SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices

Size: px
Start display at page:

Download "SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices"

Transcription

1 SURVEYING WITH GPS Key Words: Static, Fast-static, Kinematic, Pseudo- Kinematic, Real-time kinematic, Receiver Initialization, On The Fly (OTF), Baselines, Redundant baselines, Base Receiver, Rover GPS has become a standard surveying technique in most surveying practices This could be attributed to both the ease of use as well as reduction in hardware costs Advantage of GPS surveys Three Dimensional Site Intervisibility Not Needed Weather Independent Day or Night Operation Common Reference System Rapid Data Processing with Quality Control High Precision Less Labor Intensive/Cost Effective Very Few Skilled Personnel Needed GPS eliminates the need for establishing control before a survey

2 GPS can establish control as and when needed and establish points at strategic locations to start and close conventional traverses All or any of the following values could be available directly in the field or after post-processing the data Latitude, longitude, geodetic height and X, Y, Z Cartesian coordinates State Plane or Project coordinates Forward and back geodetic azimuth of the baseline Geodetic distance or Monument to Monument slope distance of baselines Vertical angle from point to point GPS determines the geodetic azimuth between two points directly thereby eliminating the need for converting an astronomic azimuth to geodetic azimuth by applying Laplace correction State plane coordinates can be directly computed from the latitudes and longitudes obtained from GPS The slope distances can be reduced to the ellipsoid very accurately as ellipsoidal height is known Note, however that, even though the baseline components such as distances and azimuths are accurate, the accuracy of coordinates of new points are dependent on the quality of known points included in the survey

3 GPS OBSERVATION TECHNIQUES In surveying applications, accepted method is relative positioning although Differential GPS with code receivers could be used in projects that require a very low order of accuracy, e.g. locating cellular phone transmission towers In relative positioning, two or more receivers make simultaneous phase measurements on the carrier frequencies from four or more satellites Only the data collected from the same satellites by the receivers occupying the ends of a baseline can be used in the computation of this baseline As stated earlier, accurate baseline components can be computed from simultaneous carrier frequency measurements from four or more satellites by two receivers If accurate coordinates of a point are needed, one of the receivers must occupy a point whose coordinates are known accurately For this reason, at least one receiver must occupy a known point in the WGS84 datum as GPS satellite positions are defined in WGS84 datum coordinate system In practice, however, points in the National Spatial Reference System (NSRS) which are in NAD83 datum are used

4 For projects requiring geodetic accuracy, National Geodetic Survey (NGS) must be contacted or NSRS database must be accessed to determine points available in the project area before the project begins If there are points previously established which are in the National Reference System and meet the accuracy requirements, these points can be used instead of NGS points Coordinates of points determined in the WGS84 (NAD83) system could be transformed to any other coordinates such as State Plane coordinates or project coordinates either in the field, if real time coordinates are needed, or after post processing State Plane coordinates can be directly computed from NAD83 coordinates by using software available from NGS or other parties If accurate project coordinates are needed, an accurate transformation needs to be done by including a sufficient number of points whose coordinates are known in both systems In less precise work such as in construction projects, project coordinates can be determined by a field calibration of the site independently using an approximate transformation

5 There are several different field techniques for GPS surveying using carrier frequency These techniques could be used singly or in combination in some surveying projects The mode used depends on Accuracy needed Type of equipment and post processing software available Sky visibility in the project area Other considerations such as mode of transportation, urgency of the project, etc. The primary objective of each of the field techniques is to resolve the integer ambiguity resulting from carrier wave measurements Unlike conventional surveys, planning is an important part of any GPS survey, regardless of the technique used Following are the techniques that are commonly used now Static

6 Fast Static (Rapid Static) Kinematic Pseudo-kinematic(Pseudo-static) Real Time Kinematic STATIC MODE OF GPS SURVEYING This method, sometimes called static surveying, is used surveying projects that require high accuracy In this method, each receiver at each point logs data continuously for a pre-planned length of time The duration of data collection depends on required precision number of visible satellites satellite geometry(dop) whether the receivers are single frequency or dual frequency distance between receivers The duration of data collection, however, should be long enough for the post processing software to resolve the integer ambiguity Most new generation receivers and processing software are capable of resolving the integer ambiguity with small amount of data

7 However, a higher accuracy for the baseline components can be achieved by collecting data for a longer period of time Collection of data using two or more receivers for a period of time is called a session The slope line between any two antennas is called a baseline vector or simply baseline If more than two receivers are used multiple baseline vectors can be determined simultaneously Most GPS survey projects consist of multiple baselines or networks, and the baselines can be measured individually using only two receivers or several at a time using multiple receivers For economic reasons it is preferable to use more than two receivers for multiple baselines When the baseline between a known point and a new point is measured the new point can be used as a known point for other baselines Unlike in conventional surveys, the accuracy obtainable from networks is independent of the network geometry

8 Accuracy can be increased by increasing the number of redundant measurements Redundant measurements are those that are over and above the ones required to determine the coordinates of unknown points A redundant measurement should also be independent i.e. a measurement that is not related to or could not be generated from other measurements In a single session using more than two receivers, there are both independent (non-trivial) and dependent (trivial) baselines A baselines measured in separate sessions are always independent Redundant measurements can also be used to check for blunders In a network of GPS baselines, blunders can be detected by checking the closures of loops formed by connecting, independent baselines If the network is such that the loops are elongated in a east-west direction a higher accuracy in the positions can be obtained(gps measurements are stronger in north-south direction) and this should be considered at the planning stage of the network

9 Networks should also have several control points, located at strategic locations, in order to strengthen the network These control points should be preferably above or at least equal to the order of accuracy expected of new points The number and locations of control points depend on the size and shape of network (See Geometric Geodetic Accuracy Standards and Specifications for Using GPS Relative Positioning Techniques, Federal Geodetic Control Sub-committee, 1988) FAST STATIC MODE OF GPS SURVEYS Fast Static or Rapid Static was a method developed for dual frequency receivers A new algorithm was developed to reduce the amount of data needed to resolve integer ambiguity Lately, because of modifications in processing algorithms and because a larger number of satellites are available, the amount of data needed can be reduced even with single frequency receivers Sometimes, the manufacturers call this also fast static Field requirements and procedure for fast static are same as those for static except for the short session lengths

