, hey wan o use hei song bagaining owe o negoiae wih sulie s fo a lowe wholesaling ice. In his way, sulie s and ecoece lafo consiue a ulisage gae elaionshi which decides he online ice of he wo ecoece lafos ogehe. In his ae, we ehaically analyze he fis wo sages: SageⅠ: ecoece lafo uchases oduc fo sulie s ; sulie s ovides oduc o lafo and se he wholesaling ice; hen, lafo se ice fo iself and sulie s se eailing ice fo he online selles of lafo. SageⅡ: based on he sales volue of sage, lafo bagain wih sulie s ; sulie s se a new wholesaling ice; hen, lafo and sulie s ese he eailing ice esecively. Using he cusoe uiliy heoy, we build he deand funcion of each lafo. We choose aaee v, which is disibued in he [0, ] ineval, o denoe he value of cusoes buying oduc and α ( i =,), which is also disibued in he [0, ] i ineval, denoe he efeence of he ecoece lafo and,(i.e. cusoe eceived value). So, he uiliy of each ecoece lafo can be easued by Ui = αiv i,( i=, ), wih i denoing he eailing ice of lafo and. In he eanie, we assue ha he seach cos of he wo ecoece lafos is 0. This assuion is ealisic because ha he wo lafos ae selling oducs online, he cusoes do no need o send a lo o seach he infoaion of he oduc. In he es a of his ae, we use Beand gae odel o analyze he equilibiu in he wo sages of his gae. 3. Equilibiu analysis of sageⅠ In his secion, we analyze he equilibiu of sageⅠin his gae. The sae oduc is sold on hese wo ecoece lafos, and we assue he oduc is sufficien and uchased fo sulie a he ice of he cuen sage wheneve necessay, so based on cusoe uiliy heoy, we ge: α α, = α( α α) D
3 D(, ) = α α These ae he deand funcions of lafo and. Fo ecoece lafo, he ice of oduc is se by sulie s, so, he ayoff, which should be axiized, consiss of wo as: wholesaling o lafo and eailing o cusoes hough lafo. Bu fo lafo, he whole ayoff deived fo is online selling. Plugging hese funcions ino ayoff funcion, we ge: α α = + C α( α α) α α = ( ) α α Aong hese funcions, denoe he wholesaling ice fo lafo, which is se by sulie s. Fo convenience, in ou ae, we assue he cos of oducion is a fixable consanc. In ode o obain axial ayoff, he ice esonse funcion of lafo and is hen deived as: α α = + α α = + ( α α ) + These funcions can be exessed by. Afe silificaion, we ge: α α α = + 4α α 4α α α + α α α α = + 4α α 4α α Thus, he elaionshi beween and is hen deived as: α + α α α = + Because α ( i =,) is disibued in he [0, ] ineval, so he coefficien of his i α+ α funcion,, is lage han 0, which indicaes ha, when sulie s aises eailing ice of lafo, lafo would follows he sae ah and vice 3
4 vesa. α+ α α α Make β = and β =, we can deive hee siuaions, α > α, α = αand α < α. When α > α, βis less han and β is less han 0, which eans in his siuaion, < ; When α = α, βequals o and β equals o 0, which eans in his siuaion, = =, if lafo oeaes in he cicusances, he ayoff of lafo will un ino 0, and lafo will sell oduc a wholesaling ice; When α < α, βis lage han and β is lage han 0, which eans in his siuaion, >. PoosiionⅠ: In sageⅠ, unde diffeen oeaional odels, he eailing ices of hese lafos change in he sae diecion. A highe consues' sense of a ecoece lafo coesonds a highe eailing ice, in he ean ie, he wo lafos would no ado sae ice saegy, esecially fo lafo. 4. Equilibiu analysis of sageⅡ In his sage, ecoece lafo has choice o bagain wih sulie s, because of song bagaining owe. Theefoe, we sa he analysis by deiving he eailing ice and deand funcion of lafo. We ge: 4( α α ) 8 ( ) 4 ( ) α α α α α = + α + 4α α 4α α 4α α D α = + 4α α 4α α Accoding o he above wo funcions, he coodinae axis of α can be divided α ino hee inevals: 0, 4, α, α 4 esecively. and [ α, ] α Whenα is disibued in he 0, 4. We now discuss he hee cases ineval, in ode o obain ayoff, he α α α value of us in he α, α+ α ineval. In his case, if lafo wan o cu down in bagaining, he eailing ice will incease and he deand of 4
