21.2 Geometric Growth and Compound Interest

Size: px
Start display at page:

Download "21.2 Geometric Growth and Compound Interest"

Transcription

1 21.2 Geometric Growth and Compound Interest What you may have expected with the first example in the last section was that after you earned the $100 and it was added to your balance, then the next time interest was calculated, it would be 10% of the current balance, $1100. That did not happen using the simple interest model, but it does when we use a compound interest model. So, suppose you deposit $1000 in an account that pays interest at a rate of 10% compounded annually. How much is in the account after 1 year? After 2 years? After 3 years? Notice that not only is the balance increasing each year, but the interest is increasing each year as well. 1

2 Compound Interest is interest that is paid on both the original principal and accumulated interest. In the previous example, interest was compounded once a year (or annually), but often interest is compounded multiple times a year, for example quarterly (four times per year) or monthly (12 times per year). With an interest rate of 10% per year and quarterly compounding, you get one fourth of the rate or 2.5%, paid in interest each quarter year. The "quarter" (three months) is the compounding period, or the time elapsing before interest is paid. The compounding period is the fundamental interval on which compounding is based, within which no compounding is done. Compound Interest Formula for an Annual Rate An initial principal P in an account that pays interest at a nominal annual rate r, compounded m times per year, grows after t years to Notation for Savings A P r t m amount accumulated, sometimes denoted FV for "future value" initial principal, sometimes denoted PV for "present value" nominal annual rate of interest number of years number of compounding periods per year 2

3 Use the compound interest formula below to find the amount accumulated for each of the following. 1. $5000 is invested for 20 years at an annual interest rate of 7%, compounded semi annually. 2. $400 is invested for 3 years at an annual interest rate of 5.5%, compounded monthly. 3. $10,000 is invested for 8 years at an annual interest rate of 2.5%, compounded weekly. 4. $7500 is invested for 50 years at an annual interest rate of 4.25%, compounded annually. To find the amount of interest earned, subtract the principal P, from the amount accumulated, A. I = A P Determine the amount of interest earned in problems 1 4 above. 3

4 Suppose you invest $1000 at a rate of 10% annual interest, compounded quarterly. How much have you accumulated after 1 year? How much total interest was earned during the first year? What percent of $1000 is this? This shows that when interest is compounded, there is a difference between the nominal interest rate and the effective rate. These two terms are defined below. A nominal rate is any stated rate of interest for a specified length of time. By itself, a nominal rate does not indicate or take into account whether or how often interest is compounded. The effective rate is the rate of simple interest that would produce exactly the same amount of interest over the same length of time. For a year, the effective rate is called the annual percentage yield (APY). So in our example, the nominal rate was 10%, but the effective rate (APY) was %. The APY is always as large or larger than the nominal rate. 4

5 For an interest rate r, a principal of $1 grows to (1 + r/m) m in 1 year, so the interest earned on th dollar in one year is the APY (annual percentage yield), which is the total amount minus the origin $1. Hence the formula for APY is given as follows: where APY = annual percentage yield (effective annual rate) r = nominal interest rate m = number of compounding periods per year Examples: 5. Determine the APY if the nominal interest rate is 4.5%, compounded weekly. 6. Determine the APY if the nominal interest rate is 3.2%, compounded quarterly. 7. Determine the APY if the nominal interest rate is 1.82%, compounded daily. 8. Determine the APY if the nominal interest rate is 5%, compounded monthly. 5

6 The amount added each compounding period is proportional to the amount present at the time of compounding; this type of growth is called geometric growth. Geometric Growth (also called exponential growth) is growth proportional to the amount present. Contrast this to arithmetic or linear growth, which simply adds the same amount each period. The table and graph below show the difference in growth for simple (linear) interest and compound (exponential) interest. the balance is multiplied by 1.1 each year $100 is added each year 6

7 The distinction between linear growth and exponential growth is fundamental to the major theory of demographer and economist Thomas Robert Malthus ( ). He claimed that human populations grow geometrically (exponentially) but food supplies grow arithmetically (linearly), so that populations tend to outstrip their ability to feed themselves. Homework: Read Spotlight 21.1 (p. 777), do HW #20 (handout). 7

Future Value of an Annuity Sinking Fund. MATH 1003 Calculus and Linear Algebra (Lecture 3)