10 However, fast static is only suitable for low order control surveys, e.g. ground control for photogrammetric mapping KINEMATIC MODE OF GPS SURVEYING This is the mode of positioning from a moving platform. i.e. when the antenna is in motion This is the mode used in navigation where usually only a single receiver is used But, unlike in navigation, the kinematic method used in surveying is a relative positioning method where one antenna+receiver is stationary and one antenna+receiver is moving When the moving receiver is in constant motion as in navigation it is called continuous kinematic In most surveying applications, a method called stop-and-go kinematic is used The stationary receiver, called the base receiver, is placed at a known point while a second receiver called "rover' will visit all unknown points Rover will occupy each unknown point for a very short time (less than two minutes); Hence the term "Stop-and-Go" surveying

11 It is possible to combine both continuous and stop and go methods in the same survey It also is possible to operate more than one rover with the same base station The accuracy obtained is not as good as that obtained from static surveying but is better than that obtained in most surveys The single most advantage of stop and go surveying is its speed This method also has certain limitations An initialization process to determine the integer biases of at least 4 satellites is needed at the beginning The lock on the same four or more satellites must be maintained during the entire survey For this reason, kinematic GPS surveying is suitable for an area where there are no large over-hanging trees, over-passes or such structures in rover s route If for any reason a cycle slip occurs, the rover must return to any previous point which had been determined without cycle slip

12 The Initial integer bias term can be determined in one of 3 ways Using a known baseline less than 20 km in length and having an accuracy of less than 5 cm. Antenna swap Perform a static mode survey first for one of the base lines When using a known baseline, it is necessary to use one end of the baseline as the base station The rover will occupy the other end to collect 3 or 4 epochs of data (less than 2 minutes) Antenna swap is done by first occupying the known point with the base receiver and another point feet away with the rover After collecting data for 3-4 epochs two receivers + antennas are swapped while maintaining lock Collect data for another 3-4 epochs, return the base receiver + antenna to the base and continue the survey with the rover as usual In the third method, a baseline is measured by static method with the base receiver at the known base This now becomes a known baseline and the rest is similar to the first method For highest accuracy more than 6 satellites, well distributed over the sky is preferable

13 Kinematic post processing software is needed to obtain the point coordinates Kinematic GPS is similar to radial surveys with Total stations Kinematic GPS can use multiple bases and/or multiple rovers in the same survey, if necessary REAL TIME KINEMATIC GPS SURVEYS Real time kinematic (RTK) refers to a stop-and-go method where the coordinates of points are available in real time In this method, a radio communication link is maintained between the base receiver and the rover, and the base receiver supplies the pseudo-range and carrier phase measurements to the rover which in turn computes its position and display the coordinates The rover keeps updating coordinates as it moves as long as the lock on satellites is maintained Kinematic GPS surveying is generally suitable for any type of surveying or mapping, but for stakeout surveys, RTK is essential

14 Some RTK receivers have the capability of resolving the integer ambiguity On The Fly (OTF), and this technique can only be used with dual frequency receivers This means that there is no need to maintain the lock on satellites while the rover is in motion New observables are generated by taking linear combinations of observations made on these codes and carriers (wide laning) The integer ambiguity can be resolved very quickly by this technique while the receiver is still in motion Wide laning techniques are used in some high-end receivers even if OTF is not being used

15 PSEUDO-KINEMATIC (OR PSEUDO-STATIC) This is a combination of both static and kinematic methods It has the speed of kinematic method but there is no need to maintain lock on 4 satellites However newer receivers and algorithms can resolve the integer ambiguity much faster and the need for pseudo-kinematic surveys is somewhat diminished There is a reference (or base) receiver and a roving receiver, and the reference receiver remains at the reference point during the entire survey while the roving receiver visits the unknown points There is no initialization as in stop and go method Each point is occupied for 5-10 minutes for baselines 10 km. or less Each point must be revisited multiple times (at least once more) and these visits must be separated by at least 1 hour and preferably not more than 4 hours Multiple observations at the same site at different times capture different epochs along the satellite's orbit, and allow the satellite configuration to change and to resolve the integer ambiguity

16 This technique is suitable for areas where there are obstructions to signal and crew movement or if the receivers are not equipped with kinematic software Pseudo-kinematic is the least precise of all methods but is more productive than static Stop-and-Go kinematic method is suitable for details surveys as topographic mapping or boundary survey work whereas pseudokinematic is suitable for lower order control such as photogrammetric control etc. The GPS survey technique used in a given project depends on Accuracy requirements Urgency of the project Local terrain conditions Available equipment, etc. A combination of these methods can be used in some projects

17 COMMON ERRORS IN GPS OBSERVATIONS Setting up over wrong point Not using well adjusted tribrachs Not observing long enough during a session Poor planning (selection of points that may cause cycle slips or multipath or poor PDOP) Interruption due to power failure (not checking batteries prior to departure) Reading and recording wrong antenna height Some recommend that instead of using a tribrach with an optical plummet a rotatable tribrach adapter with a plate vial be used Errors such as the following may be introduced at the processing stage as well Incorrect datum or coordinates for known points Incorrect linear units for the project Entering incorrect point names and/or antenna heights

18 POSSIBLE ERRORS IN KINEMATIC SURVEYING Antenna height may change between points, especially if a prism pole with a sliding mechanism is used Not properly plumbing the antenna over the point at time of measurement If no OTF is available, it is sometimes necessary to raise the antenna over some obstructions in order to maintain lock For this reason a method to raise the antenna will be useful QUESTIONS 1. What are the advantages of GPS surveying over conventional surveying methods? 2. What is the single factor that determines whether or not a GPS survey is possible in an area and/or a project? 3. What is a baseline in GPS surveying? 4. What information/quantities pertaining to points and baselines are computed by postprocessing software? 5. What is an epoch in GPS terminology? 6. Why is the static GPS survey method so named? 7. What is the reason for minimum session length in static surveying? 8. What factors determine the length of a session in static surveying? 9. What factors determine the GPS surveying method suitable for a given area/project? 10. What is the purpose of rover initialization in kinematic surveying? 11. What are the three ways of rover initialization in stop-and-go kinematic surveying? 12. What is the fastest initialization method? 13. How much data is collected at each point in stop-and-go GPS surveying? 14. What is the purpose of re-occupation of points in pseudo-kinematic method? 15. What are the time limitations on re-occupation? 16. Which GPS surveying method would you use for establishing control with geodetic accuracy? 17. Which GPS surveying method would you use if you need to complete a job urgently?