5 α lafo will decease. When α is disibued in he, α 4 ineval, we can ge ha he value of can only beα o guaanee he acical significance of he above equaion. Bu hen, he deand of lafo becoe 0, so, his case is false. When α is disibued in he[ α, ] ineval, he value of us in he[ 0,α ] ineval. In his case, if lafo wan o cu down ice in bagaining, he eailing will decease and he deand of lafo will incease. Then we deive he ayoff of he wo lafos o obain a clea bagaining saegy. α + 8α α + 8α αα α α = + + C ( 4α α) ( 4α α) 4α α 4 α α 8 4 α α α α α = + + α 4α α 4α α 4α α We now ge he axis of syey of he wo ayoff cuves. Cobining wih he above analysis, we coae he osiion of he inevals and ge he discussion as follow: Fo lafo, he axis of syey of he ayoff cuve is: 8α = 8 + α ( α + α ) Fo lafo, he axis of syey of he ayoff cuve is: = α α When α is in he 0, 4 ineval, accoding o he onooniciy of hese wo funcions, he oal ayoff of sulie s is onoonically incease wih, and he ayoff of lafo is onoonically decease wih α α α α, α+ α. So we can ge: α α α PoosiionⅡ:When is in α, α+ α, in he feasible egion ineval, exis a *, which akes he 5
6 ayoff of lafo and lafo ae equal. Because he oal ayoff of sulie s is onoonically inceasing wih in he α α α α, α+ α ineval, we ge ha, sulie s does no have he diving foce o educe he wholesaling ice. Bu fo lafo, he siuaion is jus he oosie. The ayoff of lafo onoonically decease wih in he feasible α α α egion α,, lafo has a sufficien oive o bagain wih he α+ α sulie. Unde he esen cicusances, sulie s has wo kinds of saegies. When >, alhough cuing wholesaling ice will educe is ayoff, bu fo * he sake of exanding he ake shae, sulie s would ado iceoff saegy and cu down he wholesaling ice, and he ciical value of ice educion is is down o * ; When *, he deceasing of will ake he ayoff of sulie s is lowe han lafo. So in his case, sulie s would incease he wholesaling ice o bing u is ayoff o he sae level wih lafo. Above all, we can see ha, in his scenaio, sulie s is he leade of his gae, and can adjus he sales of lafo hough he changes of wholesaling ice. When α is in he [ ] α, ineval, he oal ayoff of sulie s onoonically 8α + α incease wih in he 0, 8 ( α + α) ineval and onoonically decease wih in 8α 8 + α ( α + α ), α ineval. The ayoff of lafo is onoonically deceasing wih, in he feasible egion[ 0,α ]. We now can ge ha, in he 6 8α 8 + α ( α + α ), α ineval, boh sulie s and lafo have he oive o educe he wholesaling ice. In his ineval, when is deceasing, he eailing ice of lafo will decease and he deand of lafo will incease. In he eanie, he ayoff 8α + α of sulie s and lafo will all incease. So in he, α ineval, 8 ( α + α) sulie s would ado wholesaling iceoff saegy while lafo would
7 ado bagaining saegy o aise he ayoff and he deand of oduc. In he 8α + α 0, ineval, wih he deceasing of, he ayoff of lafo is 8 ( α + α) inceasing, bu he ayoff of sulie s is decease, so in his ineval, alhough he deand of he oduc will incease if is coninuously going down, sulie s would no educe he wholesaling ice, while lafo ado bagaining saegy. 5.Final eak In he coeiion of ecoece lafos, a diffeen oeaional odel would lead o a diffeen icing saegy. In his ae, we discuss icing saegy of he fis wo sages, and we ge he conclusions as follow: in he fis sage, hese lafos would no se an idenical ice, and he eailing ices of hese lafos change in he sae diecion. In he second sage, lafo will always ado bagaining saegy in ode o obain a lowe wholesaling ice, bu fo sulie s, α hee ae wo kinds of decisions fo fou easons. When α is in he 0, 4 ineval, sulie s is he leade of ake and can influence he ake hough adjusing he * α( α α) wholesaling ice. A his scenaio, in he, ineval, cuing α+ α wholesaling saegy will be adoed by sulie s fo exanding ake shae; in he α, * ineval, inceasing wholesaling saegy will be adoed by sulie s fo oe ayoffs. When α is in he [ α, ] ineval, in he 8α + α 0, ineval, 8 ( α + α) {bagain, incease} is he olicy se of he wo lafo fo obaining highe ayoffs; in he 8α 8 + α ( α + α ), α ineval, wholesaling iceoff saegy would be adoed by sulie s o aise he ayoff and he deand of oduc, while lafo would ado bagaining saegy. Alhough we ge soe conclusions of he elaionshi of icing saegy and oeaional odels of ecoece lafos, hee ae sill soehing oe o exloe. Fo exale, he icing saegy unde he offe level consained condiions and oe coeios. Wha s oe, alhough soe of he ecoece lafos do no have he icing owe, hey ovide a ading lafo and chage fees, so i would be ineesing o exloe he icing saegy unde evenue shaing. 7
