GNSS Failure Analysis and Impact on Users

Size: px
Start display at page:

Download "GNSS Failure Analysis and Impact on Users"

Transcription

1 GNSS Failure Analysis and Impact on Users Norbert SUARD CNES 18/11/2014

2 OUTLINE Introduction Failure categories and events Observations Clock events Wrong data in navigation messages Non compliance to GPS ICD Conclusion 2

3 INTRODUCTION Motivations Definition of GPS complements (mid 90 s) Expected failure rate on one side Unscheduled events (Unusable Until Further Notice) on another side Feared event characterisation Impact on users (foreseen, observed) Open questions» are failure rate and unscheduled events in line?» are unscheduled events via NANU complete» are GPS complement efficient on such events?» Is the feared event list complete? Litterature (reports ) and permanent observations (IGS stations, ESTB, EGNOS, NTMF) to answer Presentation mainly based on GPS/SBAS experience. 3

4 FAILURE CATEGORIES Fault characterisation From the space segment (satellites) single (narrow) fault» Unlikely case to get 2 faulty SV at same epoch From the Input Data for the message generation» EOPP - Earth Orientation Parameter Prediction (ODTS)» Solar Flux observations (Ionosphere Model Correction parameter)» UTC(USNO) offset data (UTC-GPST prediction) All satellites affected before upload => single or multiple (wide) fault depending on the upload scheme From the control segment single or multiple faults depending on the failure mode and on the upload scheme SPS PS 2008 Fig. B.1-1 4

5 Fault characterisation (con t) FAILURE CATEGORIES Different Upload schemes One SV at a time with immediate effect» Current GPS (could change in the future) Several SV at a common time with immediate effect» GALILEO design Upload with a common time of application» GLONASS possibility (01 Apr 2014 observation) From the User segment Not under the Constellation Service Provider responsibility but need to be considered» Sources of error /faults Signal distorsions caused by ionospheric and/or tropospheric scintillation Receiver ionospheric/tropospheric compensation errors Receiver noise Receiver hardware/software faults ICD implementation Multipath and receiver multipath mitigation Antenna effects Interference and receiver interference mitigation User error SPS PS 2008 Fig. B.1-1 5

6 FAILURE CATEGORIES Fault characterisation (con t) Fault causing a clear signal stop Continuity/service availability concern Accuracy degradation possible (geometry / DOP issues) with remaining SV Fault causing a degraded signal Integrity concern Accuracy position degradation from small (<1m) to large (>10 km) with an information designating the satellite as non HEALTHY» Caution: for GPS, non HEALTHY and UNHEALTHY are not synomymous» Interface Control Document to list all the possiblities GPS SPS PS UNHEALTHY designation (4 conditions with one refering to the 9 alarms conditions 2.3.4) GPS SPS PS MARGINAL designation (3 conditions) to be considered in function of the application» Implementation under Receiver manufacturer responsibility with no information designating the satellite as non HEALTHY» CSP means and maximum time to react. 6

7 OBSERVATIONS Clock events 20km The largest that has been observed 01 Jan 2004, PRN23:» 18:30 beginning of the clock failure» 21:18 satellite set UNHEALTHY» NANU» Satellite excluded by WAAS and ESTB» More info: SVN-23/PRN-23 Integrity Failure of 01 Jan 2004, Capt Heather Eastlack 2 nd Space Operations Squadron, Effect of a GPS Anomaly on Different GNSS Receivers, A.L.Vogel, C. Macabiau, N. Suard, ION GNSS 2005 Toulouse Rx: Latitude, Longitude, Altitude and Horizontal errors from 18h00 to 22h00 UTC1 10km 20km 20km 7

8 OBSERVATIONS Clock events 02 June 2006, PRN30» 20:00 beginning of the clock failure» 21:14 satellite set UNHEALTHY» NANU» Satellite excluded by EGNOS From 20h to 20h14:» Common degradation (same shape) in GPS mode Around 20h26:» At BRGS, the exclusion of PRN30 has created a DOP problem with the 4 remaining locked SV (explaining the 20 km of error in position). For local EGNOS users, this creates a discontinuity event. This DOP problem was repeated each day until the PRN30 came back in service From 21h to 22h:» SV30 is reacquired by some receivers (GRAS, BRGS, EGNOS RIMS) : not in line with the NANU information possible operator error in GPS MCS. BRGS (scale 1 st curve: -2*10 4 ; 2*10 4 m) GRAS (scale 1 st curve: ; 2*10 3 m) CNES-CMT (scale 1 st curve: -40; 20m) TORN (scale 1 st curve: -20; 10m) Figure 1: Impacts of GPS30 failure on user position in GPS mode (lat, long, H, V) Shapes of degradations is different at each location (caution: scale factor are not the same). Degradation for GPS users: - 35 m range at TORN (Madrid/Torrejon, Spain) - 50 m range at CNES - 2 km range at GRAS (Grasse, South of France) - 20 km range at BRGS (Bergen, Norway) No degradation in the accuracy for EGNOS one CNES-CMT is more noisy due to the non smoothing option. 8

9 Clock events OBSERVATIONS 31 July 2006, PRN03» 21:15 possible beginning of the clock failure» No NANU» Failure confirmed in GPS Ephemeris Error Screening and Results for , L. Keng and al., ION ITM 2010» Satellite corrected and then excluded by EGNOS (23:04 to 23:22). 9 BRGS (scale 4 th curve: -50; 50m) Same shapes of degradations at each location (caution: scale factor are not the same), except at GRAS (Grasse, France) & FU1N (Fucino, Italy) where a second spike in vertical domain occurred. Degradation in the 50 m range for GPS users except at CNES (10m see above), no degradation for EGNOS one CNES-CMT is more noisy due to the non smoothing option. Was there an amplified effect when smoothing on?. CNES-CMT (scale 4 th curve: -10; 10m) GRAS (scale 4 th curve: -40; 20m) FU1N (scale 4 th curve: -50; 50m) Figure 1: Impacts of GPS30 failure on user position in GPS mode (lat, long, H, V) GO2N (scale 4 th curve: -40; 20m)