Future Value of an Annuity Sinking Fund. MATH 1003 Calculus and Linear Algebra (Lecture 3) MATH 1003 Calculus and Linear Algebra (Lecture 3) Future Value of an Annuity Definition An annuity is a sequence of equal periodic payments. We call it an ordinary annuity if the payments are made at the

More information

Chapter 21: Savings Models

Chapter 21: Savings Models October 16, 2013 Last time Arithmetic Growth Simple Interest Geometric Growth Compound Interest A limit to Compounding Problems Question: I put $1,000 dollars in a savings account with 2% nominal interest

More information

5.1 Simple and Compound Interest

5.1 Simple and Compound Interest 5.1 Simple and Compound Interest Question 1: What is simple interest? Question 2: What is compound interest? Question 3: What is an effective interest rate? Question 4: What is continuous compound interest?

More information

3. Time value of money. We will review some tools for discounting cash flows.

3. Time value of money. We will review some tools for discounting cash flows. 1 3. Time value of money We will review some tools for discounting cash flows. Simple interest 2 With simple interest, the amount earned each period is always the same: i = rp o where i = interest earned

More information

first complete "prior knowlegde" -- to refresh knowledge of Simple and Compound Interest.

first complete prior knowlegde -- to refresh knowledge of Simple and Compound Interest. ORDINARY SIMPLE ANNUITIES first complete "prior knowlegde" -- to refresh knowledge of Simple and Compound Interest. LESSON OBJECTIVES: students will learn how to determine the Accumulated Value of Regular

More information

About Compound Interest

About Compound Interest About Compound Interest TABLE OF CONTENTS About Compound Interest... 1 What is COMPOUND INTEREST?... 1 Interest... 1 Simple Interest... 1 Compound Interest... 1 Calculations... 3 Calculating How Much to

More information

MAT116 Project 2 Chapters 8 & 9

MAT116 Project 2 Chapters 8 & 9 MAT116 Project 2 Chapters 8 & 9 1 8-1: The Project In Project 1 we made a loan workout decision based only on data from three banks that had merged into one. We did not consider issues like: What was the

More information

SEQUENCES ARITHMETIC SEQUENCES. Examples

SEQUENCES ARITHMETIC SEQUENCES. Examples SEQUENCES ARITHMETIC SEQUENCES An ordered list of numbers such as: 4, 9, 6, 25, 36 is a sequence. Each number in the sequence is a term. Usually variables with subscripts are used to label terms. For example,

More information

Percent, Sales Tax, & Discounts

Percent, Sales Tax, & Discounts Percent, Sales Tax, & Discounts Many applications involving percent are based on the following formula: Note that of implies multiplication. Suppose that the local sales tax rate is 7.5% and you purchase

More information

APPENDIX. Interest Concepts of Future and Present Value. Concept of Interest TIME VALUE OF MONEY BASIC INTEREST CONCEPTS

APPENDIX. Interest Concepts of Future and Present Value. Concept of Interest TIME VALUE OF MONEY BASIC INTEREST CONCEPTS CHAPTER 8 Current Monetary Balances 395 APPENDIX Interest Concepts of Future and Present Value TIME VALUE OF MONEY In general business terms, interest is defined as the cost of using money over time. Economists

More information

Chapter 4 Nominal and Effective Interest Rates

Chapter 4 Nominal and Effective Interest Rates Chapter 4 Nominal and Effective Interest Rates Chapter 4 Nominal and Effective Interest Rates INEN 303 Sergiy Butenko Industrial & Systems Engineering Texas A&M University Nominal and Effective Interest

More information

$496. 80. Example If you can earn 6% interest, what lump sum must be deposited now so that its value will be $3500 after 9 months?

$496. 80. Example If you can earn 6% interest, what lump sum must be deposited now so that its value will be $3500 after 9 months? Simple Interest, Compound Interest, and Effective Yield Simple Interest The formula that gives the amount of simple interest (also known as add-on interest) owed on a Principal P (also known as present

More information

With compound interest you earn an additional $128.89 ($1628.89 - $1500).