8 Refeences [] Lu Q, Liu N. Picing gaes of ixed convenional and ecoece disibuion channels. Coues & Indusial Engineeing. Januay, 03;64:3. [] Gabszewicz J, Wauhy X. Veical Poduc Diffeeniaion and TwoSided Makes. Econoics Lees. Ail 04;3():586. [3] Yan R. Picing saegy fo coanies wih ixed online and adiional eailing disibuion akes. Jounal Of Poduc And Band Manageen. 008;7():4856 [4] Bensein F, Song J, Zheng X. Bicksandoa vs. clicksandoa : An equilibiu analysis. Euoean Jounal Of Oeaional Reseach Januay, 008;87:
Study on the Complexity of Closedloop Supply Chain Based on Price Difference between New and Remanufactured Products
Advance Jounal of Food Science and Technology 5(): 56657, 03 ISSN: 044868; eissn: 044876 Maxwell Scienific Oganizaion, 03 Subied: July 9, 03 Acceped: Augus 03, 03 Published: Decebe 05, 03 Sudy on he
More informationValuing LongLived Assets
Valuing LongLived Asses Olive Tabalski, 008090 This chape explains how you can calculae he pesen value of cash flow. Some vey useful shocu mehods will be shown. These shocus povide a good oppouniy fo
More informationEconomics Honors Exam 2008 Solutions Question 5
Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I
More informationHUT, TUT, LUT, OU, ÅAU / Engineering departments Entrance examination in mathematics May 25, 2004
HUT, TUT, LUT, OU, ÅAU / Engineeing depamens Enane examinaion in mahemais May 5, 4 Insuions. Reseve a sepaae page fo eah poblem. Give you soluions in a lea fom inluding inemediae seps. Wie a lean opy of
More informationWHAT ARE OPTION CONTRACTS?
WHAT ARE OTION CONTRACTS? By rof. Ashok anekar An oion conrac is a derivaive which gives he righ o he holder of he conrac o do 'Somehing' bu wihou he obligaion o do ha 'Somehing'. The 'Somehing' can be
More informationOPTIONS ON PENSION ANNUITY
06 Invesmen Managemen and Financial Innovaions, Volume 4, Issue 3, 007 OPION ON PNION NNUIY hulamih. Goss *, Rami Yosef **, Ui Benzion *** bsac We inoduce a uoean (eoic) call oion on a ension annuiy. he
More informationHomework 3. problems: 4.5, 4.31, 4.49, 4.67
Hoewok 3 poble: 4.5, 4.3, 4.49, 4.67 Poble 4.5 The veco poiion of a paicle vaie in ie accoding o he expeion ( 3. ˆi 6. ˆj ). (a) Find expeion fo he velociy and acceleaion a funcion of ie. (b) Deeine he
More informationMAT 080Algebra II. Literal Equation
MAT 080Algeba II Lieal Equaions Objecives a Solve (linea) lieal equaions which o no equie facoing b Solve (linea) lieal equaions which equie facoing a Solving lieal equaions which o no equie facoing A
More informationThe Transport Equation
The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be
More information4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay
324 CHAPTER 4 Exponenial and Logarihmic Funcions 4.8 Exponenial Growh and Decay; Newon s Law; Logisic Growh and Decay OBJECTIVES 1 Find Equaions of Populaions Tha Obey he Law of Uninhibied Growh 2 Find
More informationReturn Calculation of U.S. Treasury Constant Maturity Indices
Reurn Calculaion of US Treasur Consan Mauri Indices Morningsar Mehodolog Paper Sepeber 30 008 008 Morningsar Inc All righs reserved The inforaion in his docuen is he proper of Morningsar Inc Reproducion
More information1 HALFLIFE EQUATIONS
R.L. Hanna Page HALFLIFE EQUATIONS The basic equaion ; he saring poin ; : wrien for ime: x / where fracion of original maerial and / number of halflives, and / log / o calculae he age (# ears): age (halflife)
More information29 March 2006. Application of Annuity Depreciation in the Presence of Competing Technologies II Telecom New Zealand
29 Mach 2006 Applicaion of Annuiy Depeciaion in he Pesence of Compeing Technologies II Telecom ew Zealand Pojec Team Tom Hid (Ph.D.) Daniel Young EA Economic Consuling Level 6 33 Exhibiion See Melboune
More informationModeling the Yield Curve Dynamics
FIXEDINCOME SECURITIES Chape 2 Modeling he Yield Cuve Dynamics Ouline Moivaion Inees Rae Tees SingleFaco ConinuousTime Models MuliFaco ConinuousTime Models Abiage Models Moivaion Why do we Cae? Picing
More informationAppendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.