19 18. Which GPS survey method is suitable for a project that does not need very high accuracy but the project is in a downtown area where there are tall buildings and over-passes? 19. What type of receivers are needed to do true fast static surveys? 20. Everything else being equal, real time kinematic GPS or conventional method with a total station would you prefer for a stakeout survey? Indicate your reasons.

SURVEY PRO. GPS Quick Start Guide

SURVEY PRO. GPS Quick Start Guide SURVEY PRO GPS Quick Start Guide ii Table of Contents Before You Leave the Office...1 Survey Method: RTK or Post Processing...2 Receiver Setup...2 Receiver Settings...3 RTK Data Collection and Stake Out...4

More information

Guidelines for RTK/RTN GNSS Surveying in Canada

Guidelines for RTK/RTN GNSS Surveying in Canada Guidelines for RTK/RTN GNSS Surveying in Canada July 2013 Version 1.1 Ministry of Transportation Ministère des Transports EARTH SCIENCES SECTOR GENERAL INFORMATION PRODUCT 100-E Main Authors: Brian Donahue,

More information

4.03 Vertical Control Surveys: 4-1

4.03 Vertical Control Surveys: 4-1 4. HORIZONTAL AND VERTICAL CONTROL 4.01 General: Sufficient horizontal and, if applicable, vertical control surveys shall be established by the Contractor for all photogrammetric mapping purposes. Prior

More information

Prof. Ludovico Biagi. Satellite Navigation and Monitoring

Prof. Ludovico Biagi. Satellite Navigation and Monitoring Prof. Ludovico Biagi Satellite Navigation and Monitoring Navigation: trajectories control positions estimations in real time, at high frequency popular applications: low accuracy (10 m) required specific

More information

Global Positioning System

Global Positioning System B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins Global Positioning System Theory and Practice Third, revised edition Springer-Verlag Wien New York Contents Abbreviations Numerical constants xix xxiii

More information

GPS Positioning Modes

GPS Positioning Modes 5 GPS Positioning Modes Positioning with GPS can be performed in either of two ways: point (absolute) positioning or relative positioning. Classical GPS point positioning employs one GPS receiver that

More information

Trimble R8 Base and Rover Quick Setup Guide. Inland GPS Inc.

Trimble R8 Base and Rover Quick Setup Guide. Inland GPS Inc. Trimble R8 Base and Rover Quick Setup Guide Inland GPS Inc. Setting up the GPS Base Equipment Hardware First Find the best, most advantageous secure place to setup the GPS base equipment. Look for a high

More information

GPS accuracy: Hand-held versus RTK

GPS accuracy: Hand-held versus RTK GPS accuracy GPS accuracy: Hand-held versus RTK Kevin W. Hall, Joanna K. Cooper, and Don C. Lawton ABSTRACT Source and receiver points for seismic lines recorded during the geophysics field school near

More information

GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform

GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform GNSS and Heighting, Practical Considerations A Parker National Geo-spatial Information Department of Rural Development and Land Reform GNSS Global Navigation Satellite Systems (GNSS) Global Positioning

More information

Analysis of RTN Measurement Results Referring to ASG-EUPOS Network

Analysis of RTN Measurement Results Referring to ASG-EUPOS Network GEOMATICS AND ENVIRONMENTAL ENGINEERING Volume 4 Number 1/1 2010 Andrzej Uznañski* Analysis of RTN Measurement Results Referring to ASG-EUPOS Network 1. Introduction In June 2008 ASG-EUPOS network system,

More information

Chapter 8 Planning GPS Control Surveys

Chapter 8 Planning GPS Control Surveys Chapter 8 Planning GPS Control Surveys 8-1. General Using differential carrier phase GPS surveying to establish control for USACE civil and military projects requires operational and procedural specifications

More information

Real-Time Kinematic Surveying

Real-Time Kinematic Surveying Real-Time Kinematic Surveying Training Guide F Part Number 33142-40 Revision D September 2003 Corporate Office Trimble Navigation Limited 645 North Mary Avenue Post Office Box 3642 Sunnyvale, CA 94088-3642

More information

Trimble CenterPoint RTX Post-Processing Services FAQs

Trimble CenterPoint RTX Post-Processing Services FAQs Trimble CenterPoint RTX Post-Processing Services FAQs What is Trimble RTX technology? 30 September 2013 Trimble RTX TM (Real Time extended) is a high-accuracy, global GNSS correction technology that combines

More information

Submitted to: Submitted by: Department of Geology and Mineral Industries 800 NE Oregon Street, Suite 965 Portland, OR 97232

Submitted to: Submitted by: Department of Geology and Mineral Industries 800 NE Oregon Street, Suite 965 Portland, OR 97232 LIDAR REMOTE SENSING DATA COLLECTION DEPARTMENT OF F GEOLOGY AND MINERAL INDUSTRIES CRATER LAKE, OREGON NOVEMBER 30, 2010 Submitted to: Department of Geology and Mineral Industries 800 NE Oregon Street,

More information

Earth Coordinates & Grid Coordinate Systems

Earth Coordinates & Grid Coordinate Systems Earth Coordinates & Grid Coordinate Systems How do we model the earth? Datums Datums mathematically describe the surface of the Earth. Accounts for mean sea level, topography, and gravity models. Projections

