5. Time value of money


 Victoria Harrison
 4 years ago
 Views:
Transcription
1 1 Simple interest 2 5. Time value of money With simple interest, the amount earned each period is always the same: i = rp o We will review some tools for discounting cash flows. where i = interest earned r = interest rate (per period) p o = principal Therefore, at the end of n periods, we will have (principal plus interest) p t = p o + trp o = p o(1 + tr) Example simple interest 3 Compound interest 4 If we invest $100 at 10% simple interest for 7 years, how much will we have? With compound interest, we earn interest not only on the principal but also on the interest earned in previous periods: Solution: = 170 p 1 = p o + rp o = p o(1 + r) p 2 = p 1(1 + r) = p o(1 + r) 2 p 3 = p 2(1 + r) = p o(1 + r) 3. p t = p t 1(1 + r) = p o(1 + r) t
2 Example compound interest 5 Simple vs compound interest 6 If we invest $100 at 10% compound interest for 7 years, how much will we have? How much of the interest earned in the previous example was from the principal, and how much was earned on previous periods interest? Solution: The total will be = , of which = is interest on interest. Compounding over many periods 7 Present value and future value 8 The value of an investment at present is often referred to as the present value (PV). Its value in the future is often referred to as its future value (FV). Thus, one might also write the formula for compound interest as FV t = PV (1 + r) t Because of compounding, small differences in interest rate can make a large difference after many periods.
3 Discounting 9 Four variables 10 Computing the present value of a future cash flow is often referred to as discounting the cash flow. By rearranging the previous formula, we get PV = FVt (1 + r) t There are four variables in the equation FV t = PV (1 + r) t. Given values for any three, we can solve for the fourth. It is not hard to do this algebraically. But, it is easier to use our financial calculators. Calculators 11 Example compound interest 12 There are a couple of things to be careful about when using your calculators: Be sure that you are in end mode rather than begin mode. This means that payments are at the end rather than the beginning of each period. This is the standard convention unless noted otherwise. Suppose I invest $100 initially. After 8 years, the investment is worth $190. What interest rate did I earn (assume annual compounding)? Be sure that the number of payments per period is set to 1.
4 Example compound interest 13 Example compound interest 14 Suppose I invest $100 initially. The investment earns 8% compounded annually. How long until the investment is worth $200? Suppose I have an investment that will pay off $1000 after 20 years. What is the present value of this investment if I discount at 11% per year? Example compound interest 15 Rule of I invest $300 initially. The investment earns 10% compounded annually. How much is it worth in 15 years? A good rule of thumb is that time required for an investment to double multiplied by the rate is about 72. Example: About how long is needed for an investment at a 6% annual rate (compounded annually) to double?
5 Time periods 17 Example time periods 18 You have to be sure when doing these problems that the time units are consistent between I invest $200 at an annual rate of 8% compounded weekly. How much do I have after 3 years? compounding period interest rate period of investment Note: Be careful about rounding! If not, it is usually best to convert everything to the same units as the compounding frequency. Note: For the purposes of this course, always assume a year is comprised of 12 months (each of equal length), 52 weeks, and 365 days. Effective annual rate (EAR) 19 Annual percentage rate (APR) 20 There are many different ways to quote rates: Rate: annual, monthly, weekly,... Compounding: annual, monthly, weekly,... Truthinlending laws in the US require that lenders disclose the APR. The APR is just the nominal rate quoted on an annual basis. It says nothing about the compounding interval. To compare different rates, it is convenient to standardize them. The effective annual rate (EAR) is the equivalent annual rate based on annual compounding.
6 Examples EAR/APR 21 IMPORTANT 22 What is the APR for a loan with a daily rate of 0.03% compounded daily? What is the EAR? Unless otherwise noted, interest rates (and other kinds or rates) will be quoted as nominal annualized rates (i.e., APR). What is the EAR for an annual rate of 11% compounded weekly? Note: Be careful about rounding!! Continuous compounding 23 Continuous compounding formula 24 You could think of compounding over shorter and shorter intervals. In the limit, as the compounding interval becomes infinitely short, we refer to this as continuous compounding: FV t = lim PV (1 + r/m)mt m = PV e rt As with the standard compounding problems, there are four variables. Given any three, we can solve for the fourth. The formula is obtained using L Hopitals rule: ( lim x [ ( = exp lim x x) x log )] x x [ log ( )] x = exp lim x 1 x 1/x 2 1+1/x = exp lim x 1/x 2 [ ] 1 = exp lim x x = e
7 Example continuous compounding 25 Example continuous compounding 26 Suppose we have $100 invested at 12% annual interest. How much do we have at the end of two years if the interest is compounded continuously? Suppose I invest some sum of money with 8% interest compounded continuously. At the end of 5 years, I have $200. Solution: FV = 100 exp(0.24) = How much did I invest? Solution: 200 = P V exp(5.08) P V = 200/ exp(5.08) = Example continuous compounding 27 Present value with unequal cash flows 28 Suppose I invest $100 with continuously compounded interest. At the end of three years, I have $185. What is the interest rate? Solution: 185 = 100 exp(3 r) 185/100 = exp(3 r) log(185/100) = 3 r r = 1 log(185/100) = 20.5% 3 Suppose I am to receive cash flows of $300 after one year, $500 after two years, and $700 per year for the next three years. What is the present value of these cash flows if I discount at 8% per year? Solution: Discount the cash flows individually and add them up: PV = Or, use cash flow function on our calculators. Note: You don t have to reenter 700 three times. Just hit the cash flow button three times in a row.
8 Future value with unequal cash flows 29 Interest rate with unequal cash flows 30 Suppose I am to receive cash flows of $300 after one year, $500 after two years, and $700 per year for the next three years. What is the future value of these cash flows at the end of the fifth year 8% annual interest? Suppose I am to receive cash flows of $300 after one year, $500 after two years, and $700 per year for the next three years. If the present value of these cash flows is $2400, what is the interest rate? (Use cash flow function and then compute IRR using calculator.) Solution: Compound the cash flows individually and add them up: FV = Or, use cash flow function on our calculators (use NFV button if there is one, otherwise, use NPV and then multiply by ). Perpetuity 31 Deriving the perpetuity formula 32 A perpetuity is a stream of cash flows that continues forever. The perpetuity formula is based on the identity P V = C R Example: What is the present value of a perpetuity that pays $100 per quarter (use a discount rate of 12%)? This is referred to as a geometric series. With a little algebra, we can get C 1 + r + C (1 + r) x + x 2 + = 1 1 x = C 1 + r ( 1 1 ) 1 + r + (1 + r) 2 + = C 1 + r 1 1 1/(1 + r) = C r
9 Annuities 33 Deriving the annuity formula 34 A common situation is where a fixed number of equal cash flows are paid out. This is referred to as an annuity. The present value of an annuity can be calculated using the following formula: (Or, use calculator). PV = C [ r 1 ] 1 (1 + r) n We can derive the formula using the perpetuity formula: An annuity with payments of size C at the end of years 1 through n is equal to: the present value of a perpetuity with payments of size C minus the present value of a perpetuity with payments of size C beginning in year n+1. I.e., P V = C R C R 1 (1 + r) n = C [ ] R 1 1 (1 + r) n Annuity with final lump sum payment 35 Annuities continued 36 A common problem involves There are five variables involved in a standard problem: an annuity with payments of size C at the end of years 1 through n present value plus a final lump sum payment, F V n. interest rate The present value of this stream of cash flows is: P V = C [ R 1 1 (1 + r) n ] + F Vn (1 + r) n number of periods periodic payments final lump sum payment Given any four, you should be able to solve for the fifth.
10 Example annuity 37 Example annuity 38 Consider an investment that pays $100 at the end of each of the next 20 years. What is the present value of these cash flows if I discount at 9% (APR)? Suppose that I have a loan for $100,000 at an annual rate of 9% that I wish to pay off with 5 equal annual payments. What is the required payment? Example annuity 39 Example annuity 40 If I borrow $1000 at 12% and make annual payments of $150 for 10 years, what is the balance on the loan after making the payment at the end of year 10? I invest $1000 in some project. The investment pays back $120 per year for 10 years. I then sell the investment for $500. What is the rate of return?
11 Reminder 41 Example loan 42 Be careful that the time units match up for compounding interval time to maturity Suppose that I buy a house for $300,000. If I put down $50,000 and take out a 30year loan at an annual rate of 9% (compounded monthly) for the remainder. Assume equal monthly payments, and that the loan is paid off after the last payment. What are the monthly payments? payment period. Of the first payment, how much goes toward the principal? What is the remaining balance on the loan after 10 years? What would the payments be for a 15 year loan? A note on cash flow timing 43 Annuity due 44 The timing of the cash flows is very important: Recall that the usual convention is that cash flows occur at the end of each period. The usual convention (unless stated otherwise) is that the cash flows occur at the end of the period. Also, we will generally assume that the compounding frequency is the same as that of the cash flows unless otherwise stated. An annuity with cash flows at the beginning of each period is called an annuity due. Annuity due value = Ordinary annuity value (1 + r) (Or, you can switch your calculator to begin mode.)
12 Example annuity due 45 Growing perpetuity 46 I borrowed $1000 which I wish to pay off in five years making equal monthly payments. The annual interest rate (APR) is 12% and the payments are due at the beginning of each month. What are the payments? A growing perpetuity is a series of cash flows which grow at rate g. If C 1 is the size of the first cash flow, then P V = C1 r g Example growing perpetuity 47 Growing annuity 48 John is to receive a series of quarterly cash flows which are to grow at an annual rate of 6% and continue forever. If the appropriate discount rate is 10%, and the present value of the cash flows is $100,000, what is the first cash flow? A growing annuity is like a growing perpetuity, except only n cash flows are paid. The formula can be derived in a manner similar to the annuity formula, as the difference between a growing annuity starting immediately and one starting at time n: P V = C1 r g [ 1 ( ) n ] 1 + g 1 + r
13 Example growing annuity 49 Calendar time vs calculator time 50 John is to receive a series of 10 annual cash flows beginning in one year. The first cash flow will be $100, and the cash flows grow at 10%. If the appropriate discount rate is 15%, what is the present value of the cash flows? Dave is to receive a perpetuity with annual cash flows of $100 beginning five years from today. If the appropriate discount rate is 12%, what is the value of those cash flows at time t=5? At time t=4? Today? Some common types of loans 51 Exercise Loan comparison 52 Pure discount loan The borrower receives the money today and repays the principal plus accumulated interest in a single lump sum at some time in the future. Interestonly loan The borrower repays the interest each period and repays the entire principal in a lump sum at some point in the future. Suppose that I buy a house for $300,000, putting $50,000 down and borrowing $250,000. I plan to take out a 30 year loan. The annual rate is 9% (compounded monthly). What are my monthly payments if I take out a pure discount loan? How much will I have paid for the house (principal plus accumulated interest)? Amortized loans The borrower pays the interest each period plus some amount toward the principal. The loan is paid off when the entire principal has been paid down. The most common structure is for the borrower to make equal payments. Balloon loan The borrower makes a payment each period (usually of equal size) and pays off the balance at some point in the future. What if I take out an interest only loan? How about an amortized loan (equal payments)? Which of these is the better deal?
14 Discounting cash flows using a spreadsheet 53 See posted examples.
3. Time value of money. We will review some tools for discounting cash flows.
1 3. Time value of money We will review some tools for discounting cash flows. Simple interest 2 With simple interest, the amount earned each period is always the same: i = rp o where i = interest earned
More informationThe Time Value of Money
The Time Value of Money Time Value Terminology 0 1 2 3 4 PV FV Future value (FV) is the amount an investment is worth after one or more periods. Present value (PV) is the current value of one or more future
More informationFinding the Payment $20,000 = C[1 1 / 1.0066667 48 ] /.0066667 C = $488.26
Quick Quiz: Part 2 You know the payment amount for a loan and you want to know how much was borrowed. Do you compute a present value or a future value? You want to receive $5,000 per month in retirement.
More informationDiscounted Cash Flow Valuation
6 Formulas Discounted Cash Flow Valuation McGrawHill/Irwin Copyright 2008 by The McGrawHill Companies, Inc. All rights reserved. Chapter Outline Future and Present Values of Multiple Cash Flows Valuing
More informationDiscounted Cash Flow Valuation
Discounted Cash Flow Valuation Chapter 5 Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute
More informationChapter 6. Discounted Cash Flow Valuation. Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Answer 6.1
Chapter 6 Key Concepts and Skills Be able to compute: the future value of multiple cash flows the present value of multiple cash flows the future and present value of annuities Discounted Cash Flow Valuation
More informationKey Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Chapter Outline. Multiple Cash Flows Example 2 Continued
6 Calculators Discounted Cash Flow Valuation Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute
More information1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%?
Chapter 2  Sample Problems 1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%? 2. What will $247,000 grow to be in
More informationDISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS
Chapter 5 DISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS The basic PV and FV techniques can be extended to handle any number of cash flows. PV with multiple cash flows: Suppose you need $500 one
More information2. How would (a) a decrease in the interest rate or (b) an increase in the holding period of a deposit affect its future value? Why?
CHAPTER 3 CONCEPT REVIEW QUESTIONS 1. Will a deposit made into an account paying compound interest (assuming compounding occurs once per year) yield a higher future value after one period than an equalsized
More informationChapter 4. The Time Value of Money
Chapter 4 The Time Value of Money 1 Learning Outcomes Chapter 4 Identify various types of cash flow patterns Compute the future value and the present value of different cash flow streams Compute the return
More informationEXAM 2 OVERVIEW. Binay Adhikari
EXAM 2 OVERVIEW Binay Adhikari FEDERAL RESERVE & MARKET ACTIVITY (BS38) Definition 4.1 Discount Rate The discount rate is the periodic percentage return subtracted from the future cash flow for computing
More informationChapter 5 Time Value of Money 2: Analyzing Annuity Cash Flows
1. Future Value of Multiple Cash Flows 2. Future Value of an Annuity 3. Present Value of an Annuity 4. Perpetuities 5. Other Compounding Periods 6. Effective Annual Rates (EAR) 7. Amortized Loans Chapter
More informationIntegrated Case. 542 First National Bank Time Value of Money Analysis
Integrated Case 542 First National Bank Time Value of Money Analysis You have applied for a job with a local bank. As part of its evaluation process, you must take an examination on time value of money
More informationChapter 4 Time Value of Money ANSWERS TO ENDOFCHAPTER QUESTIONS
Chapter 4 Time Value of Money ANSWERS TO ENDOFCHAPTER QUESTIONS 41 a. PV (present value) is the value today of a future payment, or stream of payments, discounted at the appropriate rate of interest.
More informationChapter 6. Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams
Chapter 6 Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams 1. Distinguish between an ordinary annuity and an annuity due, and calculate present
More informationCh. Ch. 5 Discounted Cash Flows & Valuation In Chapter 5,
Ch. 5 Discounted Cash Flows & Valuation In Chapter 5, we found the PV & FV of single cash flowseither payments or receipts. In this chapter, we will do the same for multiple cash flows. 2 Multiple Cash
More informationChapter 6 Contents. Principles Used in Chapter 6 Principle 1: Money Has a Time Value.
Chapter 6 The Time Value of Money: Annuities and Other Topics Chapter 6 Contents Learning Objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate present and future values
More informationChapter 4: Time Value of Money
FIN 301 Homework Solution Ch4 Chapter 4: Time Value of Money 1. a. 10,000/(1.10) 10 = 3,855.43 b. 10,000/(1.10) 20 = 1,486.44 c. 10,000/(1.05) 10 = 6,139.13 d. 10,000/(1.05) 20 = 3,768.89 2. a. $100 (1.10)
More informationInternational Financial Strategies Time Value of Money
International Financial Strategies 1 Future Value and Compounding Future value = cash value of the investment at some point in the future Investing for single period: FV. Future Value PV. Present Value
More informationThe time value of money: Part II
The time value of money: Part II A reading prepared by Pamela Peterson Drake O U T L I E 1. Introduction 2. Annuities 3. Determining the unknown interest rate 4. Determining the number of compounding periods
More informationFuture Value. Basic TVM Concepts. Chapter 2 Time Value of Money. $500 cash flow. On a time line for 3 years: $100. FV 15%, 10 yr.
Chapter Time Value of Money Future Value Present Value Annuities Effective Annual Rate Uneven Cash Flows Growing Annuities Loan Amortization Summary and Conclusions Basic TVM Concepts Interest rate: abbreviated
More informationCHAPTER 9 Time Value Analysis
Copyright 2008 by the Foundation of the American College of Healthcare Executives 6/11/07 Version 91 CHAPTER 9 Time Value Analysis Future and present values Lump sums Annuities Uneven cash flow streams
More informationPowerPoint. to accompany. Chapter 5. Interest Rates
PowerPoint to accompany Chapter 5 Interest Rates 5.1 Interest Rate Quotes and Adjustments To understand interest rates, it s important to think of interest rates as a price the price of using money. When
More informationCheck off these skills when you feel that you have mastered them.
Chapter Objectives Check off these skills when you feel that you have mastered them. Know the basic loan terms principal and interest. Be able to solve the simple interest formula to find the amount of
More informationPRESENT VALUE ANALYSIS. Time value of money equal dollar amounts have different values at different points in time.
PRESENT VALUE ANALYSIS Time value of money equal dollar amounts have different values at different points in time. Present value analysis tool to convert CFs at different points in time to comparable values
More informationCHAPTER 2. Time Value of Money 21
CHAPTER 2 Time Value of Money 21 Time Value of Money (TVM) Time Lines Future value & Present value Rates of return Annuities & Perpetuities Uneven cash Flow Streams Amortization 22 Time lines 0 1 2 3
More informationChapter The Time Value of Money
Chapter The Time Value of Money PPT 92 Chapter 9  Outline Time Value of Money Future Value and Present Value Annuities TimeValueofMoney Formulas Adjusting for NonAnnual Compounding Compound Interest
More informationTIME VALUE OF MONEY (TVM)
TIME VALUE OF MONEY (TVM) INTEREST Rate of Return When we know the Present Value (amount today), Future Value (amount to which the investment will grow), and Number of Periods, we can calculate the rate
More informationChapter 1: Time Value of Money
1 Chapter 1: Time Value of Money Study Unit 1: Time Value of Money Concepts Basic Concepts Cash Flows A cash flow has 2 components: 1. The receipt or payment of money: This differs from the accounting
More informationCHAPTER 4 DISCOUNTED CASH FLOW VALUATION
CHAPTER 4 DISCOUNTED CASH FLOW VALUATION Answers to Concepts Review and Critical Thinking Questions 1. Assuming positive cash flows and interest rates, the future value increases and the present value
More informationCALCULATOR TUTORIAL. Because most students that use Understanding Healthcare Financial Management will be conducting time
CALCULATOR TUTORIAL INTRODUCTION Because most students that use Understanding Healthcare Financial Management will be conducting time value analyses on spreadsheets, most of the text discussion focuses
More informationThe Time Value of Money
The following is a review of the Quantitative Methods: Basic Concepts principles designed to address the learning outcome statements set forth by CFA Institute. This topic is also covered in: The Time
More informationCHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY 1. The simple interest per year is: $5,000.08 = $400 So after 10 years you will have: $400 10 = $4,000 in interest. The total balance will be
More informationChapter 6. Time Value of Money Concepts. Simple Interest 61. Interest amount = P i n. Assume you invest $1,000 at 6% simple interest for 3 years.
61 Chapter 6 Time Value of Money Concepts 62 Time Value of Money Interest is the rent paid for the use of money over time. That s right! A dollar today is more valuable than a dollar to be received in
More informationCHAPTER 6 DISCOUNTED CASH FLOW VALUATION
CHAPTER 6 DISCOUNTED CASH FLOW VALUATION Answers to Concepts Review and Critical Thinking Questions 1. The four pieces are the present value (PV), the periodic cash flow (C), the discount rate (r), and
More informationFinancial Management Spring 2012
31 Financial Management Spring 2012 Week 4 How to Calculate Present Values III 41 32 Topics Covered More Shortcuts Growing Perpetuities and Annuities How Interest Is Paid and Quoted 42 Example 33
More informationChapter 7 SOLUTIONS TO ENDOFCHAPTER PROBLEMS
Chapter 7 SOLUTIONS TO ENDOFCHAPTER PROBLEMS 71 0 1 2 3 4 5 10% PV 10,000 FV 5? FV 5 $10,000(1.10) 5 $10,000(FVIF 10%, 5 ) $10,000(1.6105) $16,105. Alternatively, with a financial calculator enter the
More informationIntroduction to Real Estate Investment Appraisal
Introduction to Real Estate Investment Appraisal Maths of Finance Present and Future Values Pat McAllister INVESTMENT APPRAISAL: INTEREST Interest is a reward or rent paid to a lender or investor who has
More informationDiscounted Cash Flow Valuation
BUAD 100x Foundations of Finance Discounted Cash Flow Valuation September 28, 2009 Review Introduction to corporate finance What is corporate finance? What is a corporation? What decision do managers make?
More information1.3.2015 г. D. Dimov. Year Cash flow 1 $3,000 2 $5,000 3 $4,000 4 $3,000 5 $2,000
D. Dimov Most financial decisions involve costs and benefits that are spread out over time Time value of money allows comparison of cash flows from different periods Question: You have to choose one of
More informationExample. L.N. Stout () Problems on annuities 1 / 14
Example A credit card charges an annual rate of 14% compounded monthly. This month s bill is $6000. The minimum payment is $5. Suppose I keep paying $5 each month. How long will it take to pay off the
More informationFinQuiz Notes 2 0 1 4
Reading 5 The Time Value of Money Money has a time value because a unit of money received today is worth more than a unit of money to be received tomorrow. Interest rates can be interpreted in three ways.
More informationCHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY Answers to Concepts Review and Critical Thinking Questions 1. The four parts are the present value (PV), the future value (FV), the discount
More informationFIN 3000. Chapter 6. Annuities. Liuren Wu
FIN 3000 Chapter 6 Annuities Liuren Wu Overview 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams Learning objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate
More informationChapter 02 How to Calculate Present Values
Chapter 02 How to Calculate Present Values Multiple Choice Questions 1. The present value of $100 expected in two years from today at a discount rate of 6% is: A. $116.64 B. $108.00 C. $100.00 D. $89.00
More informationThe Time Value of Money C H A P T E R N I N E
The Time Value of Money C H A P T E R N I N E Figure 91 Relationship of present value and future value PPT 91 $1,000 present value $ 10% interest $1,464.10 future value 0 1 2 3 4 Number of periods Figure
More information1 Interest rates, and riskfree investments
Interest rates, and riskfree investments Copyright c 2005 by Karl Sigman. Interest and compounded interest Suppose that you place x 0 ($) in an account that offers a fixed (never to change over time)
More informationEhrhardt Chapter 8 Page 1
Chapter 2 Time Value of Money 1 Time Value Topics Future value Present value Rates of return Amortization 2 Time lines show timing of cash flows. 0 1 2 3 I% CF 0 CF 1 CF 2 CF 3 Tick marks at ends of periods,
More informationBond Price Arithmetic
1 Bond Price Arithmetic The purpose of this chapter is: To review the basics of the time value of money. This involves reviewing discounting guaranteed future cash flows at annual, semiannual and continuously
More informationTime Value of Money. If you deposit $100 in an account that pays 6% annual interest, what amount will you expect to have in
Time Value of Money Future value Present value Rates of return 1 If you deposit $100 in an account that pays 6% annual interest, what amount will you expect to have in the account at the end of the year.
More informationHewlettPackard 10BII Tutorial
This tutorial has been developed to be used in conjunction with Brigham and Houston s Fundamentals of Financial Management 11 th edition and Fundamentals of Financial Management: Concise Edition. In particular,
More informationHow to calculate present values
How to calculate present values Back to the future Chapter 3 Discounted Cash Flow Analysis (Time Value of Money) Discounted Cash Flow (DCF) analysis is the foundation of valuation in corporate finance
More informationTopics. Chapter 5. Future Value. Future Value  Compounding. Time Value of Money. 0 r = 5% 1
Chapter 5 Time Value of Money Topics 1. Future Value of a Lump Sum 2. Present Value of a Lump Sum 3. Future Value of Cash Flow Streams 4. Present Value of Cash Flow Streams 5. Perpetuities 6. Uneven Series
More informationCHAPTER 4 DISCOUNTED CASH FLOW VALUATION
CHAPTER 4 DISCOUNTED CASH FLOW VALUATION Solutions to Questions and Problems NOTE: Allendof chapter problems were solved using a spreadsheet. Many problems require multiple steps. Due to space and readability
More informationChapter 4. Time Value of Money. Copyright 2009 Pearson Prentice Hall. All rights reserved.
Chapter 4 Time Value of Money Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. 2. Understand the concept of future value
More informationChapter 4. Time Value of Money. Learning Goals. Learning Goals (cont.)
Chapter 4 Time Value of Money Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. 2. Understand the concept of future value
More informationTHE TIME VALUE OF MONEY
QUANTITATIVE METHODS THE TIME VALUE OF MONEY Reading 5 http://proschool.imsindia.com/ 1 Learning Objective Statements (LOS) a. Interest Rates as Required rate of return, Discount Rate and Opportunity Cost
More informationChapter 2 Present Value
Chapter 2 Present Value Road Map Part A Introduction to finance. Financial decisions and financial markets. Present value. Part B Valuation of assets, given discount rates. Part C Determination of riskadjusted
More informationSolutions to Problems: Chapter 5
Solutions to Problems: Chapter 5 P51. Using a time line LG 1; Basic a, b, and c d. Financial managers rely more on present value than future value because they typically make decisions before the start
More informationCompound Interest Formula
Mathematics of Finance Interest is the rental fee charged by a lender to a business or individual for the use of money. charged is determined by Principle, rate and time Interest Formula I = Prt $100 At
More informationChapter 4. The Time Value of Money
Chapter 4 The Time Value of Money 42 Topics Covered Future Values and Compound Interest Present Values Multiple Cash Flows Perpetuities and Annuities Inflation and Time Value Effective Annual Interest
More informationIntroduction. Turning the Calculator On and Off
Texas Instruments BAII PLUS Calculator Tutorial to accompany Cyr, et. al. Contemporary Financial Management, 1 st Canadian Edition, 2004 Version #6, May 5, 2004 By William F. Rentz and Alfred L. Kahl Introduction
More informationCHAPTER 4. The Time Value of Money. Chapter Synopsis
CHAPTER 4 The Time Value of Money Chapter Synopsis Many financial problems require the valuation of cash flows occurring at different times. However, money received in the future is worth less than money
More informationTexas Instruments BAII Plus Tutorial for Use with Fundamentals 11/e and Concise 5/e
Texas Instruments BAII Plus Tutorial for Use with Fundamentals 11/e and Concise 5/e This tutorial was developed for use with Brigham and Houston s Fundamentals of Financial Management, 11/e and Concise,
More informationChapter 5 Discounted Cash Flow Valuation
Chapter Discounted Cash Flow Valuation Compounding Periods Other Than Annual Let s examine monthly compounding problems. Future Value Suppose you invest $9,000 today and get an interest rate of 9 percent
More information9. Time Value of Money 1: Present and Future Value
9. Time Value of Money 1: Present and Future Value Introduction The language of finance has unique terms and concepts that are based on mathematics. It is critical that you understand this language, because
More informationKey Concepts and Skills
McGrawHill/Irwin Copyright 2014 by the McGrawHill Companies, Inc. All rights reserved. Key Concepts and Skills Be able to compute: The future value of an investment made today The present value of cash
More informationTime Value of Money. Background
Time Value of Money (Text reference: Chapter 4) Topics Background One period case  single cash flow Multiperiod case  single cash flow Multiperiod case  compounding periods Multiperiod case  multiple
More informationTime Value Conepts & Applications. Prof. Raad Jassim
Time Value Conepts & Applications Prof. Raad Jassim Chapter Outline Introduction to Valuation: The Time Value of Money 1 2 3 4 5 6 7 8 Future Value and Compounding Present Value and Discounting More on
More informationIntroduction to the HewlettPackard (HP) 10BII Calculator and Review of Mortgage Finance Calculations
Introduction to the HewlettPackard (HP) 10BII Calculator and Review of Mortgage Finance Calculations Real Estate Division Sauder School of Business University of British Columbia Introduction to the HewlettPackard
More informationMAT116 Project 2 Chapters 8 & 9
MAT116 Project 2 Chapters 8 & 9 1 81: The Project In Project 1 we made a loan workout decision based only on data from three banks that had merged into one. We did not consider issues like: What was the
More informationFinQuiz Notes 2 0 1 5
Reading 5 The Time Value of Money Money has a time value because a unit of money received today is worth more than a unit of money to be received tomorrow. Interest rates can be interpreted in three ways.
More informationAbout Compound Interest
About Compound Interest TABLE OF CONTENTS About Compound Interest... 1 What is COMPOUND INTEREST?... 1 Interest... 1 Simple Interest... 1 Compound Interest... 1 Calculations... 3 Calculating How Much to
More informationPresent Value Concepts
Present Value Concepts Present value concepts are widely used by accountants in the preparation of financial statements. In fact, under International Financial Reporting Standards (IFRS), these concepts
More informationReview for Exam 1. Instructions: Please read carefully
Review for Exam 1 Instructions: Please read carefully The exam will have 20 multiple choice questions and 4 work problems. Questions in the multiple choice section will be either concept or calculation
More informationTIME VALUE OF MONEY. Return of vs. Return on Investment: We EXPECT to get more than we invest!
TIME VALUE OF MONEY Return of vs. Return on Investment: We EXPECT to get more than we invest! Invest $1,000 it becomes $1,050 $1,000 return of $50 return on Factors to consider when assessing Return on
More informationThe Mathematics of Financial Planning (supplementary lesson notes to accompany FMGT 2820)
The Mathematics of Financial Planning (supplementary lesson notes to accompany FMGT 2820) Using the Sharp EL733A Calculator Reference is made to the Appendix Tables A1 to A4 in the course textbook Investments:
More informationLecture Notes on the Mathematics of Finance
Lecture Notes on the Mathematics of Finance Jerry Alan Veeh February 20, 2006 Copyright 2006 Jerry Alan Veeh. All rights reserved. 0. Introduction The objective of these notes is to present the basic aspects
More informationTIME VALUE OF MONEY. In following we will introduce one of the most important and powerful concepts you will learn in your study of finance;
In following we will introduce one of the most important and powerful concepts you will learn in your study of finance; the time value of money. It is generally acknowledged that money has a time value.
More informationThe Basics of Interest Theory
Contents Preface 3 The Basics of Interest Theory 9 1 The Meaning of Interest................................... 10 2 Accumulation and Amount Functions............................ 14 3 Effective Interest
More informationModule 5: Interest concepts of future and present value
file:///f /Courses/201011/CGA/FA2/06course/m05intro.htm Module 5: Interest concepts of future and present value Overview In this module, you learn about the fundamental concepts of interest and present
More informationUSING THE SHARP EL 738 FINANCIAL CALCULATOR
USING THE SHARP EL 738 FINANCIAL CALCULATOR Basic financial examples with financial calculator steps Prepared by Colin C Smith 2010 Some important things to consider 1. These notes cover basic financial
More informationTime Value of Money. Reading 5. IFT Notes for the 2015 Level 1 CFA exam
Time Value of Money Reading 5 IFT Notes for the 2015 Level 1 CFA exam Contents 1. Introduction... 2 2. Interest Rates: Interpretation... 2 3. The Future Value of a Single Cash Flow... 4 4. The Future Value
More informationCHAPTER 5. Interest Rates. Chapter Synopsis
CHAPTER 5 Interest Rates Chapter Synopsis 5.1 Interest Rate Quotes and Adjustments Interest rates can compound more than once per year, such as monthly or semiannually. An annual percentage rate (APR)
More information6: Financial Calculations
: Financial Calculations The Time Value of Money Growth of Money I Growth of Money II The FV Function Amortisation of a Loan Annuity Calculation Comparing Investments Worked examples Other Financial Functions
More informationAccounting Building Business Skills. Interest. Interest. Paul D. Kimmel. Appendix B: Time Value of Money
Accounting Building Business Skills Paul D. Kimmel Appendix B: Time Value of Money PowerPoint presentation by Kate WynnWilliams University of Otago, Dunedin 2003 John Wiley & Sons Australia, Ltd 1 Interest
More information1.21.3 Time Value of Money and Discounted Cash Flows
1.1.3 ime Value of Money and Discounted ash Flows ime Value of Money (VM)  the Intuition A cash flow today is worth more than a cash flow in the future since: Individuals prefer present consumption to
More informationGoals. The Time Value of Money. First example. Compounding. Economics 71a Spring 2007 Mayo, Chapter 7 Lecture notes 3.1
Goals The Time Value of Money Economics 7a Spring 2007 Mayo, Chapter 7 Lecture notes 3. More applications Compounding PV = present or starting value FV = future value R = interest rate n = number of periods
More informationThe Mathematics of Financial Planning (supplementary lesson notes to accompany FMGT 2820)
The Mathematics of Financial Planning (supplementary lesson notes to accompany FMGT 2820) Using the Sharp EL738 Calculator Reference is made to the Appendix Tables A1 to A4 in the course textbook Investments:
More informationrate nper pmt pv Interest Number of Payment Present Future Rate Periods Amount Value Value 12.00% 1 0 $100.00 $112.00
In Excel language, if the initial cash flow is an inflow (positive), then the future value must be an outflow (negative). Therefore you must add a negative sign before the FV (and PV) function. The inputs
More informationLecture Notes on Actuarial Mathematics
Lecture Notes on Actuarial Mathematics Jerry Alan Veeh May 1, 2006 Copyright 2006 Jerry Alan Veeh. All rights reserved. 0. Introduction The objective of these notes is to present the basic aspects of the
More informationTexas Instruments BAII PLUS Tutorial
Omar M. Al Nasser, Ph.D., MBA. Visiting Assistant Professor of Finance School of Business Administration University of HoustonVictoria Email: alnassero@uhv.edu Texas Instruments BAII PLUS Tutorial To
More informationHOW TO CALCULATE PRESENT VALUES
Chapter 2 HOW TO CALCULATE PRESENT VALUES Brealey, Myers, and Allen Principles of Corporate Finance 11th Edition McGrawHill/Irwin Copyright 2014 by The McGrawHill Companies, Inc. All rights reserved.
More informationSharp EL733A Tutorial
To begin, look at the face of the calculator. Almost every key on the EL733A has two functions: each key's primary function is noted on the key itself, while each key's secondary function is noted in
More informationCalculator (HewlettPackard 10BII) Tutorial
UNDERSTANDING HEALTHCARE FINANCIAL MANAGEMENT Calculator (HewlettPackard 10BII) Tutorial To begin, look at the face of the calculator. Most keys (except a few) have two functions: Each key s primary function
More informationFNCE 301, Financial Management H Guy Williams, 2006
REVIEW We ve used the DCF method to find present value. We also know shortcut methods to solve these problems such as perpetuity present value = C/r. These tools allow us to value any cash flow including
More informationCalculating interest rates
Calculating interest rates A reading prepared by Pamela Peterson Drake O U T L I N E 1. Introduction 2. Annual percentage rate 3. Effective annual rate 1. Introduction The basis of the time value of money
More informationExercise 1 for Time Value of Money
Exercise 1 for Time Value of Money MULTIPLE CHOICE 1. Which of the following statements is CORRECT? a. A time line is not meaningful unless all cash flows occur annually. b. Time lines are useful for visualizing
More information