Appendi A: Area workedou s o OddNumbered Eercises Do no read hese workedou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa
More information1. Time Value of Money 3 2. Discounted Cash Flow 35 3. Statistics and Market Returns 49 4. Probabilities 81 5. Key Formulas 109
1. Time Value of Money 3 2. Discouned Cash Flow 35 3. Saisics and Make Reuns 49 4. Pobabiliies 81 5. Key Fomulas 109 Candidae Noe: This is a lenghy Sudy Session ha, along wih Sudy Session 3, you should
More informationRandom Walk in 1D. 3 possible paths x vs n. 5 For our random walk, we assume the probabilities p,q do not depend on time (n)  stationary
Random Walk in D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes
More informationRISK PROFILES OF LIFE INSURANCE PARTICIPATING POLICIES: MEASUREMENT AND APPLICATION PERSPECTIVES
122 Invesmen Managemen and Financial Innovaions, Volume 4, Issue 3, 2007 RIK PROFILE OF LIFE INURANCE PARTICIPATING POLICIE: MEAUREMENT AND APPLICATION PERPECTIVE Albina Olando *, Massimiliano Poliano
More information17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides
7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion
More informationMarch 2002. Report to the ACCC. Working Capital. Relevance for the Assessment of Reference Tariffs. The Allen Consulting Group
Mach 00 Repo o he ACCC Woking Capial Relevance fo he Assessmen of Refeence Taiffs The Allen Consuling Goup The Allen Consuling Goup Py Ld ACN 007 06 930 Melboune 4h Floo, 8 Exhibiion S Melboune Vicoia
More informationThe pricing analysis of reverse mortgage with redemption option
Available online www.jocp.com Jounal of Chemical and Phamaceuical Reseach, 04, 6(6):8389 Reseach Aicle ISSN : 09757384 CODEN(USA) : JCPRC5 The picing analysis of evese mogage wih edempion opion Yanxia
More informationDifferential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.
Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given
More informationThe Pricing of Finite Maturity Corporate Coupon Bonds with RatingBased Covenants
he Picing of Finie Mauiy Copoae Coupon Bonds wih RaingBased Covenans Ségio Silva Poucalense Univesiy, Pougal email: segios@up.p coesponding auho) José Azevedo Peeia ISEG  echnical Univesiy of Lisbon,
More informationMorningstar Investor Return
Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion
More informationCointegration: The Engle and Granger approach
Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be nonsaionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require
More informationPricing Natural Gas in Mexico. Dagobert L. Brito* Juan Rosellon** June, 1999. Abstract
Picing Naual Gas in Mexico Dagobe L. Bio* Juan Rosellon** June, 999 Absac We sudy mechanisms fo linking he Mexican make fo naual gas wih he Noh Ameican make and show ha he neback ule is he efficien way
More informationNewton's second law in action
Newon's second law in acion In many cases, he naure of he force acing on a body is known I migh depend on ime, posiion, velociy, or some combinaion of hese, bu is dependence is known from experimen In
More informationCircuit Types. () i( t) ( )
Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All
More informationChapter 6: Business Valuation (Income Approach)
Chaper 6: Business Valuaion (Income Approach) Cash flow deerminaion is one of he mos criical elemens o a business valuaion. Everyhing may be secondary. If cash flow is high, hen he value is high; if he
More informationPermutations and Combinations
Permuaions and Combinaions Combinaorics Copyrigh Sandards 006, Tes  ANSWERS Barry Mabillard. 0 www.mah0s.com 1. Deermine he middle erm in he expansion of ( a b) To ge he kvalue for he middle erm, divide
More informationPHYS420 (Spring 2002) Riq Parra Homework # 2 Solutions
PHYS4 Sping ) Riq Paa Hoewok # Soluions Pobles. Genealie he Galilean ansfoaion of oodinaes o oion in hee diensions b showing ha ' & '. In he deiaion of he Galilean ansfoaions ha was done in lass we assued
More informationEstimation and Comparison of Chained CPIU Standard Errors With Regular CPIU Results (20002001)
2003 Join Saisical Meeings  Secion on Suvey eseach Mehods Esimaion and ompaison of hained PIU Sandad Eos Wih egula PIU esuls (20002001) Owen J. Shoemake U.S. Bueau of Labo Saisics, 2 Mass Ave., NE,
More informationDensity Dependence. births are a decreasing function of density b(n) and deaths are an increasing function of density d(n).