With compound interest you earn an additional $128.89 ($1628.89 - $1500). Compound Interest Interest is the amount you receive for lending money (making an investment) or the fee you pay for borrowing money. Compound interest is interest that is calculated using both the principle

More information

Time Value of Money 1

Time Value of Money 1 Time Value of Money 1 This topic introduces you to the analysis of trade-offs over time. Financial decisions involve costs and benefits that are spread over time. Financial decision makers in households

More information

Compound Interest. Invest 500 that earns 10% interest each year for 3 years, where each interest payment is reinvested at the same rate:

Compound Interest. Invest 500 that earns 10% interest each year for 3 years, where each interest payment is reinvested at the same rate: Compound Interest Invest 500 that earns 10% interest each year for 3 years, where each interest payment is reinvested at the same rate: Table 1 Development of Nominal Payments and the Terminal Value, S.

More information

Week 2: Exponential Functions

Week 2: Exponential Functions Week 2: Exponential Functions Goals: Introduce exponential functions Study the compounded interest and introduce the number e Suggested Textbook Readings: Chapter 4: 4.1, and Chapter 5: 5.1. Practice Problems:

More information

Chapter 04 - More General Annuities

Chapter 04 - More General Annuities Chapter 04 - More General Annuities 4-1 Section 4.3 - Annuities Payable Less Frequently Than Interest Conversion Payment 0 1 0 1.. k.. 2k... n Time k = interest conversion periods before each payment n

More information

EXPONENTIAL FUNCTIONS 8.1.1 8.1.6

EXPONENTIAL FUNCTIONS 8.1.1 8.1.6 EXPONENTIAL FUNCTIONS 8.1.1 8.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the

More information

For additional information, see the Math Notes boxes in Lesson B.1.3 and B.2.3.

For additional information, see the Math Notes boxes in Lesson B.1.3 and B.2.3. EXPONENTIAL FUNCTIONS B.1.1 B.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the

More information

GEOMETRIC SEQUENCES AND SERIES

GEOMETRIC SEQUENCES AND SERIES 4.4 Geometric Sequences and Series (4 7) 757 of a novel and every day thereafter increase their daily reading by two pages. If his students follow this suggestion, then how many pages will they read during

More information

1. Annuity a sequence of payments, each made at equally spaced time intervals.

1. Annuity a sequence of payments, each made at equally spaced time intervals. Ordinary Annuities (Young: 6.2) In this Lecture: 1. More Terminology 2. Future Value of an Ordinary Annuity 3. The Ordinary Annuity Formula (Optional) 4. Present Value of an Ordinary Annuity More Terminology

More information

How to calculate present values

How to calculate present values How to calculate present values Back to the future Chapter 3 Discounted Cash Flow Analysis (Time Value of Money) Discounted Cash Flow (DCF) analysis is the foundation of valuation in corporate finance

More information

Interest Rate and Credit Risk Derivatives

Interest Rate and Credit Risk Derivatives Interest Rate and Credit Risk Derivatives Interest Rate and Credit Risk Derivatives Peter Ritchken Kenneth Walter Haber Professor of Finance Weatherhead School of Management Case Western Reserve University

More information

7. Solving Linear Inequalities and Compound Inequalities

7. Solving Linear Inequalities and Compound Inequalities 7. Solving Linear Inequalities and Compound Inequalities Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing

More information

Ch 3 Understanding money management

Ch 3 Understanding money management Ch 3 Understanding money management 1. nominal & effective interest rates 2. equivalence calculations using effective interest rates 3. debt management If payments occur more frequently than annual, how

More information

What is the difference between simple and compound interest and does it really matter?

What is the difference between simple and compound interest and does it really matter? Module gtf1 Simple Versus Compound Interest What is the difference between simple and compound interest and does it really matter? There are various methods for computing interest. Do you know what the

More information

Sample problems from Chapter 10.1

Sample problems from Chapter 10.1 Sample problems from Chapter 10.1 This is the annuities sinking funds formula. This formula is used in most cases for annuities. The payments for this formula are made at the end of a period. Your book

More information

Homework 4 Solutions

Homework 4 Solutions Homework 4 Solutions Chapter 4B Does it make sense? Decide whether each of the following statements makes sense or is clearly true) or does not make sense or is clearly false). Explain your reasoning.