10 OBSERVATIONS Clock events 08 March 2004, PRN11» 13:23 beginning of the failure» No NANU» Failure confirmed in FAA quarterly report» All observables at different locations impacted in a same manner => Clock anomaly 900s L1o2 where L1o2(t) = L1o1(t) - L1o1(t-1), L1o1(t) = L1(t) - L1(t-1) C1o2 where C1o2(t) = C1o1(t) - C1o1(t-1), C1o1(t) = C1(t) - C1(t-1) Code Noise masked real start/stop times of the event It consisted in a series of "stair step" variations in the observed (apparent) Doppler frequency of the satellite signal. Each "stair step" lasted 1.4 to 1.6 seconds, with a relatively constant observed Doppler during that interval. The stair steps followed an approximation to a sine wave or triangle wave with a period of about 6 seconds. The amplitude of this wave increased and then decreased until it was invisible. 10

11 OBSERVATIONS Clock events 08 March 2004, PRN11» Degradation in ESTB (EGNOS testbed) positioning more important than in GPS one» Dynamic of the event (<2s) too high to provide adequate correction by ESTB (>4s) ESTB and GPS positioning errors (Latitude top, longitude, Height, Horizontal bottom) measured at Toulouse A good correlation between the shape of Fast Correction and envelop of L1/C1 observation,. 11

12 Wrong data in message : TGD Jan 2004, PRN22 OBSERVATIONS» Wrong TGD in its navigation message during several days after its commissioning on the 10 Jan ns instead of ns» More than one additional meter on the daily mean vertical error in GPS only mode Difficulties to discriminate it from ionosphere daily impact Clealy visible during night when PRN22 visible over Toulouse and ionosphere residual error less important Example: comparison 10/01/2004 to 15/01/2004» No impact in ESTB positioning Delta TGD (broadcast internal determination) is part of the range corrections ESTB and GPS positioning errors (Latitude top, longitude, Height, Horizontal bottom) measured at Toulouse 12

13 meter OBSERVATIONS Wrong data in message : Wrong IONO 10 parameters 28 May 2002 to 02 Jun 2002, all PRN» errors in ionosphere delay correction database coefficients (USAF report)» Daily statistics at Toulouse +6m in GPS vertical daily mean ~2m in GPS horizontal daily mean» Additional ranging error (USAF report) +/- 16m» No degradation observed in ESTB positioning Of course (independent ionosphere corrections) Average : Comparison ESTB & GPS Lat_Mean_Peg Lon_Mean_Peg Ver_Mean_Peg Hor_Mean_Peg Lat_Mean_GPS Lon_Mean_GPS Ver_Mean_GPS Hor_Mean_GPS Day ESTB and GPS positioning errors measured at Toulouse daily mean over May

14 OBSERVATIONS Wrong data in message : Wrong Solar flux predictions 07 Mar 2011 to 13 mar 2011, all PRN» Errors in the solar flux predictions causing an inadequate ionosphere correction parameter choice by MCS operations Up to + 20 m in Daily Vertical Error Confirmed with GPS NAVCEN» No impact for SBAS users 6m 14

15 OBSERVATIONS Wrong data in message : bad ephemeris (maneuver and SV not set to UNHEALTHY) 10 Apr 2007, PRN18 NANU : SV Scheduled to be in maintenance from 13:30 to 01:30 (11Apr) 15:53: beginning of the maintenance, SV HEALTH flag still HEALTHY (MCS ops error) error depending on the location PRN18 Range Error and SPS 3D error at 3 sites (FAA PAN report #58) 15

16 OBSERVATIONS Wrong data in message : bad ephemeris (error in EOPP) 50 m 17 Jun 2012, PRN19 GPS position error depending on location» Vertical Position Error (VPE) 16m at Tromso (Norway) 35m at Brussels (Belgium) 48-50m at Toulouse, Dionysus (Greece) 280m at Bangalore (India) Around 0m if in replay mode the ephemeris set broadcasted from 00:10:36 to 00:36:36 is suppressed PRN19 excluded by SBAS explicitely (alarm) or implicitely (set not used - IODE not referenced) Max Range Error (FAA PAN report #78) VPE - Toulouse 300 m VPE - Bangalore 16

17 OBSERVATIONS Wrong data in message : bad ephemeris (error in EOPP suspected) 01 Apr 2014, GLONASS constellation 21:00: All GLONASS SV measured by the GLONASS IAC Monitoring Facility as failed (URE>75m) or broadcasting an illegal ephemeris several 10 km of error in the position 50 km HPE - Toulouse 17

18 OBSERVATIONS Wrong data in message : IODE/IODC wrong repetition ICD compliance 5 Jan 2006, PRN1» Reuse of IODE/IODC values in violation with GPS ICD repetition rules ICD: IODE non repeated during 6h, IODC not repeated during 7 days» IODE is the key information for correction at least from SBAS, GBAS, PPP» SBAS: IOD (slow corrections) must match to IODE: check, validity duration management; Rx storage Accuracy degradation (+171% H, +19% V Toulouse receiver) Integrity degradation (+44% H, +6% V Toulouse receiver) More information on that event: GPS Issue of Data, Ephemeris (IODE) Issues, N. Suard and al,, ENC-GNSS 2008 No NANU Other occurrences Same type GPS Ephemeris Error Screening and Results for , L. Keng and al,, ION ITM 2011 Unhealthy/Uncommissionned SV Numerous cases but not considered as an anomaly New type: 21 Mar 2014, PRN25» Change in ephemeris data without any change for IODE/IODC» Specific IIF» No NANU 18

