GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS"

Transcription

1 GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS 1. INTRODUCTION Navigation technologies with precision approach and landing systems, for civilian and military purposes, enable aircrafts to perform their operations under adverse weather and terrain conditions. Hence, approach and landing systems and navigation aids (ILS, PAR, TACAN, NDB, VOR, etc.) provide reliable solutions at various operational levels as of today. However, installation and maintenance costs for the current systems and their related sub-units have been dramatically increased due to the factors such as gradual decrease on manufacturer support, the high reliability and availability requirements for aerospace applications.. In addition, many existing systems have geographical constraints which pose criticality for the operational efficiency, operational capability and safety. For these reasons, it is anticipated that the existing systems will soon be replaced with more efficient and costeffective solutions. Navigation technologies with approach and landing systems based on global navigation satellite systems (GNSS) stand as a prominent alternative to the existing systems in terms of usability in all flight phases, providing approaches to airfields which lack navigation aid infrastructure and supporting ease of airfield installation and maintenance. However, due to various types of error sources which affect GNSS based operations, key requirements such as accuracy, integrity, availability and continuity for safety critical aviation applications cannot be fulfilled by stand alone GNSS usage. At this point, augmentation systems for satellite navigation, namely the satellite based augmentation system (SBAS) and the ground based augmentation system (GBAS), present promising, state of the art and cost effective solutions, meeting the performance requirements for different phases of flight from take off to landing by aiding aircraft navigation subsystems to minimize the amount of error from stand alone GNSS calculations. 2. GNSS FOR AVIATION In today s aviation, conventional ground based (ILS, PAR, TACAN, NDB, VOR, etc.) or inertial (INS/GPS) systems have substantially been used as the primary navigation and landing aid for various types of aircrafts and operations. Although the conventional systems are highly accurate and some systems, ILS and PAR, can also support precision approach and landing capability up to CAT-3, there are still some drawbacks related with these systems which prompt the users to search for better alternatives. The main drawbacks of conventional systems are both requirement driven such as efficient use of airspace, manpower and training, frequent maintenance for continuous operation and cost driven such as high installation, maintenance and calibration costs. At this point, GNSS soluitons stand as an attractive alternative to the conventional navigation aids.

2 Recent developments in GNSS technology has created a potential to overcome the drawbacks of conventional systems. Indeed, GNSS technology is used as an additional positioning and navigation aid to conventional systems in nearly all civilian and military aircrafts. GNSS technology features increased service capacity, high availability and accuracy levels with recent transition to multi frequency capability, which enable GNSS technologiy to be used for all flight phases from en route to landing. In addition to technical capabilities, GNSS technology enables several operational advantages for aviation, such as low maintenance requirements per aircraft, more efficient airspace capacity and usage with lowered seperations, reduction in fuel consumption and optimal noise abatement. Also, GNSS based (GLS) approach procedures can be performed regardless of location and coverage area of legacy ground based navigation aids. Hence, it becomes possible for aircraft to use instrument approach and landing procesdures for airports without any navigation aid infrastructure. Together with all technical and operational benefits above, GNSS should still fulfill the stringent requirements on the performance parameters for aviation in order to be used as the primary navigation aid. These performance parameters that GNSS systems should meet are described for each flight phase and published by international aviation authorities as signal in space performance parameters. These performance parameters are mainly integrity, accuracy, continuity and availability. Among all these parameters; integrity, which is the ability of the system to warn the pilot from inaccurate position calculations in a timely manner, is the absolute must for safety critical applications, as in aviation. In order to use GNSS technology as the primary navigation aid, GNSS shall meet the stringent requirements on integrity as well as other performance parameters, under various error and fault conditions. These error conditions such as multipath, ionospheric and tropospheric disturbances, receiver noise, satellite failures, etc. may result in various situations that may risk integrity, accuracy, continuity and availability of GNSS. For en-route and terminal phases of flight, more tolerant performance limits are applicable, and standalone GNSS system is mostly sufficient to meet the requirements. However; for approach and landing phases of flight and especially the conditions are IFR, standalone GNSS usage becomes insufficient to meet the requirements for performing a safe landing. Especially for integrity, calculated GNSS position should be augmented by another trusted system for enhancing the GNSS based navigation system performance parameters. 3. GNSS AUGMENTATION SYSTEMS 3.1. Overview of GNSS Augmentation The basic operation principle of satellite based navigation systems is calculation of users s position from the GNSS signal. The information transmitted by GNSS satellites includes high accuracy clock and ephemeris data as well as several other parameters including satellite health, orbit, tropospheric and ionospheric information. This information is collected by GNSS receivers and used to calculate position, time and other necessary information for user. Although position and time information obtained through the GNSS data are quite accurate for most users other than aviation, there are indeed several error sources that affect the calculations. Some of the major error sources that affect GNSS can be given as satellite orbit and atomic clock errors, signal propagation due to ionosphere

3 and troposphere, receiver clock errors, receiver noise and resolution, multipath effect and ephemeris prediction errors. These error sources and related range errors are given in Table 1. Although positioning accuracy obtained by the stand alone usage of GNSS are quite high and mostly enough for a wide range of applications, higher accuracy is required for applications which have strict safety and integrity requirements. Table 1: GNSS Error Sources, Range Errors and Effect with DGNSS GNSS Error Sources GNSS Range Error (meter) DGNSS Effect (meter) Satellite Clock 3 0 Ephemeris GNSS Receiver 2 2 Ionospheric Disturbance Tropospheric Disturbance Multipath 2 2 For applications such as aviation, the amount of error can be minimized and accuracy can be increased for meeting the performance requirements by augmenting GNSS calculations. The technology behind GNSS augmentation is differential GNSS or DGNSS. In DGNSS, GNSS receivers with exactly known locations are used as references to calculate real time GNSS errors and these errors are then eliminated from measurements. Knowing the exact location of the reference receiver, corrections for the GNSS satellite positions can be computed and transmitted to users. Specific software is developed for the reference receiver to track all satellites in view and to calculate the specific corrections for each satellite. If these corrections are to be used in real time, a data transfer means between the reference and user aircraft is needed. In order for the user to apply these corrections from DGNSS system, the user must be in the same vicinity of DGNSS reference receivers since it will only then allow both the reference receiver and the user receiver to experience common errors for a specific satellite signal. In addition to this, user receivers should use the same set or a subset of satellite signals with the reference receiver so that the calculated corrections can be valid for the user. There are two main augmentation systems that rely on DGNSS technology; Satellite Based Augmentation System (SBAS) and Ground Based Augmentation System (GBAS) Satellite Based Augmentation Systems (SBAS) Satellite based augmentation systems calculate range and integrity information for the GNSS satellites by a ground system and transmit these data to users within the coverage area through a GEO satellite. The main functions of an SBAS system can be given as data collection from GNSS sources, ionospheric correction and satellite orbit determination, range and integrity calculations, independent data verification and SBAS message generation and broadcast. SBAS system architecture can be divided into three segments; namely the Space Segment, the Ground Segment and Users. In an SBAS system, the reference stations deployed over a wide area collect GNSS information such as the satellite data, tropospheric data, calibration information, etc. These

