GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform"

Transcription

1 GNSS and Heighting, Practical Considerations A Parker National Geo-spatial Information Department of Rural Development and Land Reform

2 GNSS Global Navigation Satellite Systems (GNSS) Global Positioning Systems (GPS) Galileo (EU) GLONASS (Russian Federation) Compass (China) Gagan (India) Augmentation Systems Quasi Zenithal Satellite Systems (QZSS) EGNOS WAAS

3 GNSS Heighting GNSS heighting dependant on: 1. Accuracy of vertical datum 2. Accuracy of GNSS measurement 3. Accuracy of Geoid model/modeling

4 Vertical Datum: South African LLD NGI is mandated by the Land Survey Act (Act 8 of 1997) to establish and maintain a National Control Survey Network in South Africa. The official horizontal datum in South Africa is the Hartebeesthoek94 (ITRF1991, epoch 1994) The official vertical datum is the Land Levelling Datum (LLD).

5 The South African Land Levelling Datum Reference surface: Adopted mean sea level Vertical Origin and Orientation: (TSO 1956) Based on MSL determined from tidal observations at Cape Town. Verified by MSL determinations from tidal observations at Durban, Port Elizabeth and East London, over varying periods of time.

6 The LLD is realised by: Numerous precisely levelled bench marks, Realisation of LLD Town survey marks (> unofficial), Approximately Trigonometrical beacons

7 Distribution of NGI Benchmarks

8 Trig Beacons Accuracy of monuments realising LLD The accuracy of adjusted orthometric height coordinates shall not exceed 0.30 meters at the 95% confidence level (some serious outliers!!) FBM s, BM s and TSM s: The accuracy of orthometric height differences between adjacent benchmarks is 0.3mm x sub-section distance (in kilometers) at the 95% confidence level. i.e 10km = 3mm

9 Accuracy of Trigonometrical Beacons Comparison of issued trig beacon heights and ellipsoidal/geoid derived orthometric heights Total number of points compared = 1539 Mean diff = 0.22 m Std dev = 0.47 m Min = m Max = 4.59 m

10 Connection to LLD Currently, most users, especially surveyors that require precise heighting, connect to the South African LLD. The exception to this rule would be: in cases where the project is located too far away from a precise leveling route to justify the cost, or in applications where connection to the LLD is not required or only relative heights are required.

11 TRIGNET TrigNet coordinates defined on: 1. Hartebeesthoek 94 Datum/LLD; 2. ITRF2008 (epoch ) reference frame which is 3D (X,Y,Z) accurate to <1cm. Ellipsoidal heights can be determined relative to TrigNet <2cm using commercial software.

12 TRIGNET

13 Spirit vs GNSS Levelling

14 Spirit vs GNSS Levelling Spirit (and precise) levelling can be an extremely accurate method of height transfer. Both a labour intensive and time consuming procedure. GNSS provides a fast and expedient method of height transfer, albeit with less accuracy over short distances. GNSS provide fully three-dimensional positions (latitude, longitude and height).

15 Characteristics of GNSS Levelling GNSS heighting 2-3 times < precise than the horizontal components. Residual atmospheric biases are the source of the greatest uncertainty. GNSS levelling involves additional calculations for geoid height determination, of which only the geometric method is relatively simple.

16 GNSS and Heighting The reference surface used is the WGS84 ellipsoid, and computed heights are heights above this surface, i.e., ellipsoidal heights (h). In precise surveys where GNSS is used in differential carrier phase mode, GNSS outputs precise ellipsoidal height differences ( h).

17 GNSS & Heighting GNSS measures heights and height differences above ellipsoid, in some cases..sufficient. With GNSS heights, water can flow uphill????? Require relation to physically meaningful surface such as the geoid, or local observed MSL. Such physically meaningful heights take the form of orthometric heights.

18 GNSS & Heighting: Technique The typical (vertical) accuracy of GNSS is: Vertical Accuracy (RMS) Autonomous 1m-10m DGPS 0.5m + 1ppm(post processing or real-time) RTK1Hz 2.0 cm + 1 ppm ( BL) 3.0 cm (10 km) PPK1Hz 1.5 cm +1 ppm ( BL) 2.5 cm FStatic 1.0 cm +0.5 ppm ( BL) 1.5 cm Static 0.5 cm +0.5 ppm ( BL) 1.0 cm

19 ATCHUNG!!!!... Small print Measurement precision, accuracy and reliability are dependent upon various factors including number of satellites, geometry, obstructions, observation time, ephemeris accuracy, ionospheric conditions, multipath etc. GPS and GLONASS can increase performance and accuracy by up to 30% relative to GPS only. A full Galileo and GPS L5 XX constellation will further increase measurement performance and accuracy.

20 Factors influencing GNSS Height Accuracy Multipath (effect up to 15cm on L1, stay away from reflective surfaces, ) Long occupation times can mitigate..to an extent Most receivers have correlators to filter out multipath Re-initialisation no guarantee of mitigation

21 Factors influencing GNSS Height Accuracy Antenna phase centre models Electrical phase centre not fixed (effect up 10 cm, careful of mixing antennas, use correct APC model) Absolute APC s as well as relative APC s Eg: Trimble uses relative APC s by default and absolute as optional When you use an antenna that does not have an APC file it will use a default antenna or null info.

22 Factors influencing GNSS Height Accuracy Relative Antenna phase centre models Relative to Dorne Margolin Model T NGSCorrTable=lat504_leis.ngs (in TGO/TBC) ;PCT converted from <ant_info.003> <MLM-04/01/23=156> ;Processor name : pctconvert v1.02 ;Creation time : Fri Feb 27 09:05: ;Calibrated antenna : LEI AT504 w/leis Dome ;Mean phase center (mm) North East Up L1NominalOffset = L2NominalOffset = ;Elevation range (deg) Start Stop Step, ElevationRange = ;Azimuth step size (deg), AzimuthStep = 0, ;Azimuth/elevation corrections (mm), AZ=0 ;L ;L

23 Factors influencing GNSS Height Accuracy Absolute Antenna phase centre models ;LEIAT504 NONE ;Processor name : pctconvert v1.8 ;Creation time : Thu Dec 10 14:52: ;Calibrated antenna : LEI AT504+cr, Calibrated antenna : LEI AT504 w/leis Dome ;Mean phase center (mm) North East Up, L1NominalOffset = L2NominalOffset = ;Elevation range (deg) Start Stop Step, ElevationRange = ;Azimuth step size (deg), AzimuthStep = 5, ;Azimuth/elevation corrections (mm) AZ=0 ;L1: , ;L2: AZ=5 ;L1, , ;L2,

24 Factors influencing GNSS Height Accuracy Ionosphere Can have significant effect Dual frequency (careful of solar max) Troposphere use good model increase occupation times for large height differences Careful of micro climates

25 Factors influencing GNSS Height Accuracy Length of Baseline (for RTK < 5km for less acc work, RTK control < 1km, use precise orbits if PP, for static 1 hour per 50km) Ocean tide loading Effect can be up to 10cm! Don't use coastal base for inland surveys eg DRBN and PMBG Satellite Geometry Advice (PDOP < 3)

26 Factors influencing GNSS Height Accuracy Measuring height of instrument (measure 2 ways) Incorrect height of target use fixed pole

27 Ellipsoid GNSS & Reference Surface A smooth, mathematically defined model of the earths surface North pole b a Geoid Equatorial plane Elements of the ellipsoid a = Semi Major Axis b = Semi Minor Axis f = Flattening = (a-b)/a Ellipsoid

28 GNSS & Reference Frame Global Navigation Satellite Systems Global Positioning Systems (GPS) and Galileo makes reference to WGS84 reference frame ITRF Glonass (Russian) reference frame PZ90 Compass (Chinese) will use ITRF

29 Geoid GNSS & Reference Surface A surface of equal gravitational pull best fitting the average sea surface over the whole globe. That equipotential surface that on average coincide with mean sea level.

30 Magnitude of Geoidal Height (N) The separation between the geoid and the ellipsoid is the geoidal height (N) and varies spatially (globally) from - 107m to +86m.

31 Relationship between Geoid, Ellipsoid and Mean Sea Level

32 GNSS & Heights A elevation 50 m B elevation 41 m Geoid Height = N Ellipsoid Height = h Orthometric Height = H Earths Surface H=50 m H=41 m Geoid N=34m h=84m Ellipsoid h=73m N=32m Orthometric( H) : 50 m - 41m = 9m Ellipsoidal( h) : 84 m - 73m = 11m

33 SA Geoid 2010 In 2007, the Chief Directorate: National Geospatial Information (NGI) commissioned a study to develop an accurate geoid model for South Africa. This model had to be capable of converting ellipsoidal heights determined using NGI's TrigNet to orthometric heights on the South African Land Levelling Datum, to an accuracy of 10 cm (design requirements). Accuracy is 7cm absolute and relative <2cm + GNSS related error.

34 Magnitude of Geoidal Height in SA

35 Variation of Geoidal Heights in SA Figure 3.2 Geoidal heights over DS2826A ( N = 0.45 m over 50km x 50km) Figure 3.3 Geoidal heights over DS2530B (( N = 4.5 m over 50 km x 50km)

36

37

38 GNSS Surveys in areas with large variations in N P 1 H= orthometric height h= ellipsoidal height N= Geoidal Height P 2 P 3 H 1 H 2 H 3 geoid MSL terrain h 1 h 2 h 3 ellipsoid N 1=14.6 N 2=15.3 N 3=16.1

39 GNSS Surveys in areas with small variations in N H= orthometric height h= ellipsoidal height N= Geoid Height P 1 P 2 P 3 H 1 H 2 H 3 geoid MSL h 1= h 2 terrain h 3 ellipsoid N 1=30.15 N 2=30.20 N 3=30.17

40 Ignoring the Geoid (no Geoid), constraining to here point P 1 P 2 H= orthometric height h= ellipsoidal height N= Geoid Height P 3 H 1 H 2 H 3 Terrain h 1 h 2 h 3 Geoid MSL N 1 =0 N 2 =0 N 3 =0 Ellipsoid

41 Ignoring the Geoid (no Geoid), constraining to orthometric height P 1 P 2 H= orthometric height h= ellipsoidal height N= Geoid Height P 3 H 1 H 2 H 3 Geoid MSL h 1 h 2 h 3 Terrain Ellipsoid N 1 =0 N 2 =0 N 3 =0

42 Geometric Geoid Modelling The previous slide was a single point shift/calibration/transformation to model geoid Some do multiple points which in effect does a tilted plane (local geoid) The clever surveyor uses a higher order parameters

43 Geometric Geoid Modelling: Dangers

44 Use of Geoid in relative sense In this case the user sets up at a point with known orthometric height. The base station would compute the ellipsoidal height and transmit this to the rover. At the rover(p 2 ) H 2 = (H 1 N 1 ) + h + N 2

45 Use of Geoid in absolute sense In this case the user sets up at a point with no known orthometric height. Determines ellipsoidal height from TrigNet (RTK 2-3cm or static post processing 1-2cm), depending on the proximity to TrigNet and other factors. Surveys rover points as previous, but could be a few cm out of sync with nearby vertical control. At the rover (P 2 ) H 2 = h 1 + h + N 2

46 Determining h from TrigNet

47 Determining h from TrigNet

48 Best Practice SAGEOID 2010 better than EGM2008 and and order of magnitude better than EGM96 Always use SAGEOID 2010, even if you set up on a known point! Geometric Geoid modelling appropriate only when surrounded by dense network of control points such as TSM s or working in small area with with little change in geoid.

49 Thank You

The Chief Directorate: National

The Chief Directorate: National Surveying The South African Coordinate Reference System (Part 1) by Aslam Parker, Chief Directorate: National Geo-spatial Information This article will define the various elements of the South African

More information

Introduction into Real-Time Network Adjustment with Geo++ GNSMART

Introduction into Real-Time Network Adjustment with Geo++ GNSMART Introduction into Real-Time Network Adjustment with Geo++ GNSMART Andreas Bagge Gerhard Wübbena, Martin Schmitz Geo++ GmbH D-30827 Garbsen, Germany www.geopp.de GeoInformation Workshop 2004, Istanbul Kultur

More information

Geographic Datums & Coordinates

Geographic Datums & Coordinates Geographic Datums & Coordinates What is the shape of the earth? Why is it relevant for GIS? 9-04-2012 GEO327G/386G, UT Austin 2-1 From Conceptual to Pragmatic Dividing a sphere into a stack of pancakes

More information

SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices

SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices SURVEYING WITH GPS Key Words: Static, Fast-static, Kinematic, Pseudo- Kinematic, Real-time kinematic, Receiver Initialization, On The Fly (OTF), Baselines, Redundant baselines, Base Receiver, Rover GPS

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System The Global Positioning System - recognize that GPS is only one of several Global Navigation Satellite Systems (GNSS) - the Russian

More information

1. GLOBAL NAVIGATION SATELLITE SYSTEMS

1. GLOBAL NAVIGATION SATELLITE SYSTEMS 1. GLOBAL NAVIGATION SATELLITE SYSTEMS The Global Navigation Satellite System (GNSS) is a constellation of satellites, transmitting signals for use in navigation and positioning applications, anywhere

More information

GPS Global Positioning System

GPS Global Positioning System GPS Global Positioning System GPS Accuracy Error sources Differential correction GPS Accuracy levels TerraSync settings that affect accuracy of GPS measurements These topics will be covered in this slide

More information

GNSS FIELD DATA COLLECTION GUIDELINES

GNSS FIELD DATA COLLECTION GUIDELINES AD-SDI DATA STANDARD GNSS FIELD DATA COLLECTION GUIDELINES Version 1.0 September 2011 Prepared by Abu Dhabi Spatial Data Infrastructure (AD-SDI) Abu Dhabi Systems and Information Centre (ADSIC) Abu Dhabi,

More information

Prof. Ludovico Biagi. Satellite Navigation and Monitoring

Prof. Ludovico Biagi. Satellite Navigation and Monitoring Prof. Ludovico Biagi Satellite Navigation and Monitoring Navigation: trajectories control positions estimations in real time, at high frequency popular applications: low accuracy (10 m) required specific

More information

GNSS Parameters. Position estimation uncertainties

GNSS Parameters. Position estimation uncertainties GNSS Parameters Position estimation uncertainties Petr Bureš, bures@fd.cvut.cz Faculty of transportation sciences Czech technical university in Prague Contents Satellite systems in general Accuracy Position

More information

Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager

Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager Enabling RTK-like positioning offshore using the global VERIPOS GNSS network Pieter Toor GNSS Technology Manager Introduction PPP/RTK Positioning Techniques PPP-AR Technology Presentation Overview PPP-AR

More information

GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME

GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME Caroline Erickson and Pierre Héroux Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A 0E9

More information

Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com

Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com Presentation Outline GNSS: Global Navigation Satellite System GPS: overview, current signals, modernization GLONASS: history (rise fall rise),

More information

Guidelines for RTK/RTN GNSS Surveying in Canada

Guidelines for RTK/RTN GNSS Surveying in Canada Guidelines for RTK/RTN GNSS Surveying in Canada July 2013 Version 1.1 Ministry of Transportation Ministère des Transports EARTH SCIENCES SECTOR GENERAL INFORMATION PRODUCT 100-E Main Authors: Brian Donahue,

More information

GPS Data Collection Guidelines

GPS Data Collection Guidelines GPS Data Collection Guidelines Prepared by the Standards & Data Coordination Work Group of the NYS GIS Coordination Program Last Updated: April 2007 1 Executive Summary Purpose The goal of this document

More information

Earth Coordinates & Grid Coordinate Systems

Earth Coordinates & Grid Coordinate Systems Earth Coordinates & Grid Coordinate Systems How do we model the earth? Datums Datums mathematically describe the surface of the Earth. Accounts for mean sea level, topography, and gravity models. Projections

More information

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning Joe Hutton and Edith Roy, Applanix Corporation Introduction Applanix, along with

More information

Case Study Australia. Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia. Chair UN-GGIM-AP WG1 Chair APREF.

Case Study Australia. Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia. Chair UN-GGIM-AP WG1 Chair APREF. Case Study Australia Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia Chair UN-GGIM-AP WG1 Chair APREF Page 1 Overview 1. Australian height system Australian Height Datum

More information

Development of new hybrid geoid model for Japan, GSIGEO2011. Basara MIYAHARA, Tokuro KODAMA, Yuki KUROISHI

Development of new hybrid geoid model for Japan, GSIGEO2011. Basara MIYAHARA, Tokuro KODAMA, Yuki KUROISHI Development of new hybrid geoid model for Japan, GSIGEO2011 11 Development of new hybrid geoid model for Japan, GSIGEO2011 Basara MIYAHARA, Tokuro KODAMA, Yuki KUROISHI (Published online: 26 December 2014)

More information

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003 Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy...

More information

Real-Time Kinematic Surveying

Real-Time Kinematic Surveying Real-Time Kinematic Surveying Training Guide F Part Number 33142-40 Revision D September 2003 Corporate Office Trimble Navigation Limited 645 North Mary Avenue Post Office Box 3642 Sunnyvale, CA 94088-3642

More information

Trimble CenterPoint RTX Post-Processing Services FAQs

Trimble CenterPoint RTX Post-Processing Services FAQs Trimble CenterPoint RTX Post-Processing Services FAQs What is Trimble RTX technology? 30 September 2013 Trimble RTX TM (Real Time extended) is a high-accuracy, global GNSS correction technology that combines

More information

NJDEP GPS Data Collection Standards For GIS Data Development

NJDEP GPS Data Collection Standards For GIS Data Development NJDEP GPS Data Collection Standards For GIS Data Development Bureau of Geographic Information Systems Office of Information Resource Management June 8, 2011 1.0 Introduction... 3 2.0 GPS Receiver Hardware

More information

WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS

WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS N & E State Plane Coordinates for Control Points AZIMUTHS - True, Geodetic, or Grid - Conversion from Astronomic to Geodetic (LaPlace Correction)

More information

Lecture 4. Map Projections & Coordinate System in GIS

Lecture 4. Map Projections & Coordinate System in GIS Lecture 4 Map Projections & Coordinate System in GIS GIS in Water Resources Spring 2015 Geodesy, Map Projections and Coordinate Systems Geodesy - the shape of the earth and definition of earth datums Map

More information

Leica AR25 White Paper

Leica AR25 White Paper Leica AR25 White Paper February 2009 Lennon Bedford, Neil Brown, Justin Walford Leica Geosystems AG Heerbrugg, Switzerland 2 Biography Lennon Bedford graduated from the University of Otago in 2003 with

More information

Global Positioning System

Global Positioning System B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins Global Positioning System Theory and Practice Third, revised edition Springer-Verlag Wien New York Contents Abbreviations Numerical constants xix xxiii

More information

Bi-Directional DGPS for Range Safety Applications

Bi-Directional DGPS for Range Safety Applications Bi-Directional DGPS for Range Safety Applications Ranjeet Shetty 234-A, Avionics Engineering Center, Russ College of Engineering and Technology, Ohio University Advisor: Dr. Chris Bartone Outline Background

More information

SPATIAL REFERENCE SYSTEMS

SPATIAL REFERENCE SYSTEMS SPATIAL REFERENCE SYSTEMS We will begin today with the first of two classes on aspects of cartography. Cartography is both an art and a science, but we will focus on the scientific aspects. Geographical

More information

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013 Lecture 5: Satellite Orbits Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013 Geometry Satellite Plasma Posi+oning physics Antenna theory Geophysics Time and Frequency GNSS

More information

The Map Grid of Australia 1994 A Simplified Computational Manual

The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual 'What's the good of Mercator's North Poles and Equators, Tropics, Zones

More information

A guide to coordinate systems in Great Britain

A guide to coordinate systems in Great Britain A guide to coordinate systems in Great Britain An introduction to mapping coordinate systems and the use of GPS datasets with Ordnance Survey mapping D00659 v2.3 Mar 2015 Crown copyright Page 1 of 43 Contents

More information

Lewis Lapine, SCB&CB Chief, South Carolina Geodetic Survey

Lewis Lapine, SCB&CB Chief, South Carolina Geodetic Survey The SC VRS Network Matt Wellslager Project Manager Lewis Lapine, SCB&CB Chief, South Carolina Geodetic Survey South Carolina Geodetic Survey Geodetic and Mapping Services works cooperatively to provide

More information

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model 7 th FIG Regional Conference TS 1C Advances in GNSS Positioning and Applications I Volker Schwieger 1, Jürgen

More information

GAGAN - A SBAS TO SUPPORT CIVIL AVIATION OVER INDIAN AIR SPACE

GAGAN - A SBAS TO SUPPORT CIVIL AVIATION OVER INDIAN AIR SPACE GAGAN - A SBAS TO SUPPORT CIVIL AVIATION OVER INDIAN AIR SPACE Shrey Agarwal a a Department of Civil Engineering, Indian Institute of Technology, Kanpur, India - ashrey@iitk.ac.in KEY WORDS: GAGAN, Satellite

More information

Swedish User Guidelines for Network RTK

Swedish User Guidelines for Network RTK Swedish User Guidelines for Network RTK Robert Odolinski GNSS Research Centre, Curtin University of Technology (Previously Geodetic Research Department of Lantmäteriet, Sweden) Perth, WA, Australia robert.odolinski@curtin.edu.au

More information

Maintaining High Accuracy in Modern Geospatial Data

Maintaining High Accuracy in Modern Geospatial Data Maintaining High Accuracy in Modern Geospatial Data Patrick Cunningham President info@bluemarblegeo.com www.bluemarblegeo.com +1 (207) 582 6747 Copyright 2010 Blue Marble Geographics Concepts Geodesy -

More information

RTCM State Space Representation Messages, Status and Plans

RTCM State Space Representation Messages, Status and Plans RTCM State Space Representation Messages, Status and Plans Martin Schmitz Geo++ GmbH 30827 Garbsen Germany www.geopp.com Outline Introduction Observation Space/ State Space Representation Status of RTCM

More information

Local monitoring by low cost devices and free and open sources softwares

Local monitoring by low cost devices and free and open sources softwares Local monitoring by low cost devices and free and open sources softwares Abstract Ludovico Biagi, Florin-Catalin Grec, Marco Negretti, Maria Grazia Visconti Politecnico di Milano, DICA@ComoCampus The purpose

More information

Tidal Correction Using GPS Determination of the Chart Datum. October 9, FIG Congress 2006

Tidal Correction Using GPS Determination of the Chart Datum. October 9, FIG Congress 2006 Tidal Correction Using GPS Determination of the Chart Datum October 9, FIG Congress 2006 Inhalt The Traditional Way of Tide Correction Tide Correction Using GNSS Task I: Realisation of the Chart Datum

More information

Using GNSS to establish a Height Datum on a Project

Using GNSS to establish a Height Datum on a Project Abstract Richard Stanaway Quickclose PO Box 1364 Carlton VIC 3053 Australia email: richard.stanaway@quickclose.com.au This paper explains in detail practical steps for establishing or extending a height

More information

Monitoring of Open Pit Mines using Combined GNSS Satellite Receivers and Robotic Total Stations

Monitoring of Open Pit Mines using Combined GNSS Satellite Receivers and Robotic Total Stations Monitoring of Open Pit Mines using Combined GNSS Satellite Receivers and Robotic Total Stations N. Brown Leica Geosystems, Switzerland S. Kaloustian Leica Geosystems, Switzerland M. Roeckle Leica Geosystems,

More information

GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN

GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN C. C. Chang Department of Surveying and Mapping Engineering Chung Cheng Institute of Technology Tahsi, Taoyuan 335,

More information

Korea Geodetic Framework for Sustainable Development*

Korea Geodetic Framework for Sustainable Development* UNITED NATIONS E/CONF.102/IP.17 ECONOMIC AND SOCIAL COUNCIL Nineteenth United Nations Regional Cartographic Conference for Asia and the Pacific Bangkok, 29 October 1 November 2012 Item 6(b) of the provisional

More information

GPS: A Primer. presented by Jim Pugh, GISP GIS Project Manager. 2007, EMH&T, Inc.

GPS: A Primer. presented by Jim Pugh, GISP GIS Project Manager. 2007, EMH&T, Inc. GPS: A Primer presented by Jim Pugh, GISP GIS Project Manager GPS: A Primer GPS = Global Positioning System 24 Satellites in Orbit around Earth Each Broadcasts precise time and known location Receivers

More information

GPS Precise Point Positioning with a Difference*

GPS Precise Point Positioning with a Difference* GPS Precise Point Positioning with a Difference* Pierre Héroux and Jan Kouba Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A E9 heroux@geod.nrcan.gc.ca

More information

Land Information Management in Southern Africa Focus on technology management training in Surveying and Mapping in Namibia

Land Information Management in Southern Africa Focus on technology management training in Surveying and Mapping in Namibia Land Information Management in Southern Africa Focus on technology management training in Surveying and Mapping in Namibia Chris Paresi, Urban and Regional Planning and Geo-Information Management Department,

More information

TerraSync Software and GPS Pathfinder Office Software

TerraSync Software and GPS Pathfinder Office Software ORIENTATION GUIDE TerraSync Software and GPS Pathfinder Office Software Orientation Guide Version 7.0 Revision A / May 2012 Version 5.3 TerraSync Version 5.3 GPS Pathfinder Office Corporate Office Trimble

More information

Post Processing Service

Post Processing Service Post Processing Service The delay of propagation of the signal due to the ionosphere is the main source of generation of positioning errors. This problem can be bypassed using a dual-frequency receivers

More information

RELEASE NOTES. Trimble. SPS Series Receivers. Introduction. New features and changes

RELEASE NOTES. Trimble. SPS Series Receivers. Introduction. New features and changes RELEASE NOTES Trimble SPS Series Receivers Introduction New features and changes Version 4.41 Revision A April 2011 F Corporate office Trimble Navigation Limited Engineering and Construction group 5475

More information

Accuracy of Geometric Geoid Model of Singapore using RTK Heighting

Accuracy of Geometric Geoid Model of Singapore using RTK Heighting Yam Khoon TOR, Singapore Key words: Geometric Geoid, RTK Heighting SUMMARY A complete re-levelling of the precise levelling network of Singapore was carried out to derive the reduced levels of some 2000

More information

SPIRIT GPS+GLONASS Solution.

SPIRIT GPS+GLONASS Solution. SPIRIT GPS+GLONASS Solution for Precise and Reliable Navigation www.spiritdsp.com SPIRIT is global leader Global leader in voice, video, audio, telecom software products 20 years on the market (15 years

More information

Online GPS processing services: an initial study

Online GPS processing services: an initial study GPS Solut (2006) 10: 12 20 DOI 10.1007/s10291-005-0147-5 ORIGINAL ARTICLE Reza Ghoddousi-Fard Peter Dare Online GPS processing services: an initial study Received: 15 September 2004 Accepted: 3 May 2005

More information

GPS Data Collection Procedures for Georeferencing Vegetation Resources Inventory and National Forest Inventory Field Sample Plots

GPS Data Collection Procedures for Georeferencing Vegetation Resources Inventory and National Forest Inventory Field Sample Plots Province of British Columbia GPS Data Collection Procedures for Georeferencing Vegetation Resources Inventory and National Forest Inventory Field Sample Plots Resources Information Branch Ministry of Sustainable

More information

Precise Point Positioning from Combined GPS, GLONASS & BeiDou. Mazher Choudhury Chris Rizos

Precise Point Positioning from Combined GPS, GLONASS & BeiDou. Mazher Choudhury Chris Rizos Precise Point Positioning from Combined GPS, GLONASS & BeiDou Mazher Choudhury Chris Rizos Challenges of Precise Point Positioning (PPP) GNSS Constellation(s) CORS Network Other models & files GNSS User

More information

GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS

GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS 1. INTRODUCTION Navigation technologies with precision approach and landing systems, for civilian and military purposes, enable aircrafts to perform their

More information

CONTROL POINT SURVEYING AND TOPOGRAPHIC MAPPING

CONTROL POINT SURVEYING AND TOPOGRAPHIC MAPPING CONTROL POINT SURVEYING AND TOPOGRAPHIC MAPPING Shoichi Oki Land Bureau, National Land Agency, Japan Keywords: control point, survey, topography, mapping, geodesy Contents 1. Introduction 2. Geometric

More information

Global Multi GNSS Processing at CODE

Global Multi GNSS Processing at CODE GNSS Symposium, Berlin Global Multi GNSS Processing at CODE R. Dach, S. Schaer 1, M. Meindl, H. Bock, A. Jäggi, S. Lutz, L. Ostini, L. Prange, A. Steinbach, D. Thaller, P. Walser, G. Beutler Astronomical

More information

Map Projection, Datum and Plane Coordinate Systems

Map Projection, Datum and Plane Coordinate Systems Map Projection, Datum and Plane Coordinate Systems Geodetic Control Network Horizontal Control Network Datum A datum is a set of parameters defining a coordinate system, and a set of control points whose

More information

4.03 Vertical Control Surveys: 4-1

4.03 Vertical Control Surveys: 4-1 4. HORIZONTAL AND VERTICAL CONTROL 4.01 General: Sufficient horizontal and, if applicable, vertical control surveys shall be established by the Contractor for all photogrammetric mapping purposes. Prior

More information

ALBERTA SURVEY CONTROL PRODUCTS MANUAL

ALBERTA SURVEY CONTROL PRODUCTS MANUAL ALBERTA SURVEY CONTROL PRODUCTS MANUAL Lands Division Land Dispositions Branch Geodetic Control Unit Edmonton 2007 Pub. No.: Ref. 85 ISBN: 0-7732-1298-1 For copies of this document, please contact: Geodetic

More information

The Evolution of the Global Navigation Satellite System (GNSS) Spectrum Use

The Evolution of the Global Navigation Satellite System (GNSS) Spectrum Use The Evolution of the Global Navigation Satellite System (GNSS) Spectrum Use Spectrum Management 2012 National Spectrum Management Association Scott Pace (with thanks to Chris Hegerty, MITRE) Space Policy

More information

Postprocessed Surveying. Training Manual

Postprocessed Surveying. Training Manual Postprocessed Surveying Training Manual Part Number 33143-40 Revision B October 2001 Corporate Office Trimble Navigation Limited 645 North Mary Avenue Post Office Box 3642 Sunnyvale, CA 94088-3642 U.S.A.

More information

An Introduction to Coordinate Systems in South Africa

An Introduction to Coordinate Systems in South Africa An Introduction to Coordinate Systems in South Africa Centuries ago people believed that the earth was flat and notwithstanding that if this had been true it would have produced serious problems for mariners

More information

GPS accuracy: Hand-held versus RTK

GPS accuracy: Hand-held versus RTK GPS accuracy GPS accuracy: Hand-held versus RTK Kevin W. Hall, Joanna K. Cooper, and Don C. Lawton ABSTRACT Source and receiver points for seismic lines recorded during the geophysics field school near

More information

Datasheet of stand-alone GPS smart antenna module, LS20057

Datasheet of stand-alone GPS smart antenna module, LS20057 Product name Description Version LS20057 Stand-alone GPS smart antenna module/atheros,9600bps 0.9 (Preliminary) Datasheet of stand-alone GPS smart antenna module, LS20057 1 Introduction LS20057 is a complete

More information

Status, Development and Application

Status, Development and Application Federal Space Agency GLONASS GLONASS Status, Development and Application Sergey G. Revnivykh International Committee on Global Navigation Satellite Systems (ICG) Second Meeting, September 4-7, 2007, Bangalore,

More information

Evolving a new Geodetic Positioning Framework: An Australian Perspective

Evolving a new Geodetic Positioning Framework: An Australian Perspective Evolving a new Geodetic Positioning Framework: An Australian Perspective G. Johnston, J. Dawson Outline Introduction Precise Positioning National Geospatial Reference Systems Asia Pacific Reference Frame

More information

量 說 Explanatory Notes on Geodetic Datums in Hong Kong

量 說 Explanatory Notes on Geodetic Datums in Hong Kong 量 說 Explanatory Notes on Geodetic Datums in Hong Kong Survey & Mapping Office Lands Department 1995 All Right Reserved by Hong Kong Government 留 CONTENTS INTRODUCTION............... A1 HISTORICAL BACKGROUND............

More information

Time and frequency distribution using satellites

Time and frequency distribution using satellites INSTITUTE OF PHYSICS PUBLISHING Rep. Prog. Phys. 65 (2002) 1119 1164 REPORTS ON PROGRESS IN PHYSICS PII: S0034-4885(02)98967-0 Time and frequency distribution using satellites Judah Levine Time and Frequency

More information

CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS

CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS Surveying Terms 9-2 Standard Abbreviations 9-6 9-1 A) SURVEYING TERMS Accuracy - The degree of conformity with a standard, or the degree of perfection attained

More information

International Global Navigation Satellite Systems Service

International Global Navigation Satellite Systems Service International Global Navigation Satellite Systems Service IGS Multi-GNSS Experiment IGS M-GEX Call for Participation www.igs.org Response to this Call for Participation in IGS M-GEX via Web Form Submission

More information

GPS Receiver Test. Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology

GPS Receiver Test. Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology GPS Receiver Test Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology A. Amiri-Simkooei R. Kremers C. Tiberius May 24 Preface For the purpose of a receiver

More information

Trimble R8 Base and Rover Quick Setup Guide. Inland GPS Inc.

Trimble R8 Base and Rover Quick Setup Guide. Inland GPS Inc. Trimble R8 Base and Rover Quick Setup Guide Inland GPS Inc. Setting up the GPS Base Equipment Hardware First Find the best, most advantageous secure place to setup the GPS base equipment. Look for a high

More information

Leica SmartNet UK & Ireland Network RTK User Guide

Leica SmartNet UK & Ireland Network RTK User Guide Leica SmartNet UK & Ireland Network RTK User Guide Contents Background.. Page 3 Single Base RTK.... Page 3 Advantages & Disadvantages of Single Base RTK Page 4 Network RTK... Page 4 Advantages & Disadvantages

More information

Ellipsoid and Datum, Projection, Coordinate system, and Map Scale

Ellipsoid and Datum, Projection, Coordinate system, and Map Scale Ellipsoid and Datum, Projection, Coordinate system, and Map Scale Lectures 4 Sept 14, 2006 Why we need it? Earth Shape Models Flat earth models are still used for plane surveying, over distances short

More information

Doc 9849 AN/457. Approved by the Secretary General and published under his authority. First Edition 2005. International Civil Aviation Organization

Doc 9849 AN/457. Approved by the Secretary General and published under his authority. First Edition 2005. International Civil Aviation Organization Doc 9849 AN/457 Global Navigation Satellite System (GNSS) Manual Approved by the Secretary General and published under his authority First Edition 2005 International Civil Aviation Organization AMENDMENTS

More information

GeoMax GNSS Zenith10 & Zenith20 Series

GeoMax GNSS Zenith10 & Zenith20 Series GeoMax GNSS Zenith10 & Zenith20 Series GeoMax About Us At GeoMax we provide a comprehensive portfolio of integrated solutions by developing, manufacturing and distributing quality construction and surveying

More information

Education and Training in GNSS

Education and Training in GNSS Education and Training in GNSS Mourad BOUZIANI Department of Geodesy and Surveying ESGIT, IAV Hassan II, Morocco Cordinator of GNSS Master Curriculum CRASTE-LF, Affiliated to the United Nations OUTLINE

More information

GPS Positioning Modes

GPS Positioning Modes 5 GPS Positioning Modes Positioning with GPS can be performed in either of two ways: point (absolute) positioning or relative positioning. Classical GPS point positioning employs one GPS receiver that

More information

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...

More information

INTRODUCTION TO GNSS NETWORK RTK. BAKU (AZERBAIDJAN) 12 Mai 2009. Ezzedine Djerbi Leica Geo-Systems Switzerland

INTRODUCTION TO GNSS NETWORK RTK. BAKU (AZERBAIDJAN) 12 Mai 2009. Ezzedine Djerbi Leica Geo-Systems Switzerland INTRODUCTION TO GNSS NETWORK RTK BAKU (AZERBAIDJAN) 12 Mai 2009 Ezzedine Djerbi Leica Geo-Systems Switzerland 1 GPS & GLONASS constellations have never been designed to serve the civilian applications

More information

Principles of GPS Operation

Principles of GPS Operation Principles of GPS Operation Recap GNSS Global Navigation Satellite System NAVSTARGPS 3 Segments of GPS Space Segment Control Segment User Segment How Does GPS work? Triangulation Need at least 4 Satellites

More information

QUICK-START GUIDE FOR THE TRIMBLE TSC2 DATA COLLECTOR

QUICK-START GUIDE FOR THE TRIMBLE TSC2 DATA COLLECTOR QUICK-START GUIDE FOR THE TRIMBLE TSC2 DATA COLLECTOR Version 1.0 June 2008 1. Power GPS Receiver and attach TSC2 Data Collector. During the survey the TSC2 will draw power from the receiver s battery,

More information

PLOTTING SURVEYING DATA IN GOOGLE EARTH

PLOTTING SURVEYING DATA IN GOOGLE EARTH PLOTTING SURVEYING DATA IN GOOGLE EARTH D M STILLMAN Abstract Detail surveys measured with a total station use local coordinate systems. To make the data obtained from such surveys compatible with Google

More information

To assess GPS tracking devices and associated software suitable for real time monitoring of timber haulage trucks.

To assess GPS tracking devices and associated software suitable for real time monitoring of timber haulage trucks. To assess GPS tracking devices and associated software suitable for real time monitoring of timber haulage trucks. Dr. Ger Devlin Bioresources Research Centre (BRC) Biosystems Engineering University College

More information

Laser Ranging to Nano-Satellites

Laser Ranging to Nano-Satellites 13-0222 Laser Ranging to Nano-Satellites G. Kirchner (1), Ludwig Grunwaldt (2), Reinhard Neubert (2), Franz Koidl (1), Merlin Barschke (3), Zizung Yoon (3), Hauke Fiedler (4), Christine Hollenstein (5)

More information

CDMA Technology : Pr. S. Flament www.greyc.fr/user/99. Pr. Dr. W. sk www.htwg-konstanz.de. On line Course on CDMA Technology

CDMA Technology : Pr. S. Flament www.greyc.fr/user/99. Pr. Dr. W. sk www.htwg-konstanz.de. On line Course on CDMA Technology CDMA Technology : Pr. Dr. W. sk www.htwg-konstanz.de Pr. S. Flament www.greyc.fr/user/99 On line Course on CDMA Technology CDMA Technology : CDMA / DS : Principle of operation Generation of PN Spreading

More information

DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON

DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON John A. Vint Survey Manager Thales GeoSolutions Norge AS Hønefoss, 7. november 2003 Scope of Presentation Introduction Summary of GPS Errors.

More information

BeiDou Navigation Satellite System Open Service

BeiDou Navigation Satellite System Open Service BeiDou Navigation Satellite System Open Service Performance Standard (Version 1.0) China Satellite Navigation Office December 2013 Foreword The space constellation of BeiDou Navigation Satellite System

More information

Sun Earth Relationships

Sun Earth Relationships 1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation

More information

Global Positioning System (GPS) Automated Vehicle Location (AVL) Geographic Information System (GIS) and Routing/Scheduling System

Global Positioning System (GPS) Automated Vehicle Location (AVL) Geographic Information System (GIS) and Routing/Scheduling System Global Positioning System (GPS) Automated Vehicle Location (AVL) Geographic Information System (GIS) and Routing/Scheduling System Jeff Tsai Program Director Institute for Transportation Research and Education

More information

Opus Projects A Web-Based Application to Administer and Process Multi- Day GPS Campaign Data

Opus Projects A Web-Based Application to Administer and Process Multi- Day GPS Campaign Data Opus Projects A Web-Based Application to Administer and Process Multi- Day GPS Campaign Data Neil D. WESTON, Gerald L. MADER and Tomás SOLER, USA Key words: GPS; Positioning; Campaign SUMMARY The National

More information

Datasheet. Underground Utility 3-D Survey. Spar 300 Spar 300 RL1G1 Version 1.1

Datasheet. Underground Utility 3-D Survey. Spar 300 Spar 300 RL1G1 Version 1.1 Underground Utility 3-D Survey Datasheet Spar 300 Spar 300 RL1G1 Version 1.1 Optimal Ranging, Inc. 3251 Olcott St. Santa Clara, CA 95054 USA www.optimalranging.com +1 408 715 1222 info@optimalranging.com

More information

MobileMapper 6 White Paper

MobileMapper 6 White Paper MobileMapper 6 White Paper Meter-Level Mapping Accuracy With Post-Processing Introduction Since its introduction in February 2008, the Magellan MobileMapper 6 has been welcomed by the market as the only

More information

Online Precise Point Positioning Using the. Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP)

Online Precise Point Positioning Using the. Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP) Online Precise Point Positioning Using the Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP) Thomas Nylen and Seth White UNAVCO October 2007 I. Precise Point Positioning Precise Point

More information

To facilitate the trials, MagicSBAS

To facilitate the trials, MagicSBAS Vehicle tracking trial results for SBAS in South Africa Information from SANSA The SATSA (SBAS Awareness and Training for South Africa) project was established to facilitate SBAS (satellite based augmentation

More information

GNSS-PW Progress Session 5: Other GRUAN products

GNSS-PW Progress Session 5: Other GRUAN products GNSS-PW Progress Session 5: Other GRUAN products Markus Bradke Helmholtz-Centre Potsdam - GFZ German Research Centre for Geosciences Telegrafenberg, 14473 Potsdam, Germany Department 1: Geodesy and Remote

More information

Perspective of Permanent Reference Network KOPOS in Kosova

Perspective of Permanent Reference Network KOPOS in Kosova 143 Perspective of Permanent Reference Network KOPOS in Kosova Meha, M. and Çaka, M. Kosovo Cadastral Agency, Kosovo Archive Building II nd floor, P.O. 10000, Prishtina, Republic of Kosovo, E-mail: mmeha@yahoo.com,

More information

Status and Development of the European Height Systems

Status and Development of the European Height Systems Status and Development of the European Height Systems J. Adam, W. Augath, F. Brouwer, G. Engelhardt, W. Gurtner, B. G. Harsson, J. IHDE, D. Ineichen, H. Lang, J. Luthardt, M. Sacher, W. Schlüter, T. Springer,

More information