FW 662 Densiydependen populaion models In he previous lecure we considered densiy independen populaion models ha assumed ha birh and deah raes were consan and no a funcion of populaion size. Longerm
More informationHFCC Math Lab Intermediate Algebra  13 SOLVING RATETIMEDISTANCE PROBLEMS
HFCC Mah Lab Inemeiae Algeba  3 SOLVING RATETIMEDISTANCE PROBLEMS The vaiables involve in a moion poblem ae isance (), ae (), an ime (). These vaiables ae elae by he equaion, which can be solve fo any
More informationPASSAUER DISKUSSIONSPAPIERE
ofolio elecion wih ime onsains and a Raional xplanaion of Insufficien Divesificaion and xcessive ading Amin Dolze/ Benhad iee AAUR DIKUIOAIR Heausgebe: Die Guppe de beiebswischaflichen ofessoen de Wischafswissenschaflichen
More informationTHE OPPORTUNITY COST OF BEING CONSTRAINED BY THE TYPE OF ASSET: BONDS ONLY OR STOCKS ONLY
Jounal of Applied conomics Vol IX No 2 (Nov 2006) 325343 OPPORUNIY CO OF BOND ONLY OR OCK ONLY 325 H OPPORUNIY CO OF BING CONRAIND BY H YP OF A: BOND ONLY OR OCK ONLY ALLA A MLKUMIAN Wesen Illinois Univesiy
More informationChapter 8: Regression with Lagged Explanatory Variables
Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One
More informationUltraconservative Online Algorithms for Multiclass Problems
Jounal of Machine Leaning Reseach 3 (2003) 951991 Submied 2/02; Published 1/03 Ulaconsevaive Online Algoihms fo Muliclass Poblems Koby Camme Yoam Singe School of Compue Science & Engineeing Hebew Univesiy,
More informationState Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University
Inroducion ae Machines: Brief Inroducion o equencers Prof. Andrew J. Mason, Michigan ae Universiy A sae machine models behavior defined by a finie number of saes (unique configuraions), ransiions beween
More informationChapter 7. Response of FirstOrder RL and RC Circuits
Chaper 7. esponse of FirsOrder L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
More information9.5 Amortization. Objectives
9.5 Aotization Objectives 1. Calculate the payent to pay off an aotized loan. 2. Constuct an aotization schedule. 3. Find the pesent value of an annuity. 4. Calculate the unpaid balance on a loan. Congatulations!