More information

Chapter Two. THE TIME VALUE OF MONEY Conventions & Definitions

Chapter Two. THE TIME VALUE OF MONEY Conventions & Definitions Chapter Two THE TIME VALUE OF MONEY Conventions & Definitions Introduction Now, we are going to learn one of the most important topics in finance, that is, the time value of money. Note that almost every

More information

Chapter The Time Value of Money

Chapter The Time Value of Money Chapter The Time Value of Money PPT 9-2 Chapter 9 - Outline Time Value of Money Future Value and Present Value Annuities Time-Value-of-Money Formulas Adjusting for Non-Annual Compounding Compound Interest

More information

Accounting Building Business Skills. Interest. Interest. Paul D. Kimmel. Appendix B: Time Value of Money

Accounting Building Business Skills. Interest. Interest. Paul D. Kimmel. Appendix B: Time Value of Money Accounting Building Business Skills Paul D. Kimmel Appendix B: Time Value of Money PowerPoint presentation by Kate Wynn-Williams University of Otago, Dunedin 2003 John Wiley & Sons Australia, Ltd 1 Interest

More information

Lesson 4 Annuities: The Mathematics of Regular Payments

Lesson 4 Annuities: The Mathematics of Regular Payments Lesson 4 Annuities: The Mathematics of Regular Payments Introduction An annuity is a sequence of equal, periodic payments where each payment receives compound interest. One example of an annuity is a Christmas

More information

Chapter 6. Discounted Cash Flow Valuation. Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Answer 6.1

Chapter 6. Discounted Cash Flow Valuation. Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Answer 6.1 Chapter 6 Key Concepts and Skills Be able to compute: the future value of multiple cash flows the present value of multiple cash flows the future and present value of annuities Discounted Cash Flow Valuation

More information

Time Value of Money Revisited: Part 1 Terminology. Learning Outcomes. Time Value of Money

Time Value of Money Revisited: Part 1 Terminology. Learning Outcomes. Time Value of Money Time Value of Money Revisited: Part 1 Terminology Intermediate Accounting II Dr. Chula King 1 Learning Outcomes Definition of Time Value of Money Components of Time Value of Money How to Answer the Question

More information

Homework #2 Solutions

Homework #2 Solutions MAT Fall 0 Homework # Solutions Problems Section.: 8, 0, 6, 0, 8, 0 Section.:, 0, 8,, 4, 8..8. Find the relative, or percent, change in W if it changes from 0. to 0.0. Solution: The percent change is R

More information

CHAPTER 6 Accounting and the Time Value of Money

CHAPTER 6 Accounting and the Time Value of Money CHAPTER 6 Accounting and the Time Value of Money 6-1 LECTURE OUTLINE This chapter can be covered in two to three class sessions. Most students have had previous exposure to single sum problems and ordinary

More information

Chapter 3 Mathematics of Finance

Chapter 3 Mathematics of Finance Chapter 3 Mathematics of Finance Section 3 Future Value of an Annuity; Sinking Funds Learning Objectives for Section 3.3 Future Value of an Annuity; Sinking Funds The student will be able to compute the

More information

Chapter 22: Borrowings Models

Chapter 22: Borrowings Models October 21, 2013 Last Time The Consumer Price Index Real Growth The Consumer Price index The official measure of inflation is the Consumer Price Index (CPI) which is the determined by the Bureau of Labor

More information

Major Work of the Grade

Major Work of the Grade Counting and Cardinality Know number names and the count sequence. Count to tell the number of objects. Compare numbers. Kindergarten Describe and compare measurable attributes. Classify objects and count

More information

Comparing Simple and Compound Interest

Comparing Simple and Compound Interest Comparing Simple and Compound Interest GRADE 11 In this lesson, students compare various savings and investment vehicles by calculating simple and compound interest. Prerequisite knowledge: Students should

More information

Bond Price Arithmetic

Bond Price Arithmetic 1 Bond Price Arithmetic The purpose of this chapter is: To review the basics of the time value of money. This involves reviewing discounting guaranteed future cash flows at annual, semiannual and continuously

More information

ICASL - Business School Programme

ICASL - Business School Programme ICASL - Business School Programme Quantitative Techniques for Business (Module 3) Financial Mathematics TUTORIAL 2A This chapter deals with problems related to investing money or capital in a business

More information

Compounding Quarterly, Monthly, and Daily

Compounding Quarterly, Monthly, and Daily 126 Compounding Quarterly, Monthly, and Daily So far, you have been compounding interest annually, which means the interest is added once per year. However, you will want to add the interest quarterly,

More information

Check off these skills when you feel that you have mastered them.