19 OBSERVATIONS Non Standard Code mode ICD compliance 30 Jun 2009, PRN30 Short Non Standard Code mode» Not really described in the ICD, only possible existence is mentionned typically 6 to 24 s duration, no NANU» Transition to NSC is a condition to consider the satellite as untrackable, but how a Rx has to react when the Standard Code is relocked? Other sources of short interruptions (scintillation, masking/occultation ) Observations» Some NSC are <4s» Confirmed by GPS NAVCEN Minimum duration is in fact 1.5s Integrity impact possible for SBAS users if no alarm sequence broadcasted» In case of single Not Monitored arriving after the end of the NSC mode Evolution done in WAAS and EGNOS» Alarm sequence (repeated DU or NM) when Standard Code lost for one SV for all RIMS 19

20 CONCLUSION Various cases of observed faults have been presented Under the CSP responsibility» Different origins (clock, input data, model, operation, ICD compliance)» Single or multiple SV cases Different orders of magnitude in the observed accuracy error Don t forget the ones due to a Rx fault (ICD implementation) see back up slide Unscheduled NANU (Unusable Until Further Notice) Not really representative of the real rate of failure occurrences» Just a minimum rate» More usefull for continuity/availability concern This presentation is just an excerpt of various observed cases Interest to have a permanent monitoring system» To ensure validity of assumptions/feared events on which applications are based GPS works well but it works better with a complement for a high integrity performance objective Expected to be still the case with new GPS III or any other constellation 20

21 CONCLUSION Thank you for your attention 21

22 BACK UP SLIDE GPS usability conditions Rx must implement the following conditions (SPS PS extract) 22

Greg Keel P.Eng. Parallel Geo Services [email protected]

Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com Greg Keel P.Eng. Parallel Geo Services [email protected] Presentation Outline GNSS: Global Navigation Satellite System GPS: overview, current signals, modernization GLONASS: history (rise fall rise),

More information

a Brief Background DEFINITION

a Brief Background DEFINITION GNSS FOR AVIATION a Brief Background ANC informal briefing DEFINITION GNSS: A worldwide position and time determination ti system that t includes one or more satellite constellations, aircraft receivers

More information

WAAS Performance Analysis Report October 2005 WIDE-AREA AUGMENTATION SYSTEM PERFORMANCE ANALYSIS REPORT. Report #14

WAAS Performance Analysis Report October 2005 WIDE-AREA AUGMENTATION SYSTEM PERFORMANCE ANALYSIS REPORT. Report #14 WAAS Performance Analysis Report October 5 WIDE-AREA AUGMENTATION SYSTEM PERFORMANCE ANALYSIS REPORT Report #1 Reporting Period: July 1 to September 3, 5 October 5 FAA/William J. Hughes Technical Center

More information

[3] beautiful visualisation of the satellites positions by HSR / ICOM

[3] beautiful visualisation of the satellites positions by HSR / ICOM GPS (Introduction) MSE, Rumc, GPS, 1 Terms NAVSTAR GPS ( Navigational Satellite Timing and Ranging - Global Positioning System) is a GNSS (Global Navigation Satellite System), developed by the US-DoD in

More information

INTEGRITY AND CONTINUITY ANALYSIS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT FROM GPS. Integrity and Continuity Analysis 08/01/14 08/01/14 08/01/14

INTEGRITY AND CONTINUITY ANALYSIS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT FROM GPS. Integrity and Continuity Analysis 08/01/14 08/01/14 08/01/14 INTEGRITY AND CONTINUITY ANALYSIS FROM GPS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT Prepared by: M Pattinson (NSL) 08/01/14 Checked by: L Banfield (NSL) 08/01/14 Approved by: M Dumville (NSL) 08/01/14

More information

Post Processing Service

Post Processing Service Post Processing Service The delay of propagation of the signal due to the ionosphere is the main source of generation of positioning errors. This problem can be bypassed using a dual-frequency receivers

More information

Radio Technical Commission for Maritime Services. GPS Update. Bob Markle RTCM Arlington, VA USA. NMEA Convention & Expo 2010

Radio Technical Commission for Maritime Services. GPS Update. Bob Markle RTCM Arlington, VA USA. NMEA Convention & Expo 2010 Radio Technical Commission for Maritime Services GPS Update NMEA Convention & Expo 2010 Bob Markle RTCM Arlington, VA USA What is RTCM? International non-profit scientific, professional and membership

More information

The Evolution of the Global Navigation Satellite System (GNSS) Spectrum Use

The Evolution of the Global Navigation Satellite System (GNSS) Spectrum Use The Evolution of the Global Navigation Satellite System (GNSS) Spectrum Use Spectrum Management 2012 National Spectrum Management Association Scott Pace (with thanks to Chris Hegerty, MITRE) Space Policy

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System The Global Positioning System - recognize that GPS is only one of several Global Navigation Satellite Systems (GNSS) - the Russian

More information

GNSS integrity monitoring for the detection and mitigation of interference

GNSS integrity monitoring for the detection and mitigation of interference GNSS integrity monitoring for the detection and mitigation of interference Dr. Shaojun Feng Centre for Transport Studies Outline GNSS vulnerability GNSS integrity monitoring Cases study GAARDIAN ERAIM

More information

CHAPTER 11 SATELLITE NAVIGATION

CHAPTER 11 SATELLITE NAVIGATION CHAPTER 11 SATELLITE NAVIGATION INTRODUCTION 1100. Development The idea that led to development of the satellite navigation systems dates back to 1957 and the first launch of an artificial satellite into

More information

The European EGNOS System:

The European EGNOS System: The European EGNOS System: Status, performances, information to users and Evolution Plans Presented by: Dr J. Ventura-Traveset Head of EGNOS Mission and System Evolution Section European Space Agency (ESA),

More information

Status, Development and Application

Status, Development and Application Federal Space Agency GLONASS GLONASS Status, Development and Application Sergey G. Revnivykh International Committee on Global Navigation Satellite Systems (ICG) Second Meeting, September 4-7, 2007, Bangalore,

More information

The EGNOS User Interface Document Explained

The EGNOS User Interface Document Explained The EGNOS User Interface Document Explained 2nd EGNOS Receiver Workshop 30th Sept 2005, ESTEC, Noordwijk, The Netherlands Javier Ventura-Traveset European Space Agency, EGNOS Project Office Patricia Yague