More informationOptimal Pricing Decision and Assessing Factors in. ClosedLoop Supply Chain
Applied Matheatical Sciences, Vol. 5, 2011, no. 80, 40154031 Optial Picing Decision and Assessing Factos in ClosedLoop Supply Chain Yang Tan Picing Science and Engineeing Depatent, FedEx Expess Wold
More informationSecurity Analysts Journal Prize 2005. Factors Driving Correlations Between Fixed Income and Equity Returns Asset Allocation and ALM for Pension Funds
ecui Analss Jounal epembe 5 ecui Analss Jounal ize 5 Facos Diving Coelaions eween Fixed Income and Equi Reuns Asse Allocaion and AM fo ension Funds Junichi Iwamoo CMA Chief Reseache ension Reseach Insiue
More informationMA261A Calculus III 2006 Fall Homework 4 Solutions Due 9/29/2006 8:00AM
MA6A Calculus III 006 Fall Homework 4 Soluions Due 9/9/006 00AM 97 #4 Describe in words he surface 3 A halflane in he osiive x and y erriory (See Figure in Page 67) 97 # Idenify he surface cos We see
More informationStochastic Optimal Control Problem for Life Insurance
Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian
More informationRelative velocity in one dimension
Connexions module: m13618 1 Relaive velociy in one dimension Sunil Kumar Singh This work is produced by The Connexions Projec and licensed under he Creaive Commons Aribuion License Absrac All quaniies
More informationGraphing the Von Bertalanffy Growth Equation
file: d:\b1732013\von_beralanffy.wpd dae: Sepember 23, 2013 Inroducion Graphing he Von Beralanffy Growh Equaion Previously, we calculaed regressions of TL on SL for fish size daa and ploed he daa and
More informationTwo Compartment Body Model and V d Terms by Jeff Stark
Two Comparmen Body Model and V d Terms by Jeff Sark In a onecomparmen model, we make wo imporan assumpions: (1) Linear pharmacokineics  By his, we mean ha eliminaion is firs order and ha pharmacokineic
More informationGovernment Institute for Economic Research. Publications 58. Three takes on sustainability
Govenmen Insiue fo Economic Reseach Publicaions 58 Thee akes on susainabiliy Juha Honkaukia (ed.) Publicaions 58 Sepembe 20 VATT PUBLICATIONS 58 Thee akes on susainabiliy Juha Honkaukia (ed.) Valion aloudellinen
More informationcooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
More informationExperiment #1: Reflection, Refraction, and Dispersion
Expeimen #1: Reflecion, Refacion, and Dispesion Pupose: To sudy eflecion and efacion of ligh a plane and cuved sufaces, as well as he phenomenon of dispesion. Equipmen: Ray Box wih Slis Opical Accessoies
More informationTable of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities
Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17
More informationEconomics 326: Input Demands. Ethan Kaplan
Economics 326: Input Demands Ethan Kaplan Octobe 24, 202 Outline. Tems 2. Input Demands Tems Labo Poductivity: Output pe unit of labo. Y (K; L) L What is the labo poductivity of the US? Output is ouhgly
More informationAutonomic management of scalable loadbalancing for ubiquitous networks
Auonomic managemen of scalable balancing fo ubiquious newoks Toshio TONOUCHI and Yasuyuki BEPPU Inene Sysems Laboaoies, NEC Copoaion {onouchi@cw, ybeppu@ak}.jp.nec.com Absac. In ubiquious newoks, a lo
More informationFourier Series Solution of the Heat Equation
Fourier Series Soluion of he Hea Equaion Physical Applicaion; he Hea Equaion In he early nineeenh cenury Joseph Fourier, a French scienis and mahemaician who had accompanied Napoleon on his Egypian campaign,
More informationA Mathematical Description of MOSFET Behavior
10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical
More informationMaking Use of Gate Charge Information in MOSFET and IGBT Data Sheets
Making Use of ae Charge Informaion in MOSFET and IBT Daa Shees Ralph McArhur Senior Applicaions Engineer Advanced Power Technology 405 S.W. Columbia Sree Bend, Oregon 97702 Power MOSFETs and IBTs have
More informationISLAMIC BANKS PROFITABILITY IN AN INTEREST RATE CYCLE
nenaional Jounal of slamic Financial Sevices, Vol.4, No.2 SLAM BANS PROFTABLTY N AN NTEREST RATE YLE Anoua Hassoune slamic finance elies on he cadinal pinciple of pofi and loss shaing (PLS) beween sakeholdes
More information11/6/2013. Chapter 14: Dynamic ADAS. Introduction. Introduction. Keeping track of time. The model s elements
Inroducion Chaper 14: Dynamic DS dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuingedge
More informationInductance and Transient Circuits
Chaper H Inducance and Transien Circuis Blinn College  Physics 2426  Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual
More informationSection 7.1 Angles and Their Measure
Secion 7.1 Angles and Their Measure Greek Leers Commonly Used in Trigonomery Quadran II Quadran III Quadran I Quadran IV α = alpha β = bea θ = hea δ = dela ω = omega γ = gamma DEGREES The angle formed
More informationLecture 2: Telegrapher Equations For Transmission Lines. Power Flow.
Whies, EE 481 Lecure 2 Page 1 of 13 Lecure 2: Telegraher Equaions For Transmission Lines. Power Flow. Microsri is one mehod for making elecrical connecions in a microwae circui. I is consruced wih a ground
More informationNew Zealand s Current Account Deficit: Analysis based on the Intertemporal Optimisation Approach
Febuay 200 New Zealand s Cuen Accoun Defici: Analysis based on he Ineempoal Opimisaion Appoach Kunhong Kim, Viv B. Hall and Robe A. Buckle Absac New Zealand s Cuen Accoun of he Balance of Paymens has been
More information5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance.