4 information are used to perform operations such as pseudorange, ionospheric and tropospheric calculations estimated from signal delay. Central control station which continuously receives data from all reference stations uses these information and to constitute the necessary range correction message for the users. Correction message basically includes wide area GNSS based position correction data for each and every GNSS and GEO satellite, ionospheric delay information with correction, integrity parameters for all satellites, warnings for GNSS sources if necessary, position information for GEO satellites, SBAS network time and UTC offset parameters. Error boundaries for ionospheric, ephemeris and clock corrections are also calculated in the central control station. All of this information is also checked and verified in terms of integrity by central control station before the message is transferred to uplink to be broadcast to users. After the SBAS messages are formed by central control station, they are sent to satellite uplink station where the messages with best quality are selected, transformed into GNSSlike signals with time synchronization and PNR code integration for uploading to GEO satellites and made ready for transmission by combining the formatted messages with the signals in the transmission band. Also, an operation and maintenance station usually monitors and controls SBAS ground segment elements, monitors and logs SBAS mission and performance data and supplies this local integrity data to air traffic controllers. Communication inside an SBAS ground segment is carried out through the terrestrial wide area communication network. This network enhances data transmission between all SBAS elements, enables multicast capability for certain data while monitoring the performance of whole transmission network. Communication network needs to be designed for redundancy and security for SBAS availability, continuity and integrity. When SBAS messages are broadcasted to users within the coverage area, the user aircraft with necessary SBAS compatible avionics, receives and processes the message data. SBAS avionics of year 2015 generally process single frequency SBAS correction and integrity information to perform position calculations which are used for different phases of flight from en-route to landing. SBAS enables up to LPV200 precision-like approach and landing procedures by providing improvements for the accuracy, integrity, availability and safety parameters. Compared from approach and landing system perspective, some of the advantages obtained by SBAS to legacy systems are wide coverage area, low cost for maintenance, suitability for all phases of flight, flexible approach and landing routes, efficiency and cost effectiveness and less susceptibility to environmental conditions. The areas other than the aviation, where SBAS are widely used include some special military applications, agriculture, maritime, railways, land transport and construction applications, geodetic studies and timing standards. WAAS (USA), EGNOS (AB), GAGAN (India) and MSAS (Japan) are the SBAS systems available for use in aviation community as of today. SDCM (Russia), SNAS (China) and ASAS (Africa) are other systems which are still being developed. The coverage areas of the above mentioned systems are shown in Figure 1.

5 Figure 1: Satellite Based Augmentation Systems 3.3. Ground Based Augmentation Systems (GBAS) Ground Based Augmentation Systems, construct corrections and integrity information for the GNSS data through a ground station that is installed on each airport. Corrections and integratity messages as well as the final approach segment route are broadcasted to the users within the 25 nm coverage area of the V/UHF broadcast units. The existing GBAS systems of 2015 depend mostly on GPS L1 C/A signal for civil applications. Considering the developments in GNSS systems and with the introduction of the new signals and satellite constellations, GBAS systems are expected to utilize multi frequency and multi constellation GNSS in medium term. There are three operational segments of a GBAS system; namely the Space Segment, the Ground Segment and the Aircraft Segment as shown in Figure 2. Figure 2: Illustrative Ground Based Augmentation System Architecture

6 GBAS ground segment contains at least four reference GNSS receivers in order to ensure the integrity and continuity requirements. Reference stations gather GNSS signals, monitor their quality, and perform pseudorange calculations for available satellites. The processing unit of GBAS ground segment is responsible for calculation of the pseudorange corrections and the preparation of navigation link message. Through several different algorithms, performance and integrity monitoring for GNSS signal sources and for the GBAS system itself are executed on ground segment to warn users for any risk that may result due to GBAS system and/or GNSS signals. Final Approach Segment (FAS) data for each runway end is defined as a part of the GBAS message. The FAS data is sent to users in order to support users with specific route of any single approach. After the construction of GBAS messages, which include the differential corrections, integrity information and FAS data, they are transmitted to users within the coverage over the V/UHF data link. Military applications require electronic protection capabilities and may use different communication possibilities. Aircrafts must be within the coverage of data transmission and equipped with GBAS compatible avionics to receive GBAS messages transmitted by ground segment. The basic functions of a GBAS avionic are; to receive and decode signals and correction messages from GBAS ground segment and GNSS satellites, to continuously monitor GBAS and GNSS system availability, to compute aircraft position and integrity information, and to apply the uplinked corrections according to the approach and landing route. It is possible to classify GBAS as a precision approach and landing system which is capable of supporting Cat-1,2,3 and more, whereas an SBAS system is only capable of supporting LPV200 Cat-I like approaches. SBAS is not capable of supplying the integrity requirements for Cat-2 and Cat-3 approaches due to its system architecture. On the other hand because of its wide coverage area SBAS is not only an approach and landing aid, but can also be used for en-route operations. For GBAS, due to its limited service area to vicinity of each installed airport, it can be used only for the operations within that service area. Advantages of GBAS compared to legacy approach and landing systems come forward as; usability by all types of aircraft, support for many different approach procedures on the fly, suitability for usage by more than one airport if the coverage area conditions are satisfied, flexible touchdown points and approach and landing routes, flexible air traffic control and effective airport traffic management, low costs for installation, maintenance and training, etc. Worldwide locations of GBAS installations as of 2015 are shown in Figure 3. Figure 3: Ground Based Augmentation System Locations (flygls.net)

CAR/SAM STRATEGY FOR THE EVOLUTION OF AIR NAVIGATION SYSTEMS

CAR/SAM STRATEGY FOR THE EVOLUTION OF AIR NAVIGATION SYSTEMS CNS/ATM/SG/1 Appendix C to the Report on Agenda Item 4 4C-1 APPENDIX C CAR/SAM STRATEGY FOR THE EVOLUTION OF AIR NAVIGATION SYSTEMS First Edition Rev 2.0 TABLE OF CONTENTS Page 1. INTRODUCTION... 2 1.1