More information

Comprehensive GNSS Technology Training For Resource Mapping. Module 3 Quality Assurance and Quality Control Procedures

Comprehensive GNSS Technology Training For Resource Mapping. Module 3 Quality Assurance and Quality Control Procedures Comprehensive GNSS Technology Training For Resource Mapping Module 3 Quality Assurance and Quality Control Procedures Revised: 2011 Contents 1) Quality Assurance Procedures... 4 a) Pre-Survey... 4 b) Field

More information

TI GPS PPS Timing Application Note

TI GPS PPS Timing Application Note Application Note Version 0.6 January 2012 1 Contents Table of Contents 1 INTRODUCTION... 3 2 1PPS CHARACTERISTICS... 3 3 TEST SETUP... 4 4 PPS TEST RESULTS... 6 Figures Figure 1 - Simplified GPS Receiver

More information

Remote Calibration of a GPS Timing Receiver to UTC(NIST) via the Internet*

Remote Calibration of a GPS Timing Receiver to UTC(NIST) via the Internet* Remote Calibration of a GPS Timing Receiver to UTC(NIST) via the Internet* Michael A. Lombardi and Andrew N. Novick National Institute of Standards and Technology Boulder, Colorado [email protected]

More information

GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform

GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform GNSS and Heighting, Practical Considerations A Parker National Geo-spatial Information Department of Rural Development and Land Reform GNSS Global Navigation Satellite Systems (GNSS) Global Positioning

More information

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson [email protected] Chalmers University of Technology, 2013

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013 Lecture 5: Satellite Orbits Jan Johansson [email protected] Chalmers University of Technology, 2013 Geometry Satellite Plasma Posi+oning physics Antenna theory Geophysics Time and Frequency GNSS

More information

Rafael Lucas EUROPEAN SPACE AGENCY. [email protected]

Rafael Lucas EUROPEAN SPACE AGENCY. Rafael.Lucas.Rodriguez@esa.int ESA Navigation Support Facilities Rafael Lucas EUROPEAN SPACE AGENCY [email protected] Background The ESA/ESTEC Radionavigation laboratory was created in 1989 to support the application of

More information

EVOLUTION AND INDUSTRIALIZATION OF A SBAS REAL-TIME PERFORMANCE MONITORING TOOL (EVORA)

EVOLUTION AND INDUSTRIALIZATION OF A SBAS REAL-TIME PERFORMANCE MONITORING TOOL (EVORA) ENC 2015 Page 1 EVOLUTION AND INDUSTRIALIZATION OF A SBAS REAL-TIME PERFORMANCE MONITORING TOOL (EVORA) J. Doubek 1, M. Houdek 1, C. A. Pandele 2,3, A. Polivka 1, D. Chung 1 1 Iguassu Software Systems,

More information

An Analytical Evaluation for Hazardous Failure Rate in a Satellite-based Train Positioning System w.r.t. the ERTMS Train Control Systems

An Analytical Evaluation for Hazardous Failure Rate in a Satellite-based Train Positioning System w.r.t. the ERTMS Train Control Systems An Analytical Evaluation for Hazardous Failure Rate in a Satellite-based Train Positioning System w.r.t. the ERTMS Train Control Systems A. Neri 1, A. Filip 2, F. Rispoli 3, and A.M. Vegni 1 1 RADIOLABS

More information

Doc 9849 AN/457. Approved by the Secretary General and published under his authority. First Edition 2005. International Civil Aviation Organization

Doc 9849 AN/457. Approved by the Secretary General and published under his authority. First Edition 2005. International Civil Aviation Organization Doc 9849 AN/457 Global Navigation Satellite System (GNSS) Manual Approved by the Secretary General and published under his authority First Edition 2005 International Civil Aviation Organization AMENDMENTS

More information

CHARACTERISTICS OF DEEP GPS SIGNAL FADING DUE TO IONOSPHERIC SCINTILLATION FOR AVIATION RECEIVER DESIGN

CHARACTERISTICS OF DEEP GPS SIGNAL FADING DUE TO IONOSPHERIC SCINTILLATION FOR AVIATION RECEIVER DESIGN CHARACTERISTICS OF DEEP GPS SIGNAL FADING DUE TO IONOSPHERIC SCINTILLATION FOR AVIATION RECEIVER DESIGN Jiwon Seo, Todd Walter, Tsung-Yu Chiou, and Per Enge Stanford University ABSTRACT Aircraft navigation

More information

GNSS MONITORING NETWORKS

GNSS MONITORING NETWORKS SPACE GNSS MONITORING NETWORKS Satellite communications, earth observation, navigation and positioning and control stations indracompany.com GNSS MONITORING NETWORKS GNSS MONITORING NETWORKS Indra s solutions

More information

AUTOMATED OPERATIONAL MULTI-TRACKING HIGH PRECISION ORBIT DETERMINATION FOR LEO MISSIONS

AUTOMATED OPERATIONAL MULTI-TRACKING HIGH PRECISION ORBIT DETERMINATION FOR LEO MISSIONS AUTOMATED OPERATIONAL MULTI-TRACKING HIGH PRECISION ORBIT DETERMINATION FOR LEO MISSIONS J. Fernández Sánchez, F. M. Martínez Fadrique, A. Águeda Maté, D. Escobar Antón GMV S.A., Isaac Newton 11, 876 Tres

More information

GPS Receiver Test. Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology

GPS Receiver Test. Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology GPS Receiver Test Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology A. Amiri-Simkooei R. Kremers C. Tiberius May 24 Preface For the purpose of a receiver

More information

Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager

Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager Enabling RTK-like positioning offshore using the global VERIPOS GNSS network Pieter Toor GNSS Technology Manager Introduction PPP/RTK Positioning Techniques PPP-AR Technology Presentation Overview PPP-AR

More information

CDMA Technology : Pr. S. Flament www.greyc.fr/user/99. Pr. Dr. W. sk www.htwg-konstanz.de. On line Course on CDMA Technology