5.8 Resonance 231 5.8 Resonance The sudy of vibraing mechanical sysems ends here wih he heory of pure and pracical resonance. Pure Resonance The noion of pure resonance in he differenial equaion (1) ()
More informationAn Empirical Analysis of the Money Demand Function in India
TileAn empiical analysis of he money Auho(s) Inoue, Takeshi; Hamoi, Shigeyuki Ciaion IDE Discussion Pape. No. 166. 2008 Issue Dae 200809 URL hp://hdl.handle.ne/2344/783 Righs
More informationGraduate Macro Theory II: Notes on Neoclassical Growth Model
Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.
More informationWhy Did the Demand for Cash Decrease Recently in Korea?
Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in
More informationMathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
More informationPROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE
Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees
More information4. International Parity Conditions
4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency
More informationHANDOUT 14. A.) Introduction: Many actions in life are reversible. * Examples: Simple One: a closed door can be opened and an open door can be closed.
Inverse Funcions Reference Angles Inverse Trig Problems Trig Indeniies HANDOUT 4 INVERSE FUNCTIONS KEY POINTS A.) Inroducion: Many acions in life are reversible. * Examples: Simple One: a closed door can
More informationPOWER SUMS, BERNOULLI NUMBERS, AND RIEMANN S. 1. Power sums
POWER SUMS, BERNOULLI NUMBERS, AND RIEMANN S ζfunction.. Power sus We begin wih a definiion of power sus, S (n. This quaniy is defined for posiive inegers > 0 and n > as he su of h powers of he firs
More informationPricing and Hedging Guaranteed Annuity Options via Static Option Replication 1
Picing and Hedging Guaaneed Annuiy Opions via Saic Opion Replicaion Anoon Pelsse Head of ALM Dep Pofesso of Mahemaical Finance NaionaleNedelanden Easmus Univesiy Roedam Acuaial Dep Economeic Insiue PO
More informationYTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment.
. Two quesions for oday. A. Why do bonds wih he same ime o mauriy have differen YTM s? B. Why do bonds wih differen imes o mauriy have differen YTM s? 2. To answer he firs quesion les look a he risk srucure
More informationPROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART TWO
Profi Tes Modelling in Life Assurance Using Spreadshees, par wo PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART TWO Erik Alm Peer Millingon Profi Tes Modelling in Life Assurance Using Spreadshees,
More information9. Capacitor and Resistor Circuits
ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren
More informationDepartment of Health & Human Services (DHHS) Centers for Medicare & Medicaid Services (CMS) Transmittal 1151 Date: November 16, 2012
nul ysem ub 10020 OneTime Noificion Depmen of elh & umn evices (D) enes fo edice & edicid evices () Tnsmil 1151 De: Novembe 16, 2012 hnge eques 8124 UBJT: Use of Q6 odifie fo Locum Tenens by oviding
More information4 Convolution. Recommended Problems. x2[n] 1 2[n]
4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discreeime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.11.
More informationANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS
ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,
More informationExample: scheduling using EDF
EDA/DIT6 RealTime Sysems, Chalmers/GU, 0/0 ecure #4 Updaed February, 0 RealTime Sysems Specificaion Implemenaion Dynamic scheduling  Earliesdeadlinefirs scheduling Processordemand analysis Verificaion
More informationMTH6121 Introduction to Mathematical Finance Lesson 5
26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random
More informationForecasting Sales: A Model and Some Evidence from the Retail Industry. Russell Lundholm Sarah McVay Taylor Randall
Forecasing Sales: A odel and Some Evidence from he eail Indusry ussell Lundholm Sarah cvay aylor andall Why forecas financial saemens? Seems obvious, bu wo common criicisms: Who cares, can we can look
More information1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,
Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..