More information

GAGAN - A SBAS TO SUPPORT CIVIL AVIATION OVER INDIAN AIR SPACE

GAGAN - A SBAS TO SUPPORT CIVIL AVIATION OVER INDIAN AIR SPACE GAGAN - A SBAS TO SUPPORT CIVIL AVIATION OVER INDIAN AIR SPACE Shrey Agarwal a a Department of Civil Engineering, Indian Institute of Technology, Kanpur, India - ashrey@iitk.ac.in KEY WORDS: GAGAN, Satellite

More information

Doc 9849 AN/457. Approved by the Secretary General and published under his authority. First Edition 2005. International Civil Aviation Organization

Doc 9849 AN/457. Approved by the Secretary General and published under his authority. First Edition 2005. International Civil Aviation Organization Doc 9849 AN/457 Global Navigation Satellite System (GNSS) Manual Approved by the Secretary General and published under his authority First Edition 2005 International Civil Aviation Organization AMENDMENTS

More information

SBAS and Aviation. Ed Williams Technology & Asset Planning

SBAS and Aviation. Ed Williams Technology & Asset Planning SBAS and Aviation Ed Williams Technology & Asset Planning Contents Problem Analysis Statistics - Australia Solution Enabling Technology International World Direction Problem Runway 14 Baucau Accident Site

More information

EPN, seminar AFIS, september 2013 Instrument approach procedures, PBN, GNSS

EPN, seminar AFIS, september 2013 Instrument approach procedures, PBN, GNSS EPN, seminar AFIS, september 2013 Instrument approach procedures, PBN, GNSS By Frédéric BOISARD, AFIS-O at Cholet LFOU Thanks to Mrs Morgane BARDIEUX (DGAC DSAC/O) and to Mrs Corinne BOUSQUET (DGAC - DSNA/DTI)

More information

INTERNATIONAL CIVIL AVIATION ORGANIZATION GUIDE FOR GROUND BASED AUGMENTATION SYSTEM IMPLEMENTATION

INTERNATIONAL CIVIL AVIATION ORGANIZATION GUIDE FOR GROUND BASED AUGMENTATION SYSTEM IMPLEMENTATION INTERNATIONAL CIVIL AVIATION ORGANIZATION GUIDE FOR GROUND BASED AUGMENTATION SYSTEM IMPLEMENTATION May 2013 -2- Foreword The Ground Based Augmentation System (GBAS) is being developed and implemented

More information

MSAS current status. Japan Civil Aviation Bureau S TSAT A ATELLITE-BASED S UGMENTATION. MTSAT Satellite-based Augmentation System

MSAS current status. Japan Civil Aviation Bureau S TSAT A ATELLITE-BASED S UGMENTATION. MTSAT Satellite-based Augmentation System MSAS current status Japan Civil Aviation Bureau Civil Aviation Bureau Ministry of Land, Infrastructure and Transport 1 Contents Overview of MSAS MSAS Status Process for MSAS Commissioning Results of OT&E

More information

ILS Replacement. ACI World Safety Seminar. 18 19 November 2008 Kempinski Hotel Beijing Lufthansa Centre

ILS Replacement. ACI World Safety Seminar. 18 19 November 2008 Kempinski Hotel Beijing Lufthansa Centre ILS Replacement Xiaosong Xiao, PhD Tetra Tech, Inc. Orlando, USA Contents: Ground-Based Navigation ILS Approach GNSS/SBAS Approach Comparisons between ILS and GNSS Example: Cost Analysis Between LAAS and

More information

Título ponencia: GBAS Concept

Título ponencia: GBAS Concept Título ponencia: Organizado por: Index Introduction GBAS Overview GBAS CAT-I Services GBAS Implementation Introduction Subject These slides presents a brief introduction to the Ground Based Augmentation

More information

DFS Deutsche Flugsicherung GmbH

DFS Deutsche Flugsicherung GmbH International Symposium on Global Navigation Satellite Systems, Space-based and Ground-based Augmentation Systems and Applications Gabriele Zaki 14.11.2008 Seite 1 Outline Why GBAS How it works DFS Project

More information

Zuverlässige Navigation für die Luftfahrt. Boubeker Belabbas Institute of Communications and Navigation

Zuverlässige Navigation für die Luftfahrt. Boubeker Belabbas Institute of Communications and Navigation www.dlr.de Chart 1 TU Graz > 5. Navigations-Get-Together > Boubeker Belabbas > 9.10.2012 Zuverlässige Navigation für die Luftfahrt Boubeker Belabbas Institute of Communications and Navigation www.dlr.de

More information

a Brief Background DEFINITION

a Brief Background DEFINITION GNSS FOR AVIATION a Brief Background ANC informal briefing DEFINITION GNSS: A worldwide position and time determination ti system that t includes one or more satellite constellations, aircraft receivers

More information

Ground Based Augmentation System Technology

Ground Based Augmentation System Technology Ground Based Augmentation System Technology ION-CH / SATTA 16. Mai 2013 Pascal Truffer / TNS Why GBAS? 1. Improved accuracy by correcting measurement errors. Differential GPS (DGPS) 2. GPS cannot provide

More information

SYSTEM GLOBAL NAVIGATION SATELLITE SYSTEM LANDING TECHNOLOGY/PRODUCT DEVELOPMENT

SYSTEM GLOBAL NAVIGATION SATELLITE SYSTEM LANDING TECHNOLOGY/PRODUCT DEVELOPMENT GLOBAL NAVIGATION SATELLITE SYSTEM LANDING SYSTEM The aviation industry is developing a new positioning and landing system based on the Global Navigation Satellite System (GNSS). The GNSS landing system

More information

GAGAN-FOP/PMR-05. Indian SBAS System - GAGAN

GAGAN-FOP/PMR-05. Indian SBAS System - GAGAN GAGAN-FOP/PMR-05 Indian SBAS System - GAGAN GAGAN GPS Aided GEO Augmented Navigation (GAGAN) is India s regional Satellite Based Augmentation System (SBAS) India is working towards attaining APV 1 capability

More information

Transmission of SBAS corrections over IALA beacons

Transmission of SBAS corrections over IALA beacons Input paper: 1 ENAV18-13.20 Input paper for the following Committee(s): check as appropriate Purpose of paper: ARM ENG PAP Input ENAV VTS Information Agenda item 2 13 Technical Domain / Task Number 2 Author(s)

More information

Bi-Directional DGPS for Range Safety Applications

Bi-Directional DGPS for Range Safety Applications Bi-Directional DGPS for Range Safety Applications Ranjeet Shetty 234-A, Avionics Engineering Center, Russ College of Engineering and Technology, Ohio University Advisor: Dr. Chris Bartone Outline Background

More information

Direct Approach Consulting Inc.