CDMA Technology : Pr. S. Flament www.greyc.fr/user/99. Pr. Dr. W. sk www.htwg-konstanz.de. On line Course on CDMA Technology CDMA Technology : Pr. Dr. W. sk www.htwg-konstanz.de Pr. S. Flament www.greyc.fr/user/99 On line Course on CDMA Technology CDMA Technology : CDMA / DS : Principle of operation Generation of PN Spreading

More information

GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS

GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS 1. INTRODUCTION Navigation technologies with precision approach and landing systems, for civilian and military purposes, enable aircrafts to perform their

More information

Bi-Directional DGPS for Range Safety Applications

Bi-Directional DGPS for Range Safety Applications Bi-Directional DGPS for Range Safety Applications Ranjeet Shetty 234-A, Avionics Engineering Center, Russ College of Engineering and Technology, Ohio University Advisor: Dr. Chris Bartone Outline Background

More information

GPS Precise Point Positioning with a Difference*

GPS Precise Point Positioning with a Difference* GPS Precise Point Positioning with a Difference* Pierre Héroux and Jan Kouba Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A E9 [email protected]

More information

EUTERPE - EUROPEAN TEST CENTRE FOR RECEIVER PERFORMANCE EVALUATION

EUTERPE - EUROPEAN TEST CENTRE FOR RECEIVER PERFORMANCE EVALUATION ABSTRACT EUTERPE - EUROPEAN TEST CENTRE FOR RECEIVER PERFORMANCE EVALUATION David Jiménez-Baños (1), Michel Tossaint (1), Jean-Luc Gerner (1), Rafael Lucas-Rodríguez (2) (1) Radio Navigation Systems and

More information

MSAS current status. Japan Civil Aviation Bureau S TSAT A ATELLITE-BASED S UGMENTATION. MTSAT Satellite-based Augmentation System

MSAS current status. Japan Civil Aviation Bureau S TSAT A ATELLITE-BASED S UGMENTATION. MTSAT Satellite-based Augmentation System MSAS current status Japan Civil Aviation Bureau Civil Aviation Bureau Ministry of Land, Infrastructure and Transport 1 Contents Overview of MSAS MSAS Status Process for MSAS Commissioning Results of OT&E

More information

Development of GBAS Ionosphere Anomaly Monitor Standards to Support Category III Operations

Development of GBAS Ionosphere Anomaly Monitor Standards to Support Category III Operations Development of GBAS Ionosphere Anomaly Monitor Standards to Support Category III Operations Matt Harris, Tim Murphy, Susumu Saito Presentation for ENRI International Workshop on ATM / CNS Tokyo, Japan

More information

Orbit Modeling and Multi-GNSS in the IGS

Orbit Modeling and Multi-GNSS in the IGS Orbit Modeling and Multi-GNSS in the IGS G. Beutler Astronomical Institute, University of Bern O. Montenbruck, P. Steigenberger DLR, German Space Operations Center 14 th Meeting of the National Space-Based

More information

GNSS satellite attitude characteristics during eclipse season

GNSS satellite attitude characteristics during eclipse season GNSS satellite attitude characteristics during eclipse season F. Dilssner 1, T. Springer 1, J. Weiss 2, G. Gienger 1, W. Enderle 1 1 ESA/ESOC, Darmstadt, Germany 2 JPL, Pasadena, USA July 26, 2012 IGS

More information

Agenda. Agilent GPS Receiver Test Solutions. GPS technology concepts. Basic tests required for GPS receiver verification Test solutions

Agenda. Agilent GPS Receiver Test Solutions. GPS technology concepts. Basic tests required for GPS receiver verification Test solutions Agenda GPS technology concepts GPS and GNSS overview Assisted GPS (A-GPS) Basic tests required for GPS receiver verification Test solutions Signal creation for GPS receiver test A-GPS test systems Agilent

More information

The European Satellite Navigation Programmes EGNOS and Galileo

The European Satellite Navigation Programmes EGNOS and Galileo The European Satellite Navigation Programmes EGNOS and Galileo Olivier Crop European GNSS Agency (GSA) Paris, 17 March 2014 20 March, 2014 The European GNSS Programmes 2 Basics of Satellite Navigation

More information

Internet-Based Satellite Navigation Receivers using EGNOS: the ESA SISNET Project

Internet-Based Satellite Navigation Receivers using EGNOS: the ESA SISNET Project Internet-Based Satellite Navigation Receivers using EGNOS: the ESA SISNET Project Félix Torán-Martí (1), Javier Ventura-Traveset (1), Juan Carlos de Mateo (2) (1) European Space Agency (ESA) GNSS-1 Project

More information

MULTI-GNSS DEMONTRATION CAMPAIGN IN ASIA OCEANIA REGION

MULTI-GNSS DEMONTRATION CAMPAIGN IN ASIA OCEANIA REGION UNITED NATIONS INTERNATIONAL MEETING ON THE APPLICATIONS OF GLOBAL NAVIGATION SATELLITE SYSTEMS PRESENTATION SESSION 2: INTERNATIONAL INITIATIVES/EXPERIENCES MULTI-GNSS DEMONTRATION CAMPAIGN IN ASIA OCEANIA

More information

GAGAN - The Indian satellite based augmentation system

GAGAN - The Indian satellite based augmentation system Indian Journal of Radio & Space Physics Vol. 36, August 2007, pp. 293-302 GAGAN - The Indian satellite based augmentation system K N Suryanarayana Rao ISRO Satellite Centre, Airport Road, Bangalore 560

More information

EGNOS PERFORMANCE FOR MARITIME USERS

EGNOS PERFORMANCE FOR MARITIME USERS EGNOS PERFORMANCE FOR MARITIME USERS 1 Introduction M. Fairbanks, Booz Allen & Hamilton 1 S. Basker, European GNSS Secretariat J. Ventura-Traveset, J.C. de Mateo, European Space Agency The European Tripartite