Check off these skills when you feel that you have mastered them. Chapter Objectives Check off these skills when you feel that you have mastered them. Know the basic loan terms principal and interest. Be able to solve the simple interest formula to find the amount of

More information

PRESENT VALUE ANALYSIS. Time value of money equal dollar amounts have different values at different points in time.

PRESENT VALUE ANALYSIS. Time value of money equal dollar amounts have different values at different points in time. PRESENT VALUE ANALYSIS Time value of money equal dollar amounts have different values at different points in time. Present value analysis tool to convert CFs at different points in time to comparable values

More information

380.760: Corporate Finance. Financial Decision Making

380.760: Corporate Finance. Financial Decision Making 380.760: Corporate Finance Lecture 2: Time Value of Money and Net Present Value Gordon Bodnar, 2009 Professor Gordon Bodnar 2009 Financial Decision Making Finance decision making is about evaluating costs

More information

Calculations for Time Value of Money

Calculations for Time Value of Money KEATMX01_p001-008.qxd 11/4/05 4:47 PM Page 1 Calculations for Time Value of Money In this appendix, a brief explanation of the computation of the time value of money is given for readers not familiar with

More information

Dick Schwanke Finite Math 111 Harford Community College Fall 2013

Dick Schwanke Finite Math 111 Harford Community College Fall 2013 Annuities and Amortization Finite Mathematics 111 Dick Schwanke Session #3 1 In the Previous Two Sessions Calculating Simple Interest Finding the Amount Owed Computing Discounted Loans Quick Review of

More information

What You ll Learn. And Why. Key Words. interest simple interest principal amount compound interest compounding period present value future value

What You ll Learn. And Why. Key Words. interest simple interest principal amount compound interest compounding period present value future value What You ll Learn To solve problems involving compound interest and to research and compare various savings and investment options And Why Knowing how to save and invest the money you earn will help you

More information

International Financial Strategies Time Value of Money

International Financial Strategies Time Value of Money International Financial Strategies 1 Future Value and Compounding Future value = cash value of the investment at some point in the future Investing for single period: FV. Future Value PV. Present Value

More information

3 More on Accumulation and Discount Functions

3 More on Accumulation and Discount Functions 3 More on Accumulation and Discount Functions 3.1 Introduction In previous section, we used 1.03) # of years as the accumulation factor. This section looks at other accumulation factors, including various

More information

Finance Unit 8. Success Criteria. 1 U n i t 8 11U Date: Name: Tentative TEST date

Finance Unit 8. Success Criteria. 1 U n i t 8 11U Date: Name: Tentative TEST date 1 U n i t 8 11U Date: Name: Finance Unit 8 Tentative TEST date Big idea/learning Goals In this unit you will study the applications of linear and exponential relations within financing. You will understand

More information

Solutions to Supplementary Questions for HP Chapter 5 and Sections 1 and 2 of the Supplementary Material. i = 0.75 1 for six months.

Solutions to Supplementary Questions for HP Chapter 5 and Sections 1 and 2 of the Supplementary Material. i = 0.75 1 for six months. Solutions to Supplementary Questions for HP Chapter 5 and Sections 1 and 2 of the Supplementary Material 1. a) Let P be the recommended retail price of the toy. Then the retailer may purchase the toy at

More information

Chapter 21: Savings Models

Chapter 21: Savings Models October 18, 2013 Last Time A Model for Saving Present Value and Inflation Problems Question 1: Suppose that you want to save up $2000 for a semester abroad two years from now. How much do you have to put

More information

Continuous Compounding and Discounting

Continuous Compounding and Discounting Continuous Compounding and Discounting Philip A. Viton October 5, 2011 Continuous October 5, 2011 1 / 19 Introduction Most real-world project analysis is carried out as we ve been doing it, with the present

More information

TIME VALUE OF MONEY. Return of vs. Return on Investment: We EXPECT to get more than we invest!