Direct Approach Consulting Inc. Direct Approach Consulting Inc. Flight Procedure Design Your best approach for: safety operational efficiency maximizing revenue Direct Approach Direct Approach is a Canadian based company providing instrument

More information

INDIA PROMOTES GAGAN SBAS USE TO AIRLINES, GA

INDIA PROMOTES GAGAN SBAS USE TO AIRLINES, GA INDIA PROMOTES GAGAN SBAS USE TO AIRLINES, GA News / Airlines 2015-2016 50SKYSHADES.COM Reproduction, copying, or redistribution for commercial purposes is prohibited. 1 2015-2016 50SKYSHADES.COM Reproduction,

More information

Development of BeiDou Navigation Satellite System

Development of BeiDou Navigation Satellite System The 7th Meeting of International Committee on GNSS Development of BeiDou Navigation Satellite System China Satellite Navigation Office November 5, 2012 Beijing, China Part Ⅰ Development Plan Part Ⅱ System

More information

Título ponencia: Helicopter IFP. Point-in-Space (PinS)

Título ponencia: Helicopter IFP. Point-in-Space (PinS) Título ponencia: Helicopter IFP. Point-in-Space (PinS) Organizado por: Index Introduction Helicopter IFP A/C Certification requirements GNSS Certified rotorcrafts Most relevant projects in Europe Introduction

More information

Radio Technical Commission for Maritime Services. GPS Update. Bob Markle RTCM Arlington, VA USA. NMEA Convention & Expo 2010

Radio Technical Commission for Maritime Services. GPS Update. Bob Markle RTCM Arlington, VA USA. NMEA Convention & Expo 2010 Radio Technical Commission for Maritime Services GPS Update NMEA Convention & Expo 2010 Bob Markle RTCM Arlington, VA USA What is RTCM? International non-profit scientific, professional and membership

More information

BeiDou Navigation Satellite System Open Service

BeiDou Navigation Satellite System Open Service BeiDou Navigation Satellite System Open Service Performance Standard (Version 1.0) China Satellite Navigation Office December 2013 Foreword The space constellation of BeiDou Navigation Satellite System

More information

Category I (CAT I) operation means a precision instrument approach and landing with a

Category I (CAT I) operation means a precision instrument approach and landing with a Category I (CAT I) operation means a precision instrument approach and landing with a decision height not lower than 200 feet (60 meters) and with either a visibility of not less than 800 meters or a RVR

More information

Education and Training in GNSS

Education and Training in GNSS Education and Training in GNSS Mourad BOUZIANI Department of Geodesy and Surveying ESGIT, IAV Hassan II, Morocco Cordinator of GNSS Master Curriculum CRASTE-LF, Affiliated to the United Nations OUTLINE

More information

GNSS Parameters. Position estimation uncertainties

GNSS Parameters. Position estimation uncertainties GNSS Parameters Position estimation uncertainties Petr Bureš, bures@fd.cvut.cz Faculty of transportation sciences Czech technical university in Prague Contents Satellite systems in general Accuracy Position

More information

Post Processing Service

Post Processing Service Post Processing Service The delay of propagation of the signal due to the ionosphere is the main source of generation of positioning errors. This problem can be bypassed using a dual-frequency receivers

More information

Michael Harrison Aviation Management Associates Alternative PNT Public Meeting Stanford University August 10-11. Federal Aviation Administration

Michael Harrison Aviation Management Associates Alternative PNT Public Meeting Stanford University August 10-11. Federal Aviation Administration Michael Harrison Aviation Management Associates Alternative PNT Public Meeting Stanford University Suspending Current Belief Current practices for air traffic control, procedures and separation will not

More information

CNS/ATM SYSTEMS IN INDIA

CNS/ATM SYSTEMS IN INDIA CNS/ATM SYSTEMS IN INDIA Presentation at ICG02 4 th Sept-7 th Sept 2007, Bangalore M.IRULAPPAN General Manager (GNSS) Over Indian Airspace (AAI) provides Air navigation services (ANS) infrastructure Air

More information

GNSS integrity monitoring for the detection and mitigation of interference

GNSS integrity monitoring for the detection and mitigation of interference GNSS integrity monitoring for the detection and mitigation of interference Dr. Shaojun Feng Centre for Transport Studies Outline GNSS vulnerability GNSS integrity monitoring Cases study GAARDIAN ERAIM

More information

A forum to discuss Global Navigation Satellite Systems (GNSS) to benefit people around the world

A forum to discuss Global Navigation Satellite Systems (GNSS) to benefit people around the world A forum to discuss Global Navigation Satellite Systems (GNSS) to benefit people around the world The International Committee on Global Navigation Satellite Systems (ICG) The United Nations General Assembly

More information

Introduction to the EGNOS System and performances

Introduction to the EGNOS System and performances Introduction to the EGNOS System and p performances Dr Javier Ventura-Traveset European Space Agency -- 1 -- Existing GNSS Systems (I) United States of America: Fully operational with 30 satellites operational

More information

Status, Development and Application

Status, Development and Application Federal Space Agency GLONASS GLONASS Status, Development and Application Sergey G. Revnivykh International Committee on Global Navigation Satellite Systems (ICG) Second Meeting, September 4-7, 2007, Bangalore,

More information

Why it may be time to consider Certified Avionics for UAS (Unmanned Aerial Vehicles/Systems) White paper

Why it may be time to consider Certified Avionics for UAS (Unmanned Aerial Vehicles/Systems) White paper Why it may be time to consider Certified Avionics for UAS (Unmanned Aerial Vehicles/Systems) White paper UAS growth There are a number of different UAS types flying today in multiple applications. There