More information

SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices

SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices SURVEYING WITH GPS Key Words: Static, Fast-static, Kinematic, Pseudo- Kinematic, Real-time kinematic, Receiver Initialization, On The Fly (OTF), Baselines, Redundant baselines, Base Receiver, Rover GPS

More information

Learning about GPS and GIS

Learning about GPS and GIS Learning about GPS and GIS Standards 4.4 Understand geographic information systems (G.I.S.). B12.1 Understand common surveying techniques used in agriculture (e.g., leveling, land measurement, building

More information

GAGAN-FOP/PMR-05. Indian SBAS System - GAGAN

GAGAN-FOP/PMR-05. Indian SBAS System - GAGAN GAGAN-FOP/PMR-05 Indian SBAS System - GAGAN GAGAN GPS Aided GEO Augmented Navigation (GAGAN) is India s regional Satellite Based Augmentation System (SBAS) India is working towards attaining APV 1 capability

More information

European best practices in safe transport of dangerous material supported by GNSS

European best practices in safe transport of dangerous material supported by GNSS 2 nd GNSS Vulnerabilities and Solutions 2009 Conference, Baska, Croatia European best practices in safe transport of dangerous material supported by GNSS Gianmarco Baldini IPSC - JRC EC Antonella Di Fazio

More information

REAL-TIME GPS MONITORING OF ATOMIC FREQUENCY STANDARDS IN THE CANADIAN ACTIVE CONTROL SYSTEM (CACS)

REAL-TIME GPS MONITORING OF ATOMIC FREQUENCY STANDARDS IN THE CANADIAN ACTIVE CONTROL SYSTEM (CACS) 30th Annual Pmbe Time and Time Internal (PTTI) Meeting REAL-TIME GPS MONITORING OF ATOMIC FREQUENCY STANDARDS IN THE CANADIAN ACTIVE CONTROL SYSTEM (CACS) F. Lahaye, M. Caissy, J. Popelar Geodetic Survey

More information

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003 Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy...

More information

Global Positioning System

Global Positioning System B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins Global Positioning System Theory and Practice Third, revised edition Springer-Verlag Wien New York Contents Abbreviations Numerical constants xix xxiii

More information

GSA: EGNOS Flight Event, 6-7 May, Toulouse

GSA: EGNOS Flight Event, 6-7 May, Toulouse GSA: EGNOS Flight Event, 6-7 May, Toulouse Text: Pavel Valenta, Foto: Pavel Valenta, GSA I have persuaded myself several times, that Toulouse is the capital city of aviation in Europe. Right here innovator

More information

GPS: A Primer. presented by Jim Pugh, GISP GIS Project Manager. 2007, EMH&T, Inc.

GPS: A Primer. presented by Jim Pugh, GISP GIS Project Manager. 2007, EMH&T, Inc. GPS: A Primer presented by Jim Pugh, GISP GIS Project Manager GPS: A Primer GPS = Global Positioning System 24 Satellites in Orbit around Earth Each Broadcasts precise time and known location Receivers

More information

SYSTEM GLOBAL NAVIGATION SATELLITE SYSTEM LANDING TECHNOLOGY/PRODUCT DEVELOPMENT

SYSTEM GLOBAL NAVIGATION SATELLITE SYSTEM LANDING TECHNOLOGY/PRODUCT DEVELOPMENT GLOBAL NAVIGATION SATELLITE SYSTEM LANDING SYSTEM The aviation industry is developing a new positioning and landing system based on the Global Navigation Satellite System (GNSS). The GNSS landing system

More information

Best Practices for Leap Second Event Occurring on 30 June 2015

Best Practices for Leap Second Event Occurring on 30 June 2015 Best Practices for Leap Second Event Occurring on 30 June 2015 26 May 2015 Sponsored by the National Cybersecurity and Communications Integration Center in coordination with the United States Naval Observatory,

More information

PLM PRODUCT INFORMATION

PLM PRODUCT INFORMATION PLM PRODUCT INFORMATION Agricultural Equipment UK & ROI Precision Farming Reference UK- PLM_03_13 Date: 1st May 2013 Announcing the new RangePoint RTX Correction Service RangePoint RTX is a GPS and GLONASS

More information

Trimble CenterPoint RTX Post-Processing Services FAQs

Trimble CenterPoint RTX Post-Processing Services FAQs Trimble CenterPoint RTX Post-Processing Services FAQs What is Trimble RTX technology? 30 September 2013 Trimble RTX TM (Real Time extended) is a high-accuracy, global GNSS correction technology that combines

More information

INTERNATIONAL CIVIL AVIATION ORGANIZATION GUIDE FOR GROUND BASED AUGMENTATION SYSTEM IMPLEMENTATION

INTERNATIONAL CIVIL AVIATION ORGANIZATION GUIDE FOR GROUND BASED AUGMENTATION SYSTEM IMPLEMENTATION INTERNATIONAL CIVIL AVIATION ORGANIZATION GUIDE FOR GROUND BASED AUGMENTATION SYSTEM IMPLEMENTATION May 2013 -2- Foreword The Ground Based Augmentation System (GBAS) is being developed and implemented

More information

Maritime Integrated PNT System

Maritime Integrated PNT System Maritime Integrated PNT System Core element for safe ship navigation Evelin Engler und Thoralf Noack DLR Institut für Kommunikation und Navigation Folie 1 Maritime Integrated PNT System = overlay of satellite

More information

UN/UAE/US Workshop On GNSS Applications. GPS Modernization:

UN/UAE/US Workshop On GNSS Applications. GPS Modernization: UN/UAE/US Workshop On GNSS Applications Dubai, UAE Session 1: Trends in Satellite-based Navigaiton Systems GPS Modernization: On the t Road to the Future GPS IIR/IIR-M M and GPS III Michael Shaw Director,

More information

Development of BeiDou Navigation Satellite System

Development of BeiDou Navigation Satellite System The 7th Meeting of International Committee on GNSS Development of BeiDou Navigation Satellite System China Satellite Navigation Office November 5, 2012 Beijing, China Part Ⅰ Development Plan Part Ⅱ System