More information

NJDEP GPS Data Collection Standards For GIS Data Development

NJDEP GPS Data Collection Standards For GIS Data Development NJDEP GPS Data Collection Standards For GIS Data Development Bureau of Geographic Information Systems Office of Information Resource Management June 8, 2011 1.0 Introduction... 3 2.0 GPS Receiver Hardware

More information

GNSS FIELD DATA COLLECTION GUIDELINES

GNSS FIELD DATA COLLECTION GUIDELINES AD-SDI DATA STANDARD GNSS FIELD DATA COLLECTION GUIDELINES Version 1.0 September 2011 Prepared by Abu Dhabi Spatial Data Infrastructure (AD-SDI) Abu Dhabi Systems and Information Centre (ADSIC) Abu Dhabi,

More information

Leica SmartNet UK & Ireland Network RTK User Guide

Leica SmartNet UK & Ireland Network RTK User Guide Leica SmartNet UK & Ireland Network RTK User Guide Contents Background.. Page 3 Single Base RTK.... Page 3 Advantages & Disadvantages of Single Base RTK Page 4 Network RTK... Page 4 Advantages & Disadvantages

More information

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning Joe Hutton and Edith Roy, Applanix Corporation Introduction Applanix, along with

More information

Online Precise Point Positioning Using the. Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP)

Online Precise Point Positioning Using the. Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP) Online Precise Point Positioning Using the Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP) Thomas Nylen and Seth White UNAVCO October 2007 I. Precise Point Positioning Precise Point

More information

MOBILE MAPPING APPLICATIONS BASED ON THE CYPRUS PERMANENT GPS NETWORK. 54124, Greece.

MOBILE MAPPING APPLICATIONS BASED ON THE CYPRUS PERMANENT GPS NETWORK. 54124, Greece. MOBILE MAPPING APPLICATIONS BASED ON THE CYPRUS PERMANENT GPS NETWORK E.Stylianidis 1, S. Spatalas 2, C. Pikridas 2, P. Patias 2 1 Geoimaging Ltd, 6 Georgios Seferis Str., 1075 Nicosia, Cyprus. 2 Faculty

More information

Using Handheld GPS Receivers for Precise Positioning

Using Handheld GPS Receivers for Precise Positioning Using Handheld GPS Receivers for Precise Positioning Volker SCHWIEGER, Germany Key words: GPS, handheld GPS receivers, static positioning, kinematic positioning. SUMMARY In general handheld GPS receivers

More information

Post Processing Service

Post Processing Service Post Processing Service The delay of propagation of the signal due to the ionosphere is the main source of generation of positioning errors. This problem can be bypassed using a dual-frequency receivers

More information

GPS Data Collection Procedures for Georeferencing Vegetation Resources Inventory and National Forest Inventory Field Sample Plots

GPS Data Collection Procedures for Georeferencing Vegetation Resources Inventory and National Forest Inventory Field Sample Plots Province of British Columbia GPS Data Collection Procedures for Georeferencing Vegetation Resources Inventory and National Forest Inventory Field Sample Plots Resources Information Branch Ministry of Sustainable

More information

GPS Receiver Test. Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology

GPS Receiver Test. Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology GPS Receiver Test Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology A. Amiri-Simkooei R. Kremers C. Tiberius May 24 Preface For the purpose of a receiver

More information

A comparison of radio direction-finding technologies. Paul Denisowski, Applications Engineer Rohde & Schwarz

A comparison of radio direction-finding technologies. Paul Denisowski, Applications Engineer Rohde & Schwarz A comparison of radio direction-finding technologies Paul Denisowski, Applications Engineer Rohde & Schwarz Topics General introduction to radiolocation Manual DF techniques Doppler DF Time difference

More information

GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME

GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME Caroline Erickson and Pierre Héroux Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A 0E9

More information

PeopleGIS Leica RTK GPS Instructions

PeopleGIS Leica RTK GPS Instructions PeopleGIS Leica RTK GPS Instructions Equipment List GG02 Receiver (Antenna) GPS Range Pole Zeno Tablet MiFi MiFi External Battery Carrying Case 1) Turning on the MiFi Power on the MiFi. This little gadget

More information

PLOTTING SURVEYING DATA IN GOOGLE EARTH

PLOTTING SURVEYING DATA IN GOOGLE EARTH PLOTTING SURVEYING DATA IN GOOGLE EARTH D M STILLMAN Abstract Detail surveys measured with a total station use local coordinate systems. To make the data obtained from such surveys compatible with Google

More information

ELEMENTS OF SURVEYING FOR CADASTRAL MAPPING

ELEMENTS OF SURVEYING FOR CADASTRAL MAPPING ELEMENTS OF SURVEYING FOR CADASTRAL MAPPING Chapter 4 2015 Cadastral Mapping Manual 4-0 Elements of Surveying and Mapping Utah's system of land surveying is the rectangular survey system as set forth on

More information

Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com

Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com Presentation Outline GNSS: Global Navigation Satellite System GPS: overview, current signals, modernization GLONASS: history (rise fall rise),

More information

CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS

CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS Surveying Terms 9-2 Standard Abbreviations 9-6 9-1 A) SURVEYING TERMS Accuracy - The degree of conformity with a standard, or the degree of perfection attained

More information

RELEASE NOTES. Trimble. SPS Series Receivers. Introduction. New features and changes

RELEASE NOTES. Trimble. SPS Series Receivers. Introduction. New features and changes RELEASE NOTES Trimble SPS Series Receivers Introduction New features and changes Version 4.41 Revision A April 2011 F Corporate office Trimble Navigation Limited Engineering and Construction group 5475

More information

TRIMBLE ATS TOTAL STATION ADVANCED TRACKING SYSTEMS FOR HIGH-PRECISION CONSTRUCTION APPLICATIONS

TRIMBLE ATS TOTAL STATION ADVANCED TRACKING SYSTEMS FOR HIGH-PRECISION CONSTRUCTION APPLICATIONS TRIMBLE ATS TOTAL STATION ADVANCED TRACKING SYSTEMS FOR HIGH-PRECISION CONSTRUCTION APPLICATIONS BY MARTIN WAGENER APPLICATIONS ENGINEER, TRIMBLE EUROPE OVERVIEW Today s construction industry demands more

More information

Survey Ties Guidelines

Survey Ties Guidelines North Carolina Board of Examiners for Engineers and Surveyors Survey Ties Guidelines The North Carolina Board of Examiners for Engineers and Surveyors is providing this document to serve as an interpretative

More information

Real-Time Reality by Arthur R. Andrew III, PLS

Real-Time Reality by Arthur R. Andrew III, PLS Real-Time Reality by Arthur R. Andrew III, PLS A progressive RTK network in California deems the setting up of a base station a thing of the past. Imagine having the ability to survey using Real-Time Kinematic

More information

EPS 101/271 Lecture 11: GPS Data Collection, Mapping Using GPS and Uncertainties in GPS Positioning

EPS 101/271 Lecture 11: GPS Data Collection, Mapping Using GPS and Uncertainties in GPS Positioning EPS 101/271 Lecture 11: GPS Data Collection, Mapping Using GPS and Uncertainties in GPS Positioning How GPS data is collected in GeoMapper Setting Time interval for reporting GPS measurements Modes of

More information

WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS

WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS N & E State Plane Coordinates for Control Points AZIMUTHS - True, Geodetic, or Grid - Conversion from Astronomic to Geodetic (LaPlace Correction)

More information

Swedish User Guidelines for Network RTK

Swedish User Guidelines for Network RTK Swedish User Guidelines for Network RTK Robert Odolinski GNSS Research Centre, Curtin University of Technology (Previously Geodetic Research Department of Lantmäteriet, Sweden) Perth, WA, Australia robert.odolinski@curtin.edu.au

More information

MobileMapper 6 White Paper

MobileMapper 6 White Paper MobileMapper 6 White Paper Meter-Level Mapping Accuracy With Post-Processing Introduction Since its introduction in February 2008, the Magellan MobileMapper 6 has been welcomed by the market as the only

More information

The Map Grid of Australia 1994 A Simplified Computational Manual

The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual 'What's the good of Mercator's North Poles and Equators, Tropics, Zones

More information

TI GPS PPS Timing Application Note

TI GPS PPS Timing Application Note Application Note Version 0.6 January 2012 1 Contents Table of Contents 1 INTRODUCTION... 3 2 1PPS CHARACTERISTICS... 3 3 TEST SETUP... 4 4 PPS TEST RESULTS... 6 Figures Figure 1 - Simplified GPS Receiver

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System The Global Positioning System - recognize that GPS is only one of several Global Navigation Satellite Systems (GNSS) - the Russian

More information

Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager

Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager Enabling RTK-like positioning offshore using the global VERIPOS GNSS network Pieter Toor GNSS Technology Manager Introduction PPP/RTK Positioning Techniques PPP-AR Technology Presentation Overview PPP-AR

More information

Post Processing GPS raw observations using data obtained from Continuously Operating Reference Stations (CORS)

Post Processing GPS raw observations using data obtained from Continuously Operating Reference Stations (CORS) Post Processing GPS raw observations using data obtained from Continuously Operating Reference Stations (CORS) This guide is written using Leica Geo Office version 4, with base and rover data from a Leica

More information

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003 Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy...

More information

Introduction into Real-Time Network Adjustment with Geo++ GNSMART

Introduction into Real-Time Network Adjustment with Geo++ GNSMART Introduction into Real-Time Network Adjustment with Geo++ GNSMART Andreas Bagge Gerhard Wübbena, Martin Schmitz Geo++ GmbH D-30827 Garbsen, Germany www.geopp.de GeoInformation Workshop 2004, Istanbul Kultur

More information

Technical Article Developing Software for the CN3 Integrated GPS Receiver

Technical Article Developing Software for the CN3 Integrated GPS Receiver Technical Article Developing Software for the CN3 Integrated GPS Receiver 1 Intermec Technologies Table of Contents INTRODUCTION... 3 AN OVERVIEW OF GPS TECHNOLOGY... 3 What is GPS?... 3 How GPS works...

More information

Cost and Accuracy Analysis of Detail Measurements by Real-Time Kinematic GPS (RTK-GPS)

Cost and Accuracy Analysis of Detail Measurements by Real-Time Kinematic GPS (RTK-GPS) Cost and Accuracy Analysis of Detail Measurements by Real-Time Kinematic GPS (RTK-GPS) Dr.Ayhan CEYLAN, Dr. Omer MUTLUOGLU and C. Ozer YIGIT, Turkey Key words: Detail measurement, RTK-GPS, Electronic Tacheometry.

More information

GLOBAL POSITIONING SYSTEM IN TRANSPORTATION PLANNING

GLOBAL POSITIONING SYSTEM IN TRANSPORTATION PLANNING GLOBAL POSITIONING SYSTEM IN TRANSPORTATION PLANNING N.Thilagavathi and G.N.Mallikarjuna Rao Sona College of Technology Salem KEY WORDS:. 1. INTRODUCTION Global Positioning System, a worldwide satellite

More information

Capturing Road Network Data Using Mobile Mapping Technology

Capturing Road Network Data Using Mobile Mapping Technology Capturing Road Network Data Using Mobile Mapping Technology Guangping He, Greg Orvets Lambda Tech International, Inc. Waukesha, WI-53186, USA he@lambdatech.com KEY WORDS: DATA CAPTURE, MOBILE MAPPING,

More information

GPS Data Collection Guidelines

GPS Data Collection Guidelines GPS Data Collection Guidelines Prepared by the Standards & Data Coordination Work Group of the NYS GIS Coordination Program Last Updated: April 2007 1 Executive Summary Purpose The goal of this document

More information

A GPS Digital Phased Array Antenna and Receiver

A GPS Digital Phased Array Antenna and Receiver A GPS Digital Phased Array Antenna and Receiver Dr. Alison Brown, Randy Silva; NAVSYS Corporation ABSTRACT NAVSYS High Gain Advanced GPS Receiver (HAGR) uses a digital beam-steering antenna array to enable

More information

Math 215 Project (25 pts) : Using Linear Algebra to solve GPS problem

Math 215 Project (25 pts) : Using Linear Algebra to solve GPS problem Due Thursday March 1, 2012 NAME(S): Math 215 Project (25 pts) : Using Linear Algebra to solve GPS problem 0.1 Introduction The age old question, Where in the world am I? can easily be solved nowadays by

More information

An Innovative Concept to Manage GPS Reference Stations Network and RTK Data Distribution Globally

An Innovative Concept to Manage GPS Reference Stations Network and RTK Data Distribution Globally An Innovative Concept to Manage GPS Reference Stations Network and RTK Data Distribution Vincent LUI, Hong Kong SAR, China Key words: GPS reference station network, Internet, Spider, data management, integrity

More information

DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON

DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON John A. Vint Survey Manager Thales GeoSolutions Norge AS Hønefoss, 7. november 2003 Scope of Presentation Introduction Summary of GPS Errors.

More information

33 Using GPS for GIS data capture

33 Using GPS for GIS data capture 33 Using GPS for GIS data capture A F LANGE AND C GILBERT Depending on the particular equipment utilised and the techniques used, Global Positioning Systems (GPS) are capable of recording position to a

More information

GPS: A Primer. presented by Jim Pugh, GISP GIS Project Manager. 2007, EMH&T, Inc.

GPS: A Primer. presented by Jim Pugh, GISP GIS Project Manager. 2007, EMH&T, Inc. GPS: A Primer presented by Jim Pugh, GISP GIS Project Manager GPS: A Primer GPS = Global Positioning System 24 Satellites in Orbit around Earth Each Broadcasts precise time and known location Receivers

More information

GPS Precise Point Positioning with a Difference*

GPS Precise Point Positioning with a Difference* GPS Precise Point Positioning with a Difference* Pierre Héroux and Jan Kouba Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A E9 heroux@geod.nrcan.gc.ca

More information

Lecture 2. Map Projections and GIS Coordinate Systems. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

Lecture 2. Map Projections and GIS Coordinate Systems. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Lecture 2 Map Projections and GIS Coordinate Systems Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Map Projections Map projections are mathematical formulas

More information

Monitoring of Open Pit Mines using Combined GNSS Satellite Receivers and Robotic Total Stations

Monitoring of Open Pit Mines using Combined GNSS Satellite Receivers and Robotic Total Stations Monitoring of Open Pit Mines using Combined GNSS Satellite Receivers and Robotic Total Stations N. Brown Leica Geosystems, Switzerland S. Kaloustian Leica Geosystems, Switzerland M. Roeckle Leica Geosystems,

More information

Subdivision Mapping: Making the Pieces Fit David P. Thaler, GIS Analyst A geographit White Paper, June 2009

Subdivision Mapping: Making the Pieces Fit David P. Thaler, GIS Analyst A geographit White Paper, June 2009 Subdivision Mapping: Making the Pieces Fit P David P. Thaler, GIS Analyst A geographit White Paper, June 2009 1525 Oregon Pike, Suite 202 Lancaster, PA USA 17601-7300 Phone: 717-399-7007 Fax: 717-399-7015

More information

GPS Applications in Agriculture. Gary T. Roberson Agricultural Machinery Systems

GPS Applications in Agriculture. Gary T. Roberson Agricultural Machinery Systems GPS Applications in Agriculture Gary T. Roberson Agricultural Machinery Systems What is a Positioning System? A position information system enables the user to determine absolute or relative location of

More information

Ted MacKinnon & Jonathan Murphy

Ted MacKinnon & Jonathan Murphy Introduction & Simple Guide to Using the Leica Total Station Ted MacKinnon & Jonathan Murphy This document was originally submitted as part of a requirement for the Applied Geomatics Research advanced

More information

North American Horizontal Datums. Jan Van Sickle

North American Horizontal Datums. Jan Van Sickle North American Horizontal Datums Jan Van Sickle http://www.holoscenes.com/cgi-bin/moin.cgi/easternobliquearc The New England Datum 1879 was the first geodetic datum of this type in the United States. The

More information

STATE CONTROL SURVEY SPECIFICATIONS FOR PRIMARY CONTROL SURVEYS. Now Obsolete

STATE CONTROL SURVEY SPECIFICATIONS FOR PRIMARY CONTROL SURVEYS. Now Obsolete STATE CONTROL SURVEY SPECIFICATIONS FOR PRIMARY CONTROL SURVEYS Now Obsolete Caution: This document has been prepared by scanning the original Specifications for Primary Control Surveys - 1984 and using

More information

TRIMBLE 3D SCANNING FOR SURVEYORS

TRIMBLE 3D SCANNING FOR SURVEYORS TRIMBLE 3D SCANNING FOR SURVEYORS T. LEMMON & P. BIDDISCOMBE TRIMBLE SURVEY, WESTMINSTER, COLORADO, USA ABSTRACT 3D Scanning is a powerful technology that uses advanced laser measurement technology to

More information

Rapid Mapping with Post-Processed Garmin Data

Rapid Mapping with Post-Processed Garmin Data Rapid Mapping with Post-Processed Garmin Data C J Hill and T Moore, IESSG, The University of Nottingham M E Napier, IT Consultant BIOGRAPHIES Chris Hill is a Senior Research Officer at the Institute of

More information

PLM PRODUCT INFORMATION

PLM PRODUCT INFORMATION PLM PRODUCT INFORMATION Agricultural Equipment UK & ROI Precision Farming Reference UK- PLM_03_13 Date: 1st May 2013 Announcing the new RangePoint RTX Correction Service RangePoint RTX is a GPS and GLONASS

More information

Amr A. Oloufa, Won-seok Do, and H. Randolph Thomas. Penn State University aoloufa@psu. eclu

Amr A. Oloufa, Won-seok Do, and H. Randolph Thomas. Penn State University aoloufa@psu. eclu iautomation and Robotics in Construction XVI 1999 by UC3M An Automated System for Quality Control of Compaction Operations : Receiver Tests & Algorithms Amr A. Oloufa, Won-seok Do, and H. Randolph Thomas

More information

CASE HISTORY #2. APPLICATION: Piping Movement Survey using Permalign Laser Measurement System

CASE HISTORY #2. APPLICATION: Piping Movement Survey using Permalign Laser Measurement System CASE HISTORY #2 APPLICATION: Piping Movement Survey using Permalign Laser Measurement System EQUIPMENT: Dresser-Clark Hot Gas Expander (Turbine), 60-inch Inlet Flange HISTORY: Piping support modifications

More information

Accuracy of Geometric Geoid Model of Singapore using RTK Heighting

Accuracy of Geometric Geoid Model of Singapore using RTK Heighting Yam Khoon TOR, Singapore Key words: Geometric Geoid, RTK Heighting SUMMARY A complete re-levelling of the precise levelling network of Singapore was carried out to derive the reduced levels of some 2000

More information

EPSG. Coordinate Reference System Definition - Recommended Practice. Guidance Note Number 5

EPSG. Coordinate Reference System Definition - Recommended Practice. Guidance Note Number 5 European Petroleum Survey Group EPSG Guidance Note Number 5 Coordinate Reference System Definition - Recommended Practice Revision history: Version Date Amendments 1.0 April 1997 First release. 1.1 June

More information

Basic Coordinates & Seasons Student Guide

Basic Coordinates & Seasons Student Guide Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to

More information

{ XE "CIR_30-6_intelligent_compaction_D02-26-14" } Page 1 of 10

{ XE CIR_30-6_intelligent_compaction_D02-26-14 } Page 1 of 10 { XE "CIR_30-6_intelligent_compaction_D02-26-14" } Page 1 of 10 Section 30-6. Use to incorporate intelligent compaction requirements in CIR or FDR projects. Use bid item: 306100A Intelligent Compaction

More information

Z-Max.Net >> GET FREE FROM OPERATIONAL CONSTRAINTS NETWORK GENERATION. www.thalesgroup.com/navigation

Z-Max.Net >> GET FREE FROM OPERATIONAL CONSTRAINTS NETWORK GENERATION. www.thalesgroup.com/navigation Z-Max.Net NETWORK GENERATION >> GET FREE FROM OPERATIONAL CONSTRAINTS www.thalesgroup.com/navigation Z-Max.Net Liberate Yourself! Z-Max.Net is the next-generation survey solution from Thales. The.Net generation

More information

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model 7 th FIG Regional Conference TS 1C Advances in GNSS Positioning and Applications I Volker Schwieger 1, Jürgen

More information

GeoMax GNSS Zenith10 & Zenith20 Series

GeoMax GNSS Zenith10 & Zenith20 Series GeoMax GNSS Zenith10 & Zenith20 Series GeoMax About Us At GeoMax we provide a comprehensive portfolio of integrated solutions by developing, manufacturing and distributing quality construction and surveying

More information

IP-S2 Compact+ 3D Mobile Mapping System

IP-S2 Compact+ 3D Mobile Mapping System IP-S2 Compact+ 3D Mobile Mapping System 3D scanning of road and roadside features Delivers high density point clouds and 360 spherical imagery High accuracy IMU options without export control Simple Map,

More information

GNSS Base Station/Rover System. 1.1. The State will perform the purchase of the portable GNSS base/rover systems as follows:

GNSS Base Station/Rover System. 1.1. The State will perform the purchase of the portable GNSS base/rover systems as follows: GNSS Base Station/Rover System 1. SCOPE 1.1. The State will perform the purchase of the portable GNSS base/rover systems as follows: 1.1.1. Purchase new Topcon GR-5 Portable GNSS Receivers (Survey Grade)

More information

Coordinate Systems. Orbits and Rotation

Coordinate Systems. Orbits and Rotation Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million

More information

Fundamentals of Surveying Theory and Samples Exercises

Fundamentals of Surveying Theory and Samples Exercises Fundamentals of Surveying Theory and Samples Exercises Prof. Dr. Yuji Murayama Surantha Dassanayake Division of Spatial Information Science Graduate School Life and Environment Sciences University of Tsukuba

More information

CHAPTER 3 PROJECT CONTROL

CHAPTER 3 PROJECT CONTROL CHAPTER 3 PROJECT CONTROL Marking Survey Control Points 3-2 Horizontal Control 3-2 Vertical Control 3-3 Preconstruction Bench Marks 3-3 Bench Mark Levels 3-3 Bench Mark Check Levels 3-5 Total Station Leveling

More information

Performance of a Deeply Coupled Commercial Grade GPS/INS System from KVH and NovAtel Inc.

Performance of a Deeply Coupled Commercial Grade GPS/INS System from KVH and NovAtel Inc. Performance of a Deeply Coupled Commercial Grade GPS/INS System from KVH and NovAtel Inc. Sandy Kennedy 1 and Jim Rossi 2 1 NovAtel Inc., 112 68 th Ave. N.E. Calgary, Alberta, T2E 8S5, Canada 2 KVH Industries,

More information

Integration of Inertial Measurements with GNSS -NovAtel SPAN Architecture-

Integration of Inertial Measurements with GNSS -NovAtel SPAN Architecture- Integration of Inertial Measurements with GNSS -NovAtel SPAN Architecture- Sandy Kennedy, Jason Hamilton NovAtel Inc., Canada Edgar v. Hinueber imar GmbH, Germany Symposium Gyro Technology, Stuttgart 9/25

More information

Impact of Satellites on UMTS Network

Impact of Satellites on UMTS Network Impact of Satellites on UMTS Network R J Finean, D Polymeros, A El-Hoiydi, F da Costa, M Dinis, A Saïdi, B Vazvan BT 1, OTE, Ascom, IT, IT, Alcatel CRC, Nokia Abstract: UMTS will appeal to the existing

More information

Comprehensive GNSS Technology Training For Resource Mapping. Module 3 Quality Assurance and Quality Control Procedures

Comprehensive GNSS Technology Training For Resource Mapping. Module 3 Quality Assurance and Quality Control Procedures Comprehensive GNSS Technology Training For Resource Mapping Module 3 Quality Assurance and Quality Control Procedures Revised: 2011 Contents 1) Quality Assurance Procedures... 4 a) Pre-Survey... 4 b) Field

More information

EECS467: Autonomous Robotics Laboratory Prof. Edwin Olson. Map Projections and GPS

EECS467: Autonomous Robotics Laboratory Prof. Edwin Olson. Map Projections and GPS EECS467: Autonomous Robotics Laboratory Prof. Edwin Olson Map Projections and GPS Cartography Several purposes of maps Geographic Information Systems (GIS) - Where is stuff? Measure distances, etc. Navigation

More information

CORS/OPUS: Status & Future Prospects

CORS/OPUS: Status & Future Prospects CORS/OPUS: Status & Future Prospects Richard Snay, Gerald Mader, & Neil Weston NOAA s National Geodetic Survey CORS Users Forum 44 th CGSIC Meeting Long Beach, CA September 21, 2004 Continuously Operating

More information

SYSTEM GLOBAL NAVIGATION SATELLITE SYSTEM LANDING TECHNOLOGY/PRODUCT DEVELOPMENT

SYSTEM GLOBAL NAVIGATION SATELLITE SYSTEM LANDING TECHNOLOGY/PRODUCT DEVELOPMENT GLOBAL NAVIGATION SATELLITE SYSTEM LANDING SYSTEM The aviation industry is developing a new positioning and landing system based on the Global Navigation Satellite System (GNSS). The GNSS landing system

More information

CHAPTER 6 INSTRUMENTATION AND MEASUREMENTS 6.1 MEASUREMENTS

CHAPTER 6 INSTRUMENTATION AND MEASUREMENTS 6.1 MEASUREMENTS CHAPTER 6 INSTRUMENTATION AND MEASUREMENTS 6.1 MEASUREMENTS Atmospheric electricity is a field that is very easy to get into because it does not require a large capital investment for measuring equipment.

More information

ESTABLISHMENT OF A PERMANENT GPS STATION AT THE DEPARTMENT OF GEODESY AND SURVEYING OF THE BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

ESTABLISHMENT OF A PERMANENT GPS STATION AT THE DEPARTMENT OF GEODESY AND SURVEYING OF THE BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 46, NO. 2, PP. 179 184 (2002) ESTABLISHMENT OF A PERMANENT GPS STATION AT THE DEPARTMENT OF GEODESY AND SURVEYING OF THE BUDAPEST UNIVERSITY OF TECHNOLOGY AND

More information

Local monitoring by low cost devices and free and open sources softwares

Local monitoring by low cost devices and free and open sources softwares Local monitoring by low cost devices and free and open sources softwares Abstract Ludovico Biagi, Florin-Catalin Grec, Marco Negretti, Maria Grazia Visconti Politecnico di Milano, DICA@ComoCampus The purpose

More information

Sierra Wireless AirCard Watcher Help for Mac OS X

Sierra Wireless AirCard Watcher Help for Mac OS X Sierra Wireless AirCard Watcher Help for Mac OS X Sierra Wireless AirCard Watcher allows you to manage and monitor the connection between your modem and the network. With Watcher, you can: Determine signal

More information

Physical Quantities and Units

Physical Quantities and Units Physical Quantities and Units 1 Revision Objectives This chapter will explain the SI system of units used for measuring physical quantities and will distinguish between vector and scalar quantities. You

More information

Field/Lab Exercise 2 Surveying Offsets and Handheld Survey Tools

Field/Lab Exercise 2 Surveying Offsets and Handheld Survey Tools Field/Lab Exercise 2 Surveying Offsets and Handheld Survey Tools Field Data Goal of this Exercise: to explore surveying methods as offsets from GPS points. Background: Cartesian and Polar Coordinates,

More information

Maps A Primer for Content & Production of Topographic Base Maps For Design Presented by SurvBase, LLC

Maps A Primer for Content & Production of Topographic Base Maps For Design Presented by SurvBase, LLC Maps A Primer for Content & Production of Topographic Base Maps For Design Presented by Definition and Purpose of, Map: a representation of the whole or a part of an area. Maps serve a wide range of purposes.

More information

FUNDAMENTALS OF LANDSCAPE TECHNOLOGY GSD Harvard University Graduate School of Design Department of Landscape Architecture Fall 2006

FUNDAMENTALS OF LANDSCAPE TECHNOLOGY GSD Harvard University Graduate School of Design Department of Landscape Architecture Fall 2006 FUNDAMENTALS OF LANDSCAPE TECHNOLOGY GSD Harvard University Graduate School of Design Department of Landscape Architecture Fall 2006 6106/ M2 BASICS OF GRADING AND SURVEYING Laura Solano, Lecturer Name

More information

CHARACTERISTICS OF DEEP GPS SIGNAL FADING DUE TO IONOSPHERIC SCINTILLATION FOR AVIATION RECEIVER DESIGN

CHARACTERISTICS OF DEEP GPS SIGNAL FADING DUE TO IONOSPHERIC SCINTILLATION FOR AVIATION RECEIVER DESIGN CHARACTERISTICS OF DEEP GPS SIGNAL FADING DUE TO IONOSPHERIC SCINTILLATION FOR AVIATION RECEIVER DESIGN Jiwon Seo, Todd Walter, Tsung-Yu Chiou, and Per Enge Stanford University ABSTRACT Aircraft navigation

More information

European Petroleum Survey Group EPSG. Guidance Note Number 10. April 2001. Geodetic Transformations Offshore Norway

European Petroleum Survey Group EPSG. Guidance Note Number 10. April 2001. Geodetic Transformations Offshore Norway European Petroleum Survey Group EPSG Guidance Note Number 10 April 2001 Geodetic Transformations Offshore Norway Background 1. European Datum 1950 (ED50) is the de facto and de jure geographic coordinate

More information