More information

12 AERO Second-Quarter 2003 April CAPT. RAY CRAIG 737 CHIEF PILOT FLIGHT OPERATIONS BOEING COMMERCIAL AIRPLANES

12 AERO Second-Quarter 2003 April CAPT. RAY CRAIG 737 CHIEF PILOT FLIGHT OPERATIONS BOEING COMMERCIAL AIRPLANES CAPT. RAY CRAIG 737 CHIEF PILOT FLIGHT OPERATIONS BOEING COMMERCIAL AIRPLANES DREW HOUCK ASSOCIATE TECHNICAL FELLOW FLIGHT DECK DISPLAYS BOEING COMMERCIAL AIRPLANES ROLAN SHOMBER ASSOCIATE TECHNICAL FELLOW

More information

SBAS 2015 SPACE BASED AUGMENTATION SYSTEM WORKSHOP

SBAS 2015 SPACE BASED AUGMENTATION SYSTEM WORKSHOP THALES SBAS 2015 SPACE BASED AUGMENTATION SYSTEM WORKSHOP 24 & 25 MARCH 2015 PHILLIP REISS CURRENT DIRECTOR AND PAST PRESIDENT AIRCRAFT OWNERS AND PILOTS ASSOCIATION OF AUSTRALIA BENEFITS TO AVIATION Vertical

More information

Satellite Navigation for Safety-Critical Applications

Satellite Navigation for Safety-Critical Applications www.dlr.de Chart 1 Satellite Navigation for Safety-Critical Applications Threats, Threat Identification and Countermeasures PD Dr.-Ing. habil. Michael Meurer German Aerospace Centre (DLR), Oberpfaffenhofen

More information

International Global Navigation Satellite Systems Service

International Global Navigation Satellite Systems Service International Global Navigation Satellite Systems Service IGS Multi-GNSS Experiment IGS M-GEX Call for Participation www.igs.org Response to this Call for Participation in IGS M-GEX via Web Form Submission

More information

GNSS MONITORING NETWORKS

GNSS MONITORING NETWORKS SPACE GNSS MONITORING NETWORKS Satellite communications, earth observation, navigation and positioning and control stations indracompany.com GNSS MONITORING NETWORKS GNSS MONITORING NETWORKS Indra s solutions

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System The Global Positioning System - recognize that GPS is only one of several Global Navigation Satellite Systems (GNSS) - the Russian

More information

Operational Performance of the EGNOS AOC System for Civil Aviation

Operational Performance of the EGNOS AOC System for Civil Aviation Operational Performance of the EGNOS AOC System for Civil Aviation R. Farnworth, A. Watt, Experimental Centre Centre du Bois des Bordes, B.P. 15 91222 Brétigny-sur-Orge, France Tel.: +33-(0)1-6988-7618,

More information

Secure Navigation and Authentication. Sherman Lo November 2008

Secure Navigation and Authentication. Sherman Lo November 2008 Secure Navigation and Authentication Sherman Lo November 2008 1 Outline Motivating Authentication Proposed techniques for authentication Source authentication Cross checking My research 2 GNSS: Position,

More information

The European GNSS Programmes EGNOS and Galileo

The European GNSS Programmes EGNOS and Galileo The European GNSS Programmes EGNOS and Galileo 6th ICG Conference Pieter De Smet European Commission 5 September 2011 1. State of Play of EGNOS 2. State of Play of Galileo 5 September, 2011 The European

More information

CIVIL AVIATION REQUIREMENTS SECTION 9 AIR SPACE AND AIR TRAFFIC MANAGEMENT SERIES 'D' PART VI

CIVIL AVIATION REQUIREMENTS SECTION 9 AIR SPACE AND AIR TRAFFIC MANAGEMENT SERIES 'D' PART VI GOVERNMENT OF INDIA OFFICE OF DIRECTOR GENERAL OF CIVIL AVIATION TECHNICAL CENTRE, OPP SAFDARJANG AIRPORT, NEW DELHI CIVIL AVIATION REQUIREMENTS SECTION 9 AIR SPACE AND AIR TRAFFIC MANAGEMENT SERIES 'D'

More information

INTEGRITY AND CONTINUITY ANALYSIS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT FROM GPS. Integrity and Continuity Analysis 08/01/14 08/01/14 08/01/14

INTEGRITY AND CONTINUITY ANALYSIS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT FROM GPS. Integrity and Continuity Analysis 08/01/14 08/01/14 08/01/14 INTEGRITY AND CONTINUITY ANALYSIS FROM GPS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT Prepared by: M Pattinson (NSL) 08/01/14 Checked by: L Banfield (NSL) 08/01/14 Approved by: M Dumville (NSL) 08/01/14

More information

EUTERPE - EUROPEAN TEST CENTRE FOR RECEIVER PERFORMANCE EVALUATION

EUTERPE - EUROPEAN TEST CENTRE FOR RECEIVER PERFORMANCE EVALUATION ABSTRACT EUTERPE - EUROPEAN TEST CENTRE FOR RECEIVER PERFORMANCE EVALUATION David Jiménez-Baños (1), Michel Tossaint (1), Jean-Luc Gerner (1), Rafael Lucas-Rodríguez (2) (1) Radio Navigation Systems and

More information

u-blox comprehensive approach to multi-gnss positioning

u-blox comprehensive approach to multi-gnss positioning WHITEPAPER u-blox comprehensive approach to multi-gnss positioning locate, communicate, accelerate Whitepaper by: Carl Fenger, Communications Manager, u-blox Uffe Pless, Product Manager, u-blox May 2012

More information

Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com

Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com Presentation Outline GNSS: Global Navigation Satellite System GPS: overview, current signals, modernization GLONASS: history (rise fall rise),

More information

What, Why and How. Hosted Payloads: A guide to commercially hosted government payloads from the Hosted Payload Alliance. www.hostedpayloadalliance.

What, Why and How. Hosted Payloads: A guide to commercially hosted government payloads from the Hosted Payload Alliance. www.hostedpayloadalliance. Hosted Payloads: What, Why and How A guide to commercially hosted government payloads from the Hosted Payload Alliance The Hosted Payload Alliance (HPA) is a satellite industry alliance formed in 2011

More information

INDIAN REGIONAL NAVIGATION SATELLITE SYSTEM (IRNSS) AND GPS-AIDED GEO AUGMENTED NAVIGATION SYSTEM (GAGAN)

INDIAN REGIONAL NAVIGATION SATELLITE SYSTEM (IRNSS) AND GPS-AIDED GEO AUGMENTED NAVIGATION SYSTEM (GAGAN) INDIAN REGIONAL NAVIGATION SATELLITE SYSTEM (IRNSS) AND GPS-AIDED GEO AUGMENTED NAVIGATION SYSTEM (GAGAN) S. Sayeenathan Assoc. Director (Satnav) Satellite Communication and Navigation Program Indian Space

More information

PNT Evolution: Future Benefits and Policy Issues. Scott Pace Director, Space Policy Institute George Washington University Washington, D.C.