More information

TDS5000B, TDS6000B, TDS/CSA7000B Series Acquisition Modes

TDS5000B, TDS6000B, TDS/CSA7000B Series Acquisition Modes TDS5000B, TDS6000B, TDS/CSA7000B Series Acquisition Modes Tektronix oscilloscopes provide several different acquisition modes. While this gives the user great flexibility and choice, each mode is optimized

More information

instruction manual SynScan GPS PACKAGE INCLUDES: 1. A SynScan GPS mouse (GT-320FW(3.0)) with a MINI-DIN connector at one end of 1.5-meter cable.

instruction manual SynScan GPS PACKAGE INCLUDES: 1. A SynScan GPS mouse (GT-320FW(3.0)) with a MINI-DIN connector at one end of 1.5-meter cable. instruction manual SynScan GPS PACKAGE INCLUDES: 1 A SynScan GPS mouse (GT-320FW(30)) with a MINI-DIN connector at one end of 15-meter cable 2 A 50-cm adapter cable: Used for connecting between SynScan

More information

Advanced GPS/GLONASS ASIC (AGGA2)

Advanced GPS/GLONASS ASIC (AGGA2) Advanced GPS/GLONASS ASIC (AGGA2) ESTEC - 6/7 March, 2001 Martin Hollreiser Head of Microelectronics Section Tel. +31-71-565-4284 Fax. +31-71-565-4295 [email protected] Overview History of the

More information

Leica GNSS Reference Antennas White Paper

Leica GNSS Reference Antennas White Paper Leica GNSS Reference Antennas White Paper State of The Art, Leading Edge Geodetic Antennas from Leica Geosystems Justin Walford, Leica Geosystems BIOGRAPHY Justin Walford holds an M.Sc.E in Survey Engineering

More information

How To Understand Gate

How To Understand Gate Time Facility for German Galileo Test Environment GATE J. Furthner, German Aerospace Center () Folie 1, GTFS 2005 > JF Content Overview of GATE Major Objectives of GATE GATE Field Service Area Functions

More information

Absolute GNSS Antenna Calibration with a Robot: Repeatability, GLONASS and Carrier-to-Noise Pattern

Absolute GNSS Antenna Calibration with a Robot: Repeatability, GLONASS and Carrier-to-Noise Pattern Absolute GNSS Antenna Calibration with a Robot: Repeatability, GLONASS and Carrier-to-Noise Pattern Gerhard Wübbena, Martin Schmitz, Gerald Boettcher Geo++ GmbH 30827 Garbsen Germany www.geopp.com Content

More information

Clocks/timers, Time, and GPS

Clocks/timers, Time, and GPS FYS3240 PC-based instrumentation and microcontrollers Clocks/timers, Time, and GPS Spring 2015 Lecture #11 Bekkeng, 22.12.2014 How good is a crystal oscillator (XO)? Interested in the long-term measurement

More information

A totally SDR-based Low Cost Augmentation System for Institutional Applications

A totally SDR-based Low Cost Augmentation System for Institutional Applications A totally SDR-based Low Cost Augmentation System for Institutional Applications R. Capua, L. Gattuso, A. Caporale, M. Giangolini, F. Frittella, C. D Amico, D. Tufillaro 21 January 2016 R. Capua DO-11-DO-01

More information

Truck Automation for the Ready Mixed Concrete Industry. Michael J. Hoagland (205) 879-3282 ext. 1164 [email protected]

Truck Automation for the Ready Mixed Concrete Industry. Michael J. Hoagland (205) 879-3282 ext. 1164 mhoagland@commandalkon.com Truck Automation for the Ready Mixed Concrete Industry Michael J. Hoagland (205) 879-3282 ext. 1164 [email protected] Session Agenda What is GPS and How does it work? Auto Signaling Explained

More information

Threats of Ionosphere on GNSS an general overview of CIGALA and CALIBRA Projects

Threats of Ionosphere on GNSS an general overview of CIGALA and CALIBRA Projects Threats of Ionosphere on GNSS an general overview of CIGALA and CALIBRA Projects João Francisco Galera Monico Vinícius Stuani Presentation Outline Threats of Ionosphere on GNSS o Ionosphere effects and

More information

The NASA Global Differential GPS System (GDGPS) and The TDRSS Augmentation Service for Satellites (TASS)

The NASA Global Differential GPS System (GDGPS) and The TDRSS Augmentation Service for Satellites (TASS) The Global Differential GPS System (GDGPS) and The TDRSS Augmentation Service for Satellites (TASS) Yoaz Bar-Sever, Larry Young, Frank Stocklin, Paul Heffernan and John Rush s Global Differential GPS System

More information

SATELLITE TIME-TRANSFER: RECENT DEVELOPMENTS AND PROJECTS

SATELLITE TIME-TRANSFER: RECENT DEVELOPMENTS AND PROJECTS SATELLITE TIME-TRANSFER: RECENT DEVELOPMENTS AND PROJECTS W. LEWANDOWSKI 1 and J. NAWROCKI 2 1 Bureau International des Poids et Mesures, Sèvres, France e-mail: [email protected] 2 Astrogeodynamical

More information

Monitoring the position integrity in road transport localization based services

Monitoring the position integrity in road transport localization based services Monitoring the position integrity in road transport localization based services José Santa, Benito Úbeda, Rafael Toledo, Antonio F. G. Skarmeta Department of Information and Communications Engineering

More information

MobileMapper 6 White Paper

MobileMapper 6 White Paper MobileMapper 6 White Paper Meter-Level Mapping Accuracy With Post-Processing Introduction Since its introduction in February 2008, the Magellan MobileMapper 6 has been welcomed by the market as the only

More information

Synchronization in. Distributed Systems. Cooperation and Coordination in. Distributed Systems. Kinds of Synchronization.

Synchronization in. Distributed Systems. Cooperation and Coordination in. Distributed Systems. Kinds of Synchronization. Cooperation and Coordination in Distributed Systems Communication Mechanisms for the communication between processes Naming for searching communication partners Synchronization in Distributed Systems But...