More informationEconomics 212 Microeconomic Theory I Final Exam. June Faculty of Arts and Sciences Queen s University Answer Key
Instuctions Economics 1 Micoeconomic Theoy I Final Exam June 008 Faculty of Ats and Sciences ueen s Univesity Anse Key The exam is thee hous in length. The exam consists of to sections: Section A has five
More informationPrice elasticity of demand for crude oil: estimates for 23 countries
Price elasiciy of demand for crude oil: esimaes for 23 counries John C.B. Cooper Absrac This paper uses a muliple regression model derived from an adapaion of Nerlove s parial adjusmen model o esimae boh
More informationAnalyst Profession, Accounting Earnings and Stock Returns: Swedish Evidence
LTA 4/04 P. 404 426 JUHAPEKKA KALLUNKI, MINNA MARTIKAINEN and HENRIK NILSSON Analys Poession, Accouning Eanings and Sock Reuns: Swedish Evidence ABSTRACT Recen eseach by Liu and Thomas (2000) and Dechow
More informationAn iterative wavefront sensing algorithm for highcontrast imaging systems *
An ieaive wavefon sensing algoihm fo highconas imaging sysems * Jiangpei Dou,, Deqing Ren,,,3 and Yongian Zhu, aional Asonomical Obsevaoies / anjing Insiue of Asonomical Opics & Technology, Chinese Academy
More information2.6 Limits at Infinity, Horizontal Asymptotes Math 1271, TA: Amy DeCelles. 1. Overview. 2. Examples. Outline: 1. Definition of limits at infinity
.6 Limis a Infiniy, Horizonal Asympoes Mah 7, TA: Amy DeCelles. Overview Ouline:. Definiion of is a infiniy. Definiion of horizonal asympoe 3. Theorem abou raional powers of. Infinie is a infiniy This
More informationHedging Portfolios with Short ETFs
Hedging Pofolios wih Sho EFs hosen Michalik, Deusche Bank AG Leo Schube, Consance Univesiy of Applied Sciences hosen.michalik@deuschebank.de Schube@HWGKonsanz.de Documenos de abajo en Análisis Económico.
More informationClocked R S, D, J K and T Flip Flop
C22: Digial i Design Clocked, D, J K and T Flip Flop Dr. A. ahu Dep of Comp. c. & Engg. Indian Insiue of Technology Guwahai Ouline Design a new building block, a flip flop, ha sores one bi Lach Vs Flip
More informationCHARGE AND DISCHARGE OF A CAPACITOR
REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:
More informationNetwork Effects, Pricing Strategies, and Optimal Upgrade Time in Software Provision.
Nework Effecs, Pricing Sraegies, and Opimal Upgrade Time in Sofware Provision. YiNung Yang* Deparmen of Economics Uah Sae Universiy Logan, UT 84322353 April 3, 995 (curren version Feb, 996) JEL codes:
More information4.2 Trigonometric Functions; The Unit Circle
4. Trigonomeric Funcions; The Uni Circle Secion 4. Noes Page A uni circle is a circle cenered a he origin wih a radius of. Is equaion is as shown in he drawing below. Here he leer represens an angle measure.
More informationOn Efficiently Updating Singular Value Decomposition Based Reduced Order Models
On Efficiently dating Singula alue Decoosition Based Reduced Ode Models Ralf Zieann GAMM oksho Alied and Nueical Linea Algeba with Secial Ehasis on Model Reduction Been Se..3. he PODbased ROM aoach.
More information1. The graph shows the variation with time t of the velocity v of an object.
1. he graph shows he variaion wih ime of he velociy v of an objec. v Which one of he following graphs bes represens he variaion wih ime of he acceleraion a of he objec? A. a B. a C. a D. a 2. A ball, iniially
More informationINVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS
INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS Ilona Tregub, Olga Filina, Irina Kondakova Financial Universiy under he Governmen of he Russian Federaion 1. Phillips curve In economics,
More informationChapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr
Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i
More information1 The basic circulation problem
2WO08: Graphs and Algorihms Lecure 4 Dae: 26/2/2012 Insrucor: Nikhil Bansal The Circulaion Problem Scribe: Tom Slenders 1 The basic circulaion problem We will consider he maxflow problem again, bu his
More informationAnalogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar
Analogue and Digial Signal Processing Firs Term Third Year CS Engineering By Dr Mukhiar Ali Unar Recommended Books Haykin S. and Van Veen B.; Signals and Sysems, John Wiley& Sons Inc. ISBN: 073807 Ifeachor
More informationAnalysis of Pricing and Efficiency Control Strategy between Internet Retailer and Conventional Retailer
Recen Advances in Business Managemen and Markeing Analysis of Pricing and Efficiency Conrol Sraegy beween Inerne Reailer and Convenional Reailer HYUG RAE CHO 1, SUG MOO BAE and JOG HU PARK 3 Deparmen of
More information