PNT Evolution: Future Benefits and Policy Issues. Scott Pace Director, Space Policy Institute George Washington University Washington, D.C. PNT Evolution: Future Benefits and Policy Issues Scott Pace Director, Space Policy Institute George Washington University Washington, D.C. 5 November 2009 GPS is a Critical Component of the Global Information

More information

THE BENEFITS OF LPV APPROACH OPERATIONS FOR THE AIRLINE OPERATOR

THE BENEFITS OF LPV APPROACH OPERATIONS FOR THE AIRLINE OPERATOR THE BENEFITS OF LPV APPROACH OPERATIONS FOR THE AIRLINE OPERATOR Technical White Paper LPV Approach aerospace.honeywell.com 2 Introduction IMAGE TO ADD HERE There has been much discussion about the deployment

More information

Propsim enabled Aerospace, Satellite and Airborne Radio System Testing

Propsim enabled Aerospace, Satellite and Airborne Radio System Testing www.anite.com Propsim enabled Aerospace, Satellite and Airborne Radio System Testing Anite is now part of Keysight Technologies Realistic and repeatable real-time radio channel emulation solutions for

More information

FieldGenius Technical Notes GPS Position Accuracy

FieldGenius Technical Notes GPS Position Accuracy FieldGenius Technical Notes GPS Position Accuracy Positioning Errors GPS observations are influenced by a great number of systematic error sources and blunders caused by the user. Through careful user

More information

SESAR Air Traffic Management Modernization. Honeywell Aerospace Advanced Technology June 2014

SESAR Air Traffic Management Modernization. Honeywell Aerospace Advanced Technology June 2014 SESAR Air Traffic Management Modernization Honeywell Aerospace Advanced Technology June 2014 Honeywell in NextGen and SESAR Honeywell active in multiple FAA NextGen projects ADS-B Surface Indicating and

More information

Performance-based Navigation and Data Quality

Performance-based Navigation and Data Quality ICAO APAC AAITF/8 Performance-based Navigation and Data Quality A Commercial Data Supplier View Bill Kellogg International Relations May 6-10, 2013 Ulaanbaatar, Mongolia Jeppesen Proprietary - Copyright

More information

Maritime Integrated PNT System

Maritime Integrated PNT System Maritime Integrated PNT System Core element for safe ship navigation Evelin Engler und Thoralf Noack DLR Institut für Kommunikation und Navigation Folie 1 Maritime Integrated PNT System = overlay of satellite

More information

Evolution in Regional Aircraft Avionics

Evolution in Regional Aircraft Avionics Evolution in Regional Aircraft Avionics November, 2008 Agenda Evolution in Requirements from Takeoff to Touchdown Flight Deck Evolution Overview Communication Navigation Surveillance Displays and Situational

More information

GSA: EGNOS Flight Event, 6-7 May, Toulouse

GSA: EGNOS Flight Event, 6-7 May, Toulouse GSA: EGNOS Flight Event, 6-7 May, Toulouse Text: Pavel Valenta, Foto: Pavel Valenta, GSA I have persuaded myself several times, that Toulouse is the capital city of aviation in Europe. Right here innovator

More information

Annual SERC Research Review (ASRR)

Annual SERC Research Review (ASRR) Annual SERC Research Review (ASRR) Implementing the Next Generation Air Transportation System Victoria Cox Assistant Administrator for NextGen October 5, 2011 What is NextGen? NextGen is not a single program

More information

WHICH AIR TRAFFIC CONTROLLER TO CONTACT

WHICH AIR TRAFFIC CONTROLLER TO CONTACT WHICH AIR TRAFFIC CONTROLLER TO CONTACT 1. Introduction This article is written in order to explain to all beginners in the IVAO network the basics for any pilot to contact the correct air traffic controller.

More information

Jeppesen Mobile FliteDeck

Jeppesen Mobile FliteDeck Jeppesen Mobile FliteDeck Frequently Asked Questions Introduction and How to Get Mobile FliteDeck Q. What is Jeppesen Mobile FliteDeck? A: Jeppesen Mobile FliteDeck provides pilots who subscribe to Jeppesen

More information

ADS-B is intended to transform air traffic control by providing more accurate and reliable tracking of airplanes in flight and on the ground.

ADS-B is intended to transform air traffic control by providing more accurate and reliable tracking of airplanes in flight and on the ground. ADS-B is intended to transform air traffic control by providing more accurate and reliable tracking of airplanes in flight and on the ground. New Air Traffic Surveillance Technology Air traffic service

More information

Understanding Compliance with Automatic Dependent Surveillance Broadcast (ADS-B) Out

Understanding Compliance with Automatic Dependent Surveillance Broadcast (ADS-B) Out Understanding Compliance with Automatic Dependent Surveillance Broadcast (ADS-B) Out White Paper Doc No.: WHTP-2013-14-05 Revised, October 2014 Safely guiding pilots and their passengers worldwide for

More information

GARMIN GNS 430 - VHF COMM / NAV / GPS

GARMIN GNS 430 - VHF COMM / NAV / GPS Liberty Aerospace, Inc. Section 9 EASA APPROVED AIRPLANE FLIGHT MANUAL SUPPLEMENT FOR GARMIN GNS 430 - VHF COMM / NAV / GPS Serial No. Registration No. When a GARMIN GNS 430 VHF COMM / NAV / GPS is installed

More information

Satellite Basics. Benefits of Satellite

Satellite Basics. Benefits of Satellite Satellite Basics Benefits of Satellite People need access to enterprise-class, high-speed voice, video and data applications wherever they happen to be. Satellite connectivity has the power to drive communications

More information

Modern Surveying Techniques. Prof. S. K. Ghosh. Department of Civil Engineering. Indian Institute of Technology, Roorkee

Modern Surveying Techniques. Prof. S. K. Ghosh. Department of Civil Engineering. Indian Institute of Technology, Roorkee Modern Surveying Techniques Prof. S. K. Ghosh Department of Civil Engineering Indian Institute of Technology, Roorkee Lecture - 3 GPS Positioning Methods The different types of GPS positioning methods

More information

The paper reveals. The importance of Egypt's Nile

The paper reveals. The importance of Egypt's Nile The paper reveals The importance of Egypt's Nile CURRENT AND FUTURE GNSS AND THEIR AUGMENTATION SYSTEMS GNSS in short GPS GLONASS near future - 2015 GALILEO Compass navigation system In the future Quasi-Zenith

More information

GAGAN - The Indian satellite based augmentation system

GAGAN - The Indian satellite based augmentation system Indian Journal of Radio & Space Physics Vol. 36, August 2007, pp. 293-302 GAGAN - The Indian satellite based augmentation system K N Suryanarayana Rao ISRO Satellite Centre, Airport Road, Bangalore 560

More information

European Position Determination System. Guidelines For Cross- Border Data Exchange

European Position Determination System. Guidelines For Cross- Border Data Exchange European Position Determination System Guidelines For Cross- Border Data Exchange Version 1.0 21 September 2006 Copyright: Publisher: 2007 by the International EUPOS Steering Committee Office of the International

More information

RAIM for Ship and Rig Management

RAIM for Ship and Rig Management RAIM for Ship and Rig Management Maritime Applications Institute of Space Technology and Space Applications University FAF Munich, Germany PhD Student Diana Fontanella Diana.Fontanella@unibw.de PhD Student

More information

EVOLUTION AND INDUSTRIALIZATION OF A SBAS REAL-TIME PERFORMANCE MONITORING TOOL (EVORA)

EVOLUTION AND INDUSTRIALIZATION OF A SBAS REAL-TIME PERFORMANCE MONITORING TOOL (EVORA) ENC 2015 Page 1 EVOLUTION AND INDUSTRIALIZATION OF A SBAS REAL-TIME PERFORMANCE MONITORING TOOL (EVORA) J. Doubek 1, M. Houdek 1, C. A. Pandele 2,3, A. Polivka 1, D. Chung 1 1 Iguassu Software Systems,

More information

Maritime Integrated PNT System

Maritime Integrated PNT System Maritime Integrated System Core element for safe ship navigation Evelin Engler DLR Institut für Kommunikation und Navigation Folie Maritime Integrated System = overlay of satellite based, ashore and aboard

More information

GOMX-1: A Nano-satellite Mission to Demonstrate Improved Situational Awareness for Air Traffic Control

GOMX-1: A Nano-satellite Mission to Demonstrate Improved Situational Awareness for Air Traffic Control GOMX-1: A Nano-satellite Mission to Demonstrate Improved Situational Awareness for Air Traffic Control Presented by: Lars K. Alminde Managing Director GomSpace Aps alminde@gomspace.com Cubesats are getting

More information

The Rebirth of Aviation and Air Transportation in Ohio

The Rebirth of Aviation and Air Transportation in Ohio The Rebirth of Aviation and Air Transportation in Ohio On the implementation of the NextGen Air Traffic Management System to enhance air transportation safety, capacity, and environmental sustainability

More information

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003 Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy...

More information

The 7 th International Scientific Conference DEFENSE RESOURCES MANAGEMENT IN THE 21st CENTURY Braşov, November 15 th 2012

The 7 th International Scientific Conference DEFENSE RESOURCES MANAGEMENT IN THE 21st CENTURY Braşov, November 15 th 2012 The 7 th International Scientific Conference DEFENSE RESOURCES MANAGEMENT IN THE 21st CENTURY Braşov, November 15 th 2012 COMMUNICATION ISSUES OF UAV 1 INTEGRATION INTO NON 1 st. Lt. Gábor Pongrácz, ATM

More information

Introduction. Satellite navigation Overview. The Space Segment

Introduction. Satellite navigation Overview. The Space Segment Introduction Satellite navigation is a leading-edge technology which allows anyone with a receiver to determine their position very accurately at any time by picking up signals from a constellation of

More information

ICAO-ENAC PBN PROCEDURE DESIGN COURSE

ICAO-ENAC PBN PROCEDURE DESIGN COURSE ICAO-ENAC PBN PROCEDURE DESIGN COURSE REFERENCE AND TITLE Performance Based Navigation Concept : Procedure design course for PBN applications: RNAV1 SID and STAR, RNP APCH (Non Precision Approach and APV

More information

Microwave Photonic Systems Inc. Joshua L. Korson & Richard J. Stewart

Microwave Photonic Systems Inc. Joshua L. Korson & Richard J. Stewart Fiber Optic Communications Equipment Provides Backhaul Infrastructure for Critical Satellite Based Continuity of Communications Solutions: IRIDUIM, INMARSAT, GEO SATCOM Microwave Photonic Systems Inc.

More information

Performance Based Navigation Definition and Abbreviations

Performance Based Navigation Definition and Abbreviations Performance Based Navigation Definition and Abbreviations The following definitions and abbreviations covers the terminology used in reference to Performance Based Navigation. These are provided for clarity

More information

[3] beautiful visualisation of the satellites positions by HSR / ICOM.

[3] beautiful visualisation of the satellites positions by HSR / ICOM. GPS (Introduction) NTM2, Rumc, GPS, 1 Terms NAVSTAR GPS ( Navigational Satellite Timing and Ranging - Global Positioning System) is a GNSS (Global Navigation Satellite System), developed by the US-DoD

More information

Inside... Tell Us Your WAAS Story. VOLUME 43 Spring 2012. http://gps.faa.gov

Inside... Tell Us Your WAAS Story. VOLUME 43 Spring 2012. http://gps.faa.gov VOLUME 43 Spring 2012 http://gps.faa.gov Des Moines IFR Low Level Helicopter Infrastructure In February, 2012, the Federal Aviation Administration (FAA) approved an Instrument Flight Rules (IFR) low level

More information

ADS-B and Multilateration Integration in the U.S. The Role of the Integrator

ADS-B and Multilateration Integration in the U.S. The Role of the Integrator ADS-B and Multilateration Integration in the U.S. The Role of the Integrator John Kefaliotis Vice President Next Generation Air Transportation Systems ICAO/FAA Workshop on ADS-B and Multilateration Implementation

More information

AIP GEN 3.4-1 GREECE 19 SEP 2013 GEN 3.4 COMMUNICATION SERVICES (COM)

AIP GEN 3.4-1 GREECE 19 SEP 2013 GEN 3.4 COMMUNICATION SERVICES (COM) AIP GEN 3.4-1 GREECE 19 SEP 2013 GEN 3.4 COMMUNICATION SERVICES (COM) 3.4.1 Responsible service 3.4.1.1 The Hellenic Civil Aviation Authority is responsible for the provision of aeronautical telecommunication