TIME VALUE OF MONEY. Return of vs. Return on Investment: We EXPECT to get more than we invest! TIME VALUE OF MONEY Return of vs. Return on Investment: We EXPECT to get more than we invest! Invest $1,000 it becomes $1,050 $1,000 return of $50 return on Factors to consider when assessing Return on

More information

Review Page 468 #1,3,5,7,9,10

Review Page 468 #1,3,5,7,9,10 MAP4C Financial Student Checklist Topic/Goal Task Prerequisite Skills Simple & Compound Interest Video Lesson Part Video Lesson Part Worksheet (pages) Present Value Goal: I will use the present value formula

More information

4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY

4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY 1 Oh the things you should learn How to recognize and write arithmetic sequences

More information

Mathematics. Rosella Castellano. Rome, University of Tor Vergata

Mathematics. Rosella Castellano. Rome, University of Tor Vergata and Loans Mathematics Rome, University of Tor Vergata and Loans Future Value for Simple Interest Present Value for Simple Interest You deposit E. 1,000, called the principal or present value, into a savings

More information

Introduction to the Hewlett-Packard (HP) 10BII Calculator and Review of Mortgage Finance Calculations

Introduction to the Hewlett-Packard (HP) 10BII Calculator and Review of Mortgage Finance Calculations Introduction to the Hewlett-Packard (HP) 10BII Calculator and Review of Mortgage Finance Calculations Real Estate Division Sauder School of Business University of British Columbia Introduction to the Hewlett-Packard

More information

4 Annuities and Loans

4 Annuities and Loans 4 Annuities and Loans 4.1 Introduction In previous section, we discussed different methods for crediting interest, and we claimed that compound interest is the correct way to credit interest. This section

More information

Basic financial arithmetic

Basic financial arithmetic 2 Basic financial arithmetic Simple interest Compound interest Nominal and effective rates Continuous discounting Conversions and comparisons Exercise Summary File: MFME2_02.xls 13 This chapter deals

More information

1 Interest rates, and risk-free investments

1 Interest rates, and risk-free investments Interest rates, and risk-free investments Copyright c 2005 by Karl Sigman. Interest and compounded interest Suppose that you place x 0 ($) in an account that offers a fixed (never to change over time)

More information

4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS

4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Functions Modeling Change: A Preparation for Calculus, 4th Edition,

More information

Chapter 6. Time Value of Money Concepts. Simple Interest 6-1. Interest amount = P i n. Assume you invest $1,000 at 6% simple interest for 3 years.

Chapter 6. Time Value of Money Concepts. Simple Interest 6-1. Interest amount = P i n. Assume you invest $1,000 at 6% simple interest for 3 years. 6-1 Chapter 6 Time Value of Money Concepts 6-2 Time Value of Money Interest is the rent paid for the use of money over time. That s right! A dollar today is more valuable than a dollar to be received in

More information

Absolute Value Equations and Inequalities

Absolute Value Equations and Inequalities Key Concepts: Compound Inequalities Absolute Value Equations and Inequalities Intersections and unions Suppose that A and B are two sets of numbers. The intersection of A and B is the set of all numbers

More information

5. Time value of money

5. Time value of money 1 Simple interest 2 5. Time value of money With simple interest, the amount earned each period is always the same: i = rp o We will review some tools for discounting cash flows. where i = interest earned

More information

Chapter 4: Nominal and Effective Interest Rates

Chapter 4: Nominal and Effective Interest Rates Chapter 4: Nominal and Effective Interest Rates Session 9-10-11 Dr Abdelaziz Berrado 1 Topics to Be Covered in Today s Lecture Section 4.1: Nominal and Effective Interest Rates statements Section 4.2:

More information

Chapter 4: Net Present Value

Chapter 4: Net Present Value 4.1 a. Future Value = C 0 (1+r) T Chapter 4: Net Present Value = $1,000 (1.05) 10 = $1,628.89 b. Future Value = $1,000 (1.07) 10 = $1,967.15 c. Future Value = $1,000 (1.05) 20 = $2,653.30 d. Because interest

More information

2. How would (a) a decrease in the interest rate or (b) an increase in the holding period of a deposit affect its future value? Why?