More information

GPS Positioning Modes

GPS Positioning Modes 5 GPS Positioning Modes Positioning with GPS can be performed in either of two ways: point (absolute) positioning or relative positioning. Classical GPS point positioning employs one GPS receiver that

More information

A comparison of radio direction-finding technologies. Paul Denisowski, Applications Engineer Rohde & Schwarz

A comparison of radio direction-finding technologies. Paul Denisowski, Applications Engineer Rohde & Schwarz A comparison of radio direction-finding technologies Paul Denisowski, Applications Engineer Rohde & Schwarz Topics General introduction to radiolocation Manual DF techniques Doppler DF Time difference

More information

Swedish User Guidelines for Network RTK

Swedish User Guidelines for Network RTK Swedish User Guidelines for Network RTK Robert Odolinski GNSS Research Centre, Curtin University of Technology (Previously Geodetic Research Department of Lantmäteriet, Sweden) Perth, WA, Australia [email protected]

More information

High accuracy positioning using carrier-phases with the open source GPSTk software.

High accuracy positioning using carrier-phases with the open source GPSTk software. High accuracy positioning using carrier-phases with the open source GPSTk software. Salazar, D., Hernandez-Pajares, M., Juan, J.M., Sanz, J. Grupo de Astronomia y Geomatica (gage), Universitat Politecnica

More information

Technical Article Developing Software for the CN3 Integrated GPS Receiver

Technical Article Developing Software for the CN3 Integrated GPS Receiver Technical Article Developing Software for the CN3 Integrated GPS Receiver 1 Intermec Technologies Table of Contents INTRODUCTION... 3 AN OVERVIEW OF GPS TECHNOLOGY... 3 What is GPS?... 3 How GPS works...

More information

The ESA SISNeT Technology: Real-Time Access to the EGNOS Services through Wireless Networks and the Internet

The ESA SISNeT Technology: Real-Time Access to the EGNOS Services through Wireless Networks and the Internet The ESA SISNeT Technology: Real-Time Access to the EGNOS Services through Wireless Networks and the Internet F. Torán-Martí, Dr. J. Ventura-Traveset (1); Dr. R. Chen (2) (1) ESA GNSS-1 Project Office,

More information

Results of IMES (Indoor Messaging System) Implementation for Seamless Indoor Navigation and Social Infrastructure Platform

Results of IMES (Indoor Messaging System) Implementation for Seamless Indoor Navigation and Social Infrastructure Platform Results of IMES (Indoor Messaging System) Implementation for Seamless Indoor Navigation and Social Infrastructure Platform Dinesh Manandhar, Seiya Kawaguchi, Hideyuki Torimoto GNSS Technologies Inc., Japan

More information

EGNOS Safety of Life (SoL) Service Definition Document

EGNOS Safety of Life (SoL) Service Definition Document EGNOS Safety of Life (SoL) Service Definition Document DOCUMENT CHANGE RECORD Revision Date Summary of changes 1.0 02/03/2011 First release of the document 2.0 28/06/2013 Update of the document including

More information

Scintillation Characteristics across the GPS Frequency Band

Scintillation Characteristics across the GPS Frequency Band Scintillation Characteristics across the GPS Frequency Band Charles S. Carrano, Keith M. Groves, William J. McNeil, and Patricia H. Doherty Institute for Scientific Research, Boston College, Boston, MA

More information

Dancing in the Dark: How GNSS Satellites Cross the Earth s Shadow

Dancing in the Dark: How GNSS Satellites Cross the Earth s Shadow Dancing in the Dark: How GNSS Satellites Cross the Earth s Shadow F. Dilssner, T. Springer, G. Gienger, R. Zandbergen European Space Operations Centre (ESOC), Darmstadt 24 January 2011 Technische Universität

More information

On May 27, 2010, the U.S. Air. Satellite. Antenna Phase Center and Attitude Modeling

On May 27, 2010, the U.S. Air. Satellite. Antenna Phase Center and Attitude Modeling GPS IIF-1 Satellite Antenna Phase Center and Attitude Modeling Florian Dilssner Logica/European Space Agency Calculating the distances between satellites and user equipment is a basic operation for GNSS

More information

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model 7 th FIG Regional Conference TS 1C Advances in GNSS Positioning and Applications I Volker Schwieger 1, Jürgen

More information

BORDER ALERT AND SMART TRACKING SYSTEM WITH ALARM USING DGPS AND GSM

BORDER ALERT AND SMART TRACKING SYSTEM WITH ALARM USING DGPS AND GSM BORDER ALERT AND SMART TRACKING SYSTEM WITH ALARM USING DGPS AND GSM NaveenKumar.M #1, Ranjith.R *2 #* Department of Electronics and Instrumentation Engineering, #* Sri Sairam Engineering College, Chennai,

More information

GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME

GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME Caroline Erickson and Pierre Héroux Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A 0E9

More information

Leica AR25 White Paper

Leica AR25 White Paper Leica AR25 White Paper February 2009 Lennon Bedford, Neil Brown, Justin Walford Leica Geosystems AG Heerbrugg, Switzerland 2 Biography Lennon Bedford graduated from the University of Otago in 2003 with

More information

Secure Navigation and Authentication. Sherman Lo November 2008

Secure Navigation and Authentication. Sherman Lo November 2008 Secure Navigation and Authentication Sherman Lo November 2008 1 Outline Motivating Authentication Proposed techniques for authentication Source authentication Cross checking My research 2 GNSS: Position,

More information

Timing Errors and Jitter

Timing Errors and Jitter Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big

More information

Update of BeiDou Education and Training

Update of BeiDou Education and Training Update of BeiDou Education and Training Introduction Activities in 2014 GNSS education and training facility Future plan Introduction Beidou International Exchanging and Training Center is affiliated to

More information

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning Joe Hutton and Edith Roy, Applanix Corporation Introduction Applanix, along with

More information