More information

Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager

Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager Enabling RTK-like positioning offshore using the global VERIPOS GNSS network Pieter Toor GNSS Technology Manager Introduction PPP/RTK Positioning Techniques PPP-AR Technology Presentation Overview PPP-AR

More information

CDMA Technology : Pr. S. Flament www.greyc.fr/user/99. Pr. Dr. W. sk www.htwg-konstanz.de. On line Course on CDMA Technology

CDMA Technology : Pr. S. Flament www.greyc.fr/user/99. Pr. Dr. W. sk www.htwg-konstanz.de. On line Course on CDMA Technology CDMA Technology : Pr. Dr. W. sk www.htwg-konstanz.de Pr. S. Flament www.greyc.fr/user/99 On line Course on CDMA Technology CDMA Technology : CDMA / DS : Principle of operation Generation of PN Spreading

More information

Results of IMES (Indoor Messaging System) Implementation for Seamless Indoor Navigation and Social Infrastructure Platform

Results of IMES (Indoor Messaging System) Implementation for Seamless Indoor Navigation and Social Infrastructure Platform Results of IMES (Indoor Messaging System) Implementation for Seamless Indoor Navigation and Social Infrastructure Platform Dinesh Manandhar, Seiya Kawaguchi, Hideyuki Torimoto GNSS Technologies Inc., Japan

More information

Transport Spectrum Tune-Up 2009. Aviation Spectrum Issues. Eddy D Amico, RF Spectrum Manager Airservices Australia. November 2009

Transport Spectrum Tune-Up 2009. Aviation Spectrum Issues. Eddy D Amico, RF Spectrum Manager Airservices Australia. November 2009 Transport Spectrum Tune-Up 2009 Aviation Spectrum Issues Eddy D Amico, RF Spectrum Manager Airservices Australia November 2009 Overview Background Importance of radio spectrum for aviation Communications

More information

GPS Use in U.S. Critical Infrastructure. and Emergency Communications. Presented to the

GPS Use in U.S. Critical Infrastructure. and Emergency Communications. Presented to the GPS Use in U.S. Critical Infrastructure and Emergency Communications Presented to the DOT, DoD, and DHS United States Technical Training Institute (USTTI) Presenter Monty Graham Program Manager GPS Jamming

More information

Briefing Note: Evolution from Loran-C to eloran

Briefing Note: Evolution from Loran-C to eloran Briefing Note: Evolution from to Executive Summary This paper has been prepared by the Research and Radionavigation Directorate of the General Lighthouse Authorities of the United Kingdom and Ireland for

More information

Introduction into Real-Time Network Adjustment with Geo++ GNSMART

Introduction into Real-Time Network Adjustment with Geo++ GNSMART Introduction into Real-Time Network Adjustment with Geo++ GNSMART Andreas Bagge Gerhard Wübbena, Martin Schmitz Geo++ GmbH D-30827 Garbsen, Germany www.geopp.de GeoInformation Workshop 2004, Istanbul Kultur

More information

Satellite ADS-B And solutions for Worldwide Air Traffic Control

Satellite ADS-B And solutions for Worldwide Air Traffic Control 83230045-PRP-TAS-EN-002 http://www.ae-expo.eu/wp- content/uploads/2016/04/gzim-ocakoglu- SES-AEE-Conference-20-April-2016- Munich-final.pdf Satellite ADS-B And solutions for Worldwide Air Traffic Control

More information

ITEM FOR FINANCE COMMITTEE

ITEM FOR FINANCE COMMITTEE For discussion on 12 June 2009 FCR(2009-10)24 ITEM FOR FINANCE COMMITTEE HEAD 166 - GOVERNMENT FLYING SERVICE Subhead 603 Plant, vehicles and equipment New Item Replacement of two fixed-wing aircraft and

More information

Appendices. Airports Systems Plan Mid-America Regional Council Page 1

Appendices. Airports Systems Plan Mid-America Regional Council Page 1 Appendices Mid-America Regional Council Page 1 Glossary Abbreviations AAF Army Air Field GAAA General Aviation Analysis AGL Above Ground Level Area ADAP Airport Development Aid GCA Ground Control Approach

More information

AŽD Praha s.r.o. Galileo for Security and Safety of Railway Transport , AŽD Praha s.r.o.

AŽD Praha s.r.o. Galileo for Security and Safety of Railway Transport , AŽD Praha s.r.o. AŽD Praha s.r.o. Galileo for Security and Safety of Railway Transport Peter Gurnik Project engineer Satellite navigation gurnik.peter@azd.cz +420 267 287 613 06.10.2008, AŽD Praha s.r.o. Contents 1. Motivation

More information

OPERATING MINIMA FOR AEROPLANES AND HELICOPTER OPERATIONS PURPOSE REFERENCE 4.0 DEFINITION

OPERATING MINIMA FOR AEROPLANES AND HELICOPTER OPERATIONS PURPOSE REFERENCE 4.0 DEFINITION ORDER TCAA-O-OPS034A March 2013 OPERATING MINIMA FOR AEROPLANES AND HELICOPTER OPERATIONS PURPOSE 1. This Order gives guidance to the Authority s Operations Inspector on the procedures for approval of

More information

GPS Based Low Cost Intelligent Vehicle Tracking System (IVTS)

GPS Based Low Cost Intelligent Vehicle Tracking System (IVTS) 2012 International Conference on Traffic and Transportation Engineering (ICTTE 2012) IPCSIT vol. 26 (2012) (2012) IACSIT Press, Singapore GPS Based Low Cost Intelligent Vehicle Tracking System (IVTS) Dr.

More information

Pseudorange Estimation; Receiver Position Computation; Receiver Data Formats

Pseudorange Estimation; Receiver Position Computation; Receiver Data Formats Pseudorange Estimation; Receiver Position Computation; Receiver Data Formats GPS Signals And Receiver Technology MM15 Darius Plaušinaitis dpl@gps.aau.dk Today s Subjects Pseudorange estimation Receiver

More information

1. GLOBAL NAVIGATION SATELLITE SYSTEMS

1. GLOBAL NAVIGATION SATELLITE SYSTEMS 1. GLOBAL NAVIGATION SATELLITE SYSTEMS The Global Navigation Satellite System (GNSS) is a constellation of satellites, transmitting signals for use in navigation and positioning applications, anywhere

More information