2. How would (a) a decrease in the interest rate or (b) an increase in the holding period of a deposit affect its future value? Why? CHAPTER 3 CONCEPT REVIEW QUESTIONS 1. Will a deposit made into an account paying compound interest (assuming compounding occurs once per year) yield a higher future value after one period than an equal-sized

More information

21.1 Arithmetic Growth and Simple Interest

21.1 Arithmetic Growth and Simple Interest 21.1 Arithmetic Growth and Simple Interest When you open a savings account, your primary concerns are the safety and growth of your savings. Suppose you deposit $1000 in an account that pays interest at

More information

CARMEN VENTER COPYRIGHT www.futurefinance.co.za 0828807192 1

CARMEN VENTER COPYRIGHT www.futurefinance.co.za 0828807192 1 Carmen Venter CFP WORKSHOPS FINANCIAL CALCULATIONS presented by Geoff Brittain Q 5.3.1 Calculate the capital required at retirement to meet Makhensa s retirement goals. (5) 5.3.2 Calculate the capital

More information

The Time Value of Money C H A P T E R N I N E

The Time Value of Money C H A P T E R N I N E The Time Value of Money C H A P T E R N I N E Figure 9-1 Relationship of present value and future value PPT 9-1 $1,000 present value $ 10% interest $1,464.10 future value 0 1 2 3 4 Number of periods Figure

More information

Time Value of Money. Appendix

Time Value of Money. Appendix 1 Appendix Time Value of Money After studying Appendix 1, you should be able to: 1 Explain how compound interest works. 2 Use future value and present value tables to apply compound interest to accounting

More information

1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%?

1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%? Chapter 2 - Sample Problems 1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%? 2. What will $247,000 grow to be in

More information

, plus the present value of the $1,000 received in 15 years, which is 1, 000(1 + i) 30. Hence the present value of the bond is = 1000 ;

, plus the present value of the $1,000 received in 15 years, which is 1, 000(1 + i) 30. Hence the present value of the bond is = 1000 ; 2 Bond Prices A bond is a security which offers semi-annual* interest payments, at a rate r, for a fixed period of time, followed by a return of capital Suppose you purchase a $,000 utility bond, freshly

More information

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words

More information

Note on growth and growth accounting

Note on growth and growth accounting CHAPTER 0 Note on growth and growth accounting 1. Growth and the growth rate In this section aspects of the mathematical concept of the rate of growth used in growth models and in the empirical analysis

More information

Regular Annuities: Determining Present Value

Regular Annuities: Determining Present Value 8.6 Regular Annuities: Determining Present Value GOAL Find the present value when payments or deposits are made at regular intervals. LEARN ABOUT the Math Harry has money in an account that pays 9%/a compounded

More information

Chapter 4: Exponential and Logarithmic Functions

Chapter 4: Exponential and Logarithmic Functions Chapter 4: Eponential and Logarithmic Functions Section 4.1 Eponential Functions... 15 Section 4. Graphs of Eponential Functions... 3 Section 4.3 Logarithmic Functions... 4 Section 4.4 Logarithmic Properties...

More information

How To Use Excel To Compute Compound Interest

How To Use Excel To Compute Compound Interest Excel has several built in functions for working with compound interest and annuities. To use these functions, we ll start with a standard Excel worksheet. This worksheet contains the variables used throughout

More information

TIME VALUE OF MONEY PROBLEM #4: PRESENT VALUE OF AN ANNUITY

TIME VALUE OF MONEY PROBLEM #4: PRESENT VALUE OF AN ANNUITY TIME VALUE OF MONEY PROBLEM #4: PRESENT VALUE OF AN ANNUITY Professor Peter Harris Mathematics by Dr. Sharon Petrushka Introduction In this assignment we will discuss how to calculate the Present Value

More information

TIME VALUE OF MONEY (TVM)

TIME VALUE OF MONEY (TVM) TIME VALUE OF MONEY (TVM) INTEREST Rate of Return When we know the Present Value (amount today), Future Value (amount to which the investment will grow), and Number of Periods, we can calculate the rate

More information

Manual for SOA Exam FM/CAS Exam 2.

Manual for SOA Exam FM/CAS Exam 2. Manual for SOA Exam FM/CAS Exam 2. Chapter 3. Annuities. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall 2009 Edition,

More information

What is the net present value of the project (to the nearest thousand dollars)?

What is the net present value of the project (to the nearest thousand dollars)? corporate finance, final exam practice questions, NPV *Question 1.1: Net Present Value A firm invests $200,000 in machinery that yields net after-tax cash flows of $90,000 at the end of each of the next

More information

9.2 Summation Notation

9.2 Summation Notation 9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

More information

Chapter 4: Time Value of Money

Chapter 4: Time Value of Money FIN 301 Homework Solution Ch4 Chapter 4: Time Value of Money 1. a. 10,000/(1.10) 10 = 3,855.43 b. 10,000/(1.10) 20 = 1,486.44 c. 10,000/(1.05) 10 = 6,139.13 d. 10,000/(1.05) 20 = 3,768.89 2. a. $100 (1.10)

More information

If P = principal, r = annual interest rate, and t = time (in years), then the simple interest I is given by I = P rt.

If P = principal, r = annual interest rate, and t = time (in years), then the simple interest I is given by I = P rt. 13 Consumer Mathematics 13.1 The Time Value of Money Start with some Definitions: Definition 1. The amount of a loan or a deposit is called the principal. Definition 2. The amount a loan or a deposit increases

More information

1.3.2015 г. D. Dimov. Year Cash flow 1 $3,000 2 $5,000 3 $4,000 4 $3,000 5 $2,000

1.3.2015 г. D. Dimov. Year Cash flow 1 $3,000 2 $5,000 3 $4,000 4 $3,000 5 $2,000 D. Dimov Most financial decisions involve costs and benefits that are spread out over time Time value of money allows comparison of cash flows from different periods Question: You have to choose one of

More information

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have 8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents

More information

Discounted Cash Flow Valuation

Discounted Cash Flow Valuation BUAD 100x Foundations of Finance Discounted Cash Flow Valuation September 28, 2009 Review Introduction to corporate finance What is corporate finance? What is a corporation? What decision do managers make?

More information

Pre-Session Review. Part 2: Mathematics of Finance

Pre-Session Review. Part 2: Mathematics of Finance Pre-Session Review Part 2: Mathematics of Finance For this section you will need a calculator with logarithmic and exponential function keys (such as log, ln, and x y ) D. Exponential and Logarithmic Functions

More information

Dick Schwanke Finite Math 111 Harford Community College Fall 2015

Dick Schwanke Finite Math 111 Harford Community College Fall 2015 Using Technology to Assist in Financial Calculations Calculators: TI-83 and HP-12C Software: Microsoft Excel 2007/2010 Session #4 of Finite Mathematics 1 TI-83 / 84 Graphing Calculator Section 5.5 of textbook

More information

3.2 Matrix Multiplication

3.2 Matrix Multiplication 3.2 Matrix Multiplication Question : How do you multiply two matrices? Question 2: How do you interpret the entries in a product of two matrices? When you add or subtract two matrices, you add or subtract

More information

Vilnius University. Faculty of Mathematics and Informatics. Gintautas Bareikis

Vilnius University. Faculty of Mathematics and Informatics. Gintautas Bareikis Vilnius University Faculty of Mathematics and Informatics Gintautas Bareikis CONTENT Chapter 1. SIMPLE AND COMPOUND INTEREST 1.1 Simple interest......................................................................

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

More on annuities with payments in arithmetic progression and yield rates for annuities

More on annuities with payments in arithmetic progression and yield rates for annuities More on annuities with payments in arithmetic progression and yield rates for annuities 1 Annuities-due with payments in arithmetic progression 2 Yield rate examples involving annuities More on annuities

More information

Study Questions for Actuarial Exam 2/FM By: Aaron Hardiek June 2010

Study Questions for Actuarial Exam 2/FM By: Aaron Hardiek June 2010 P a g e 1 Study Questions for Actuarial Exam 2/FM By: Aaron Hardiek June 2010 P a g e 2 Background The purpose of my senior project is to prepare myself, as well as other students who may read my senior

More information

Real estate investment & Appraisal Dr. Ahmed Y. Dashti. Sample Exam Questions

Real estate investment & Appraisal Dr. Ahmed Y. Dashti. Sample Exam Questions Real estate investment & Appraisal Dr. Ahmed Y. Dashti Sample Exam Questions Problem 3-1 a) Future Value = $12,000 (FVIF, 9%, 7 years) = $12,000 (1.82804) = $21,936 (annual compounding) b) Future Value

More information

The Basics of Interest Theory

The Basics of Interest Theory Contents Preface 3 The Basics of Interest Theory 9 1 The Meaning of Interest................................... 10 2 Accumulation and Amount Functions............................ 14 3 Effective